Peer-to-Peer based QoS Registry Architecturefor Web
Services

Fei Li, Fangchun Yang, Kai Shuang, Sen Su

State Key Lab. of Networking and Switching, Beijidgiversity of Posts and
Telecommunications
187#,10 Xi Tu Cheng Rd.,Beijing,100876, P.R.China
pathos.lf@gmail.com{ fcyang, shuangk, susen }@bupt.edu.cn

Abstract. Web service QoS (Quality of Service) is a key dadbr users to
evaluate and select services. Traditionally, rametQoS of web services stores
in centralized QoS registry, which may have perfomoe and availability
problems. In this paper, we propose a P2P (PeBe&r) QoS registry
architecture for web services, named Q-Peer. Q-RBean unstructured P2P
system. Query of QoS is naturally achieved by ggttQoS address from
corresponding service description. Q-Peer hasleatipn based mechanism to
ensure load-balance of the whole architecture.arbhitecture takes advantage
of P2P systems to ensure its availability, perforoeaand autonomy. We are
currently implementing Q-Peer and planning to itesh Planet-Lab.

1. Introduction

Using web service technology to integrate busirssgsications is one of the major
trends of distributed computing. It is a widely ko procedure that serviée
requesters discover services by functional desoripand select services by non-
functional properties. Because service functiorelatively stable throughout service
lifetime, while service QoS can change frequentithwime, load, network condition
and many other factors, maintaining the two typflasformation has different system
requirements and design considerations. Thus, gtep® are often accomplished on 2
entities respectively, calledervice registryand QoS registry Centralized QoS
registry has been proposed and researched beflj2§, [ut they are sharing some
common shortcomings of centralized systems, liledadxlity, performance and single
point failure. More importantly, because of bussibsundary, system scale and other
limitations, centralized system may not be able stqpport global scale B2B
interoperations. As far as we know, only Gibelind &akpangou [3] have considered

1 This work is supported by the National Basic Reseand Development Program (973
program) of China under Grant No.2003CB314806;Rtagram for New Century Excellent
Talents in University (No:NCET-05-0114); the Pragrafor Changjiang Scholars and
Innovative Research Team in University (PCSIRTE ii-Tech Research and Development
Program (863 Program) of China under Grant No.20UB& 164

2 In this paper, we useeb servicandserviceinterchangeably

2 Fel Li, Fangchun Yang, Kai Shuang, Sen Su

distributed QoS registry architecture but no dethdlesign is presented and the hash-
table based QoS indexing approach is inefficient.

In past several years, peer-to-peer paradigm Hasdjaonsiderable momentum as
a new model of distributed computing. P2P systegraated for file sharing at first,
like Napster, Gnutella[4], Kazaa[5] and so on. Hweir scalability, autonomy and
robustness, they are introduced into distributedagle and information retrieving[6].
Some applications of P2P have already contributedvéb service research, as
distributed service discovery[7].

In this paper, we propose our ongoing work--P2P €aofstry architecture, named
Q-Peer. Q-Peer is a service QoS information stoeaghitecture. It provides large
scale QoS collecting, retrieving and monitoringvess. It can work with centralized
or decentralized service registry like UDDI or atR2P service discovery system. Q-
Peer solving the QoS query problem by adding QaBesd information into service
registry, so that it does not need a query routingchanism internally. QoS
information of similar or identical services is slared together. This makes the
retrieving and comparison of service QoS very g&ffit An autonomous replication
mechanism is applied on all peers to adjust loaltlimprove availability.

The rest part of this paper is organized as folld®extion 2 introduces the general
model and design consideration of Q-Peer. Sectigme3ents how to disseminate
QoS and load information in Q-Peer. Section 4 psepdhe load balancing approach
in Q-Peer. The paper concluded in Section 5 withfature work.

2. System Mode

Q-Peer is a peer-to-peer database system for gtQ$ information of web services.
QoS data is stored in XML documents. Common P2Ribdse has a general
requirement that system has to provide an efficreathanism to query and locate
objects, while this requirement can simply be fiatisin Q-Peer by utilizing service

registration information. Because no service usees about service quality without
known its function, to query certain QoS metricthwut service description is

meaningless. Thus, Q-Peer is not an independentB2Base----it has to work with
certain service registry system. We organize Qo&age by service description, so
that QoS items can simply be located when querganyice description. For every
service, service registry stores its descriptiod anQoS address list (for replicas).
Users retrieve QoS by directly access one of théremdes. In fact, the query
mechanism in Q-Peer is similar to the most origiR@P system—Napster, by a
centralized index server cluster.

QoS can be divided to several classes because @asimilar services have same
QoS metrics[10]. Functional identical services’ Igyainformation is stored at one
peer at first, but they could be replicated as aleslivhen needed. Storing a class of
QoS together can improve efficiency because uséen aetrieve QoS of same
service’s different implementation to compare agléc from them. Different service
selection algorithm can be deployed on peers tistassers[1][8]. If a service stores
its QoS information at a certain peer, the pees ast its run-time monitor. Peer
updates service QoS periodically. The update psocean include certain

Peer-to-Peer based QoS Registry Architecture for Web Service8

authentication and evaluation mechanism so thatcger can not submit fake QoS to
Q-Peer.

We do not use super-peer based architecture besapse-peer intends to improve
query efficiency, which is not a problem in ourteys. All peers are equal in Q-Peer.
Peers employ a replication based load sharing yelitich utilizing spare resource
on light loaded peers. Every QoS classes can rexezal replicas on different peers.
Service registry has a list of candidate peeref@ry service and chooses a random
one when user request to retrieve QoS. The randsen ¢ghoosing approach can be
substituted with other more sophisticated appro&sfery peer has load information
about its neighbors for load-balance and backing eagh other. The detailed
mechanisms will be presented in the following secti

Service

Requester
A

~ Z.QoS Address / < /

3. Ge) Qo8 //

4 ;{os

Fig. 1. General model of Q-Peer.

Fig.1 illustrates a sample Q-Peer system contaidingeers and 8 classes of
services. Replicas are hided for illustrating owrderd clearly. Service registry in the
figure can be either centralized or decentralizechitectures.Sis a service set
which contains a number of same or similar serdiescription. The QoS of a service
set§ isQ(S). Each peer stores several setQt@S). Every service description
contains the address of its QoS, like a pointerelVh service requester needs to
query QoS of a certain service, it sends a QoSestq service registry, then the
registry will reply with a QoS address. Service uester can get QoS by direct
accessing the address.

3. Information Dissemination

In Q-Peer, two types of information change freglyemthich should be constantly
updated and properly disseminated in the systemfif$t is service QoS. The second
is load status of peers.

4 Fé Li, Fangchun Yang, Kai Shuang, Sen Su

3.1 QoS Update

For a newly registered servigg which belongs to service claSsit has 2 parts of
information to be registered, service descriptis) and QoS of the servid@(s) If

no service ofS has been registered before, service registryohilose a random peer
to store its QoS information. 8 has been registered, QoS of the ser@¢®) is added
to the peers storing QoS of the cl&¥S) As soon as a peer is informed that it will
store a new service’s Q0S, it contact with theiserand get current QoS for the first
time.

We have mentioned that for sharing load and imp@wavailability, anyQ(S) may
have several replicas (the replication mechanisprasented in next section). One of
the storage peers for a QoS class is the main peempthers are replication peers.
Every time service update its QoS, it update tortteen peer first. Then the other
replicas are passively updated by the main peer.

3.2 Load Update

In Q-Peer, peer’s load and capacity are charaetkiy the frequency of accessing
QoS on a peer. We assume every peer has infioiteget space for cost of increasing
storage is much lower than increasing CPU powemetwork bandwidth. QoS
accessing comes from 2 major operations: gne iatupgof QoS; another is query of
QoS. For a peeP storingn classes of Qo%Q(S), §) - CQ 5)} , each
class has an updating frequerft;@/and a query frequencﬁ(, the load of the peer is:

L(P) =i(iU+ £9) M

A peerP has a maxim capaciC)‘:M (P) equals to the estimated maxim allowed
accessing frequency M (P . The available capacity to accept new service
is:CA(P3:C (P)-UB.

Every peer has a list of other peers’ addresseadNeighbor List (NL). The
neighbor list contains a limited small number oéewhich can accept a peer’s load
sharing request. This list is sorted(B)ein descent order. A neighbor item in NL
is N, :{I?,CA(I?) ,(i:1...m,as nE ho< & D) where m is the total
neighbor numbera andb are the lower and upper limit of. Iltems in NL can be
dynamically added and deleted according to pedusst&Vhen a new peé&r adds to
Q-Peer system, it will get a random NRperiodically sends its OV\BA(P) to peers
in NL and gets theiC " back from reply messages to update its NL. For pesr
received an unknown peeEE;A, if it is better than the last item in their Nlhet new
peer is inserted. If NL exceeds the maxim numbmiitlb, the last item will be
removed. Peers have a lowest capacity limitdtimntake a peer as their neighbor. For
anyN, whichCA(Fi’) <, it will be deleted. If item number in NL is lowénan the
minimum number limit, peer will initiate a randonalk process to find new satisfied
peers. The random walk begins from a random peis INL, message containing its

Peer-to-Peer based QoS Registry Architecture for Web Services

ownC*for other peers to update NL if satisfied. For gger walked through, it
sends it€ " back to the initiating peer. The random walk withs for TTL limitation.

By this load updating approach, peers tend to exgdanformation with light
loaded peers, which is more likely to be able toept replication requests. For peers
having less spare capacity which have not beemtakeneighbor of any other peers,
they still have chance to use other peers’ resoMdeen they have spare capacity
again, they will be added to its neighbor’s NL. Waeve to tune parameters in a more
practical environment to limit the message overhea-Peer and improve load
sharing.

4. Replication and Load Sharing

If a peer found itself in heavy load, it can askestpeers to replicate some of its
service class to share its load. We prefer to caf@i service classes as a whole rather
than replicate some single service. Because ounhneplication is simply to balance
load, to replicate single service could not conttébomuch to load sharing. And to
replicate a part of a QoS class will affect theeegted functions like service selection.
Thus, a class of QoS is the operation unit of oagibn.

Every QoS class haIS(Z <r <K) replicas including the original one, whd€das
the maxim allowed replica number. To improve avality, the first replica is created
immediately after the QoS class is created, soQufy class has at least 2 replicas. If
a peer’s load is approaching threshold, it seng$icaging request to the neighbor
which has the most spared capacity. Peer alwags to replicate the most popular
QoS cIasQ(S) . If the spared capacity of the first neighbor satisfy replication
requirement and the class has less Kagplicas, the first neighbor will be taken as
the replication peer. The replication condition is:

q
c*(Rr)> fiu+rrx_|_fi andr <K @)

In (2), we can find that by replicating a QoS claseplication peer can share
r/r +1of the class’ query load, but updating load canbeleveraged because all
replicas should keep consistency. With the growohgeplica number, load sharing
by replication can have less and less effect beﬂ’@(ﬂs+lis approaching 1. What's
more, keeping more replicas consistent adds ma@ ém the network. Thus the K
should be a small number to make the approachtieféec

If the spared capacity of first neightﬁﬁ(ﬂ)could not satisfy the replication
requirements, the random walk process in previeatian will be initiated to rebuild
the neighbor list. As soon as a replication peefoisnd, a replica OQ(S) is
transferred to new peer. Service registry is thdarined that a new replica can be
selected to retrieve QoS.

If all QoS class in a peer has had K replicas arigl s$till under load pressure, a
random QoS class will be chosen to be deleted.rBadeletion, service registry is
informed so that it will not retrieve the class@éS from this peer. Main peer of the

6 Fel Li, Fangchun Yang, Kai Shuang, Sen Su

QoS class is also informed so that it will not ued@oS to this peer. If the deleted
replica is the main replica of the service classtler replica will be chosen as main
replica and related service providers will be infied to update QoS to the new one.

5. Conclusion and Future Works

In this paper, we presented a distributed web ser®oS registry—the Q-Peer
architecture. The architecture is based on Nafligrunstructured peer-to-peer
model. Every QoS item’s address is stored in serviegistry with its service
description. Same or similar services’ QoS is €resl together to conveniently
expand other QoS operation like service selectlevery QoS class has several
replicas to improve performance and availabilitgpkcation is based on load status
of peers. There is a simple but effective mechartisrexchange load information
between peers. Q-Peer architecture is expectedpioost efficient QoS storage with
excellent scalability. It can be used as a QoSastfucture for global B2B
applications.

The design of Q-Peer has just finished and we anmewtly implementing it. Many
detailed design considerations should be testecadpudted in practical environment.
Our future works may include: to design a peer |dsbed replica selection
mechanism to help balance load further; to find auteplica deletion algorithm,
which will less affect the whole system; to analyaed adjust parameters with
experimental results. We will deploy and test QfReePlanet-Lab[9] in near future.

References

1. Liu, Y., Ngu, A.H., Zeng, L.Z.: Qos computation apdlicing in dynamic web service
selection. InProceedings of the 13th International ConferenceMworld Wide WebNew
York, ACM Press (2004) 66-73

2. Yu, T. and Lin, K.J.: A Broker-based Framework f@oS-Aware Web Service
Composition, InProceeding of IEEE International Conference on ehimlogy, e-
Commerce and e-Service (EEE-08png Kong, China, March 2005

3. Gibelin, N. and Makpangou, M.: Efficient and Traasggnt Web-Services Selectioim

Proceedings of the 3th International ConferenceSemvice Oriented Computing, LNCS

3826 Springer-Verlag, 2005, 527-532

Gnutella Homepagédattp://www.gnutella.com

KaZaA Homepagéehttp://www.kazaa.com

Koloniari, G., Pitoura, E.: Peer-to-peer managen®nML data : issues and research

challengesACM SIGMOD Recordvol. 34, No. 2, June 2005

7. Schmidt, C. and Parashar, M. A peer-to-peer apprdgacWeb service discovery, In
Proceedings of the 13th International Conferencé&\mrld Wide Weph(2004) 211-229.

8. Li, F. Su, S., Yang, F.C.. On Distributed Servicelestion for QoS Driven Service
Composition. InProceedings of the 7th International Conferencesgectronic Commerce
and Web Technologies,EC-WehI08CS 4082 (2006)

9. Planet-Lab Homepagéttp://www.planet-lab.org/

10. E. M. Maximilien and M. P. Singh. A Framework andt@logy for Dynamic Web
Services SelectiodEEE Internet Computind3(5):84—93, Sept. 2004.

o oA

