
STUNT Enhanced Java RMI

Oliver Haase, Wolfgang Reiser, Jürgen Wäsch

Computer Science Department, Konstanz University of Applied Sciences,
Constance, Germany

Abstract. Java RMI uses HTTP tunneling for NAT traversal. While
HTTP tunneling is a valid technique for traditional client–server–archi-
tectures, it is too heavy-weight for highly distributed systems such as
peer-to-peer applications. In this paper, we propose a STUNT enhanced
RMI mechanism that takes advantage of the hole punching NAT traversal
technique that many successful peer-to-peer applications use. Because
the modified communication behavior is made part of the RMI server
stub, our approach is fully transparent to the RMI client.

Key words: Java RMI, NAT traversal, STUNT, TCP hole punching

1 Introduction

Java’s platform independence and built-in networking support have made it an
interesting language for distributed computing. One key feature for the devel-
opment of distributed Java applications is the Java Remote Method Invocation
(RMI) technology [6]. The main idea behind RMI is to provide a communica-
tion mechanism that allows developers to use the method invocation paradigm
to communicate between remote objects. This simplifies the development pro-
cess because programmers do not need to deal with communication protocols,
on-the-wire data representation, and connection management. The RMI commu-
nication protocol, Java Remote Method Protocol (JRMP), which is used for all
communication between RMI clients and servers, builds on top of the TCP/IP
protocol stack. In order to seamlessly connect RMI clients and servers through-
out the Internet, the ubiquitous reachability of all involved entities via TCP/IP
is essential.

Since the early days of the Internet—when every node had its own globally
unique IP address and could be addressed directly—things have changed as a
result of security considerations and a shortage of IP addresses. The old ad-
dressing model has been replaced with a new addressing model consisting of one
global address realm and innumerable private address realms linked by Network
Address Translators (NAT) [10].

Although this model is suitable for traditional client–server communication
where at least the server is in the global address realm and can be reached
directly, it makes it complicated for scenarios where the server, or both server
and client, reside in different private networks. This kind of scenario is clearly on
the rise with the spread of peer-to-peer technologies beyond use of file-sharing.

Therefore, a solution to make RMI communication work even in the presence of
NAT is essential for RMI to become a viable technology for modern peer-to-peer
and other highly distributed applications.

The RMI built-in solution for NAT traversal, HTTP tunneling, requires sig-
nificant administrative overhead and in many cases is in conflict with corporate
security policies. In addition, the approach is not feasible for home users whose
entire network sits behind the Internet service provider’s NAT box. Another
drawback is the bandwidth inefficiency due to the tunneling overhead.

Our primary focus is to develop a light-weight RMI NAT traversal tech-
nique with minimimal overhead that works with no changes to RMI clients and
minimal changes to RMI servers. Therefore, we propose an enhanced RMI mech-
anism for NAT traversal that is based on a technique known as hole punching
(first mentioned in [8]). Even though the name suggests otherwise, hole punch-
ing does not compromise the security of private networks, but rather empowers
applications to communicate within the security policies of different types of
NATs (e.g., cone NAT, restricted cone NAT, port restricted cone NAT, sym-
metric NAT [5]). There are a number of commerical applications which use hole
punching techniques — Skype [12, 11] is certainly one of the best known of them.

In order to use hole punching, nodes must have the capability to identify the
presence and type of NAT they are behind, as well as their public IP address/port
combination. One way to gather all this information is to use a public STUNT
(Simple Traversal of UDP Through NATs and TCP too) server. STUNT is a
protocol presented by Guha et al. in [3, 4] which extends the STUN protocol [9]
with TCP capabilities.

This paper shows the use of the hole punching technique to establish an RMI
communication between two NATed RMI parties. In order to make this hole
punching technique work, both parties have to go through several steps in their
communication process. They first have to determine whether they are behind
a NAT and which their public IP address/port combination is. After they have
collected this information with the help of a public STUNT server, both parties
have to publish the results through a public Rendezvous Server. To set up a
communication, party A polls the data of the public communication endpoint of
the other party from the Rendezvous Server. This polling automatically triggers
a mechanism which pushes party A’s public IP address/port combination to
party B. After this step, both parties have each other’s address data which
enables them to perform the actual hole punching process [8] to set up the
communication between A and B.

In the following, we describe how to integrate STUNT-based hole punching
into the RMI communication concept. Our solution makes use of a custom RMI-
SocketFactory to modify the RMI connection behavior: after a failed direct RMI
connection attempt, both RMI client and RMI server go through the STUNT-
enhanced RMI communication process to set up a connection between the NATed
RMI parties using hole punching.

2

2 STUNT enhanced Java RMI solution

Integrating TCP hole punching into Java RMI evidently changes the way Java
RMI communication usually takes place. One of our top goals, however, is to
change the RMI mechanism without the need to modify any RMI client, i.e.,
whether it uses a regular or a STUNT enhanced RMI server object should be
transparent to the client. For the server object it is acceptable to implement
behavior specific to STUNT enhanced RMI; the changes to regular RMI should
nevertheless be minimal.

To show how we achieved the above mentioned transparency, a few words
about Java RMI are helpful: An RMI client stub, i.e., the local proxy of the
remote server object, consists of two parts, the RMISocketFactory and the ac-
tual RemoteReference. The RMISocketFactory controls the instantiation of
the sockets used for RMI communication, and hence controls the communi-
cation behavior itself. This technique makes the RMISocketFactory the ideal
hook point to alter the RMI communication while still complying to standard
RMI on the API level. We thus replace the standard RMISocketFactory with a
custom RMISocketFactory to transparently change the RMI communication
behavior on the client side. The second component of the server stub, the
RemoteReference, defines the IP address or the hostname of the RMI server
object. When the server object is exported, i.e. when the client stub is cre-
ated, the value of the Java property java.rmi.server.hostname is copied into
the RemoteReference. Setting this property to a publicly reachable IP address
pushes the desired address into the RemoteReference.

An RMI client obtains a server stub in one of two ways: It either (1) gets
it as a return value or return parameter from another remote server object,
or (2) it uses the RMI registry, the RMI specific naming service. Because the
communication process in case (1) is a mere subset of the process in case (2),
we focus on case (2) in the following.

The RMI registry is both an API specification and a reference implemen-
tation which is part of Sun Microsystem’s Java SE. For security reasons (or a
lack of proper authentication and authorization mechanisms), the reference im-
plementation needs to run on the same machine as the RMI server object, a
restriction which is not acceptable for our solution exactly because the server
machine can sit behind a NAT box. Part of our solution is therefore a custom
RMI registry that can register server objects from other machines. Again, for an
RMI client, this change is transparent because the client uses the standard API
to locate and query the custom RMI registry.

2.1 Communication process

The sequence diagram in figure 1 shows the STUNT enhanced RMI communi-
cation process. This process is divided into server (a© to c©) and client (1© to
6©) behavior.

In step a©, the server interrogates a STUNT server to learn its public IP
adress and NAT type. It then sets the java.rmi.server.hostname property to its

3

Client Server
NAT 1 NAT 2

STUNT
Server

Rendezvous
Server

RMI
Registry

(RemoteRef, CustomRMISocketFactory)
1

2

3

4

5

6

connect ion attempt to server

retr ieve contact data of the server

contact data (server)
contact data (cl ient)

RMI conncetion establishment with the help of Hole Punching

a

b

c

retrieve own public IP

public IP

register remote object

store contact data

1.) set hostname
 property
2.) create &
 export object

retrieve own public IP

public IP

store contact data

analogical
a c&

Fig. 1. STUNT RMI communication process

public IP address, creates and exports the server object and registers it with the
naming service, i.e. the custom RMI registry (step b©). Please note that when
exporting the server object, the RMISocketFactory part of the stub is set to
our custom RMISocketFactory. The server is now ready for incoming remote
method invocations.

The client uses the standard RMI API to locate the naming service and
look up the stub for the remote server object 1©. After this step, the custom
RMIClientSocketFactory controls the further communication process, while the
client still executes regular remote method invocations. Steps 2© and 3© are ana-
log to steps a© and c© on the server side; the client interrogates its public IP
address and NAT type, and has this data stored in the rendezvous server. In step
4©, the client tries to directly connect to the remote object. This connection at-
tempt succeeds only if the remote object is either in the same private network or
belongs to the public Internet. If the direct connection attempt fails, the client
contacts the rendezvous server (step 5©) to retrieve the remote server object’s
contact address. The rendezvous server not only returns the remote object’s pub-
lic IP address, but also pushes the RMI client’s public IP address to the RMI
server object. After both hosts have received the other party’s contact address
they hole-punch their NAT boxes to establish a connection between each other.
More specifically, each party’s attempt to contact the other side establishes a

4

temporary mapping in their NAT box that allows the other party to traverse
the far side’s NAT box.

2.2 Components

Our STUNT enhanced RMI mechanism comprises the following entities, some
of which are standard off-the-shelf components, while others require custom im-
plementations.

STUNT Server: The STUNT Server implements an extended version of the
STUN protocol which includes TCP capabilities. The STUNT server determines
the global IP addresses and ports which are assigned by the outermost NAT,
assert its type and transmits them back to the host. Public STUNT servers are
readily available in the Internet, and can be employed without changes.

Naming Service: Part of our solution is a RMI registry compliant custom nam-
ing service, which is enhanced with security features like access control to ensure
that remote objects can be managed in a secure way. Keeping the naming ser-
vice compliant to the standard registry ensures that clients can still use the
LocateRegistry interface to connect to the service. This naming service must be
publicly reachable and can, e.g., be a part of the rendezvous server.

Rendezvous Server: The rendezvous server is a publicly reachable server, pro-
viding a mapping service which maps global unique identifiers onto communica-
tion endpoint information. As shown in figure 1, both STUNT-RMI client and
STUNT-RMI server register their contact address with this server. Appropriate
unique identifiers are URIs with the form <user>@<host> because these URIs
are unique and valid despite NAT boundaries. In order to keep the mapping ta-
ble clean and to prevent entries from becoming stale, we propose to add a lease
time for each entry and to set appropriate intervals to clear out old data.

Custom RMISocketFactory: As mentioned before, the RMISocketFactory is re-
sponsible for the RMI client/server communication behavior. In our solution the
RMISocketFactory implements the STUNT enhanced communication behavior
as shown in figure 1.

3 Conclusion and Future Work

All of the necessary components—except for the STUNT server several instances
of which are publicly available in the Internet—are currently under development.
As soon as the implementation work is completed, we will evaluate the solution
in terms of operability, performance, and scalability. The results will be made
public to the research community.

In a previous project, we have developed a neighbor-centric peer-to-peer in-
frastructure based on Java RMI communication [7]. That project has been the

5

main driver for the light-weight NAT traversal solution presented in this paper.
Consequently, the implementation of the STUNT enhanced RMI approach will
be integrated into our peer-to-peer infrastructure. We believe, however, that our
solution has the potential to be useful for other Java RMI based projects, infras-
tructures, and middlewares. Or to put it differently, we believe that the lack of a
light-weight, zero-configuration NAT traversal solution is a major obstacles for a
more widespread use of Java RMI in large-scale, industry grade distributed ap-
plications. We therefore plan to make the resulting software and servers available
for public use.

References

1. Biggadike, A., Ferullo, D., Wilson, G., Perrig, A.: NATBLASTER: Establishing
TCP connections between hosts behind NATs. In Proceedings of ACM SIGCOMM
ASIA Workshop, 2005.

2. Ford, B., Srisuresh, P., Kegel, D.: Peer-to-peer communication across network ad-
dress translators. In Proceedings of the 2005 USENIX Annual Technical Confer-
ence, 2005.

3. Francis, P., Guha, S.: Simple traversal of UDP through NATs and TCP too
(STUNT). http://nutss.gforge.cis.cornell.edu/.

4. Francis, P., Guha, S., Takeda, Y.: NUTSS: A SIPbased approach to UDP and TCP
network connectivity. In SIGCOMM 2004 Workshops, 2004.

5. Francis, P., Guha, S.: Characterization and Measurement of TCP Traversal through
NATs and Firewalls. In Proceedings of Interet Measurement Conference (IMC),
2005.

6. Grosso, W.: Java RMI - Designing & Building Distributed Applications. O‘Reilly
& Associates, 2002.

7. Haase, O., Todt, A., Wäsch, J.: A Peer-To-Peer Ring Infrastrucure for Neighbor-
Centric Applications. In Proceedings of the 2007 International Conference on
Network-Based Information Systems (NBIS), 2007.

8. Holdrege M., Srisuresh P.: RFC3027 - Protocol Complications with the IP Network
Address Translator. http://tools.ietf.org/html/rfc3027, 2001.

9. Huitema C., Mahy R., Rosenberg J., Weinberger J.: RFC3489 - STUN - Simple
Traversal of User Datagram Protocol (UDP) Through Network Address Transla-
tors (NATs). http://tools.ietf.org/html/rfc3489, 2003.

10. Holdrege M., Srisuresh P.: RFC2663 - IP Network Address Translator (NAT) Ter-
minology and Considerations. http://tools.ietf.org/html/rfc2663, 1999.

11. Schmidt J.: The hole trick – How Skype & Co. get round firewalls. Heise Security,
2006. http://www.heise-security.co.uk/articles/82481 [online, 2007-11-21]

12. Skype Limited: Guide for Network Administrators, 2005.
http://www.skype.com/security/guide-for-network-admins.pdf [online, 2007-
11-21]

13. Sun Microsystems, Inc.: JXTA Java Standard Edition v2.5: Programmers Guide,
2007. https://jxta-guide.dev.java.net [online, 2007-12-03]

6

