Adaptive Web Service Migration

Holger Schmidt!, Riidiger Kapitza?, Franz J. Hauck!, and Hans P. Reiser?

! Institute of Distributed Systems, Ulm University, Germany
{holger.schmidt,franz.hauck}@uni-ulm.de
2 Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Niirnberg, Germany
rrkapitz@cs.fau.de
3 LASIGE, Departamento de Informética, University of Lisboa, Portugal
hans@di.fc.ul.pt

Abstract. In highly dynamic and heterogeneous environments such as
mobile and ubiquitous computing, software must be able to adapt at
runtime and react to the environment. Furthermore it should be inde-
pendent of a certain hardware platform and implementation language.
In this paper, we propose an infrastructure for self-adaptive migratable
Web services (SAM-WS) for implementing applications for such envi-
ronments. A SAM-WS supports stateful migration and adaptation to
particular application context by being able to dynamically change the
interface, locally available state and implementation in use. Despite adap-
tation and migration it maintains a unique ID during the whole life time.
This allows clients to have a location-independent reference to a specific
Web service instance. Although our prototype implementation is based
on Apache Axis, the concept can be easily ported to any Web service
framework without platform modifications. We provide an example ap-
plication and performance measurements for different system platforms
ranging from a standard device to resource-restricted mobile devices.
Key words: Web Service, Migration, Adaptation

1 Introduction

In ubiquitous computing (UbiComp) [1], a large number of small devices are
interconnected in a dynamic and ad-hoc fashion. Applications for such devices
should be platform independent because of the heterogeneous hardware and
system software. They have to be adaptive and reactive to cope with the inherent
environment dynamics. This is especially the case for mobile applications that are
not attached to a specific device. Thus, a UbiComp infrastructure should provide
mechanisms to automatically handle heterogeneity and reduce complexity of
handling adaptivity and reactivity in the applications.

Mobile processes are an approach to simplify development of applications
that change their interaction patterns and location during lifetime. A developer
uses a description language (such as proposed by Kunze et al. [2]) to specify the
behaviour and the interactions of the application. State-of-the-art infrastructures
have limitations in terms of supporting adaptation and handling heterogeneity.

Adaptation might be necessary for the local state of a process, the current func-
tionality, and the implementation variant. These concerns need to be adjusted
according to runtime environment properties, such as the hardware architecture,
operating system, available memory, and local devices. Supporting heterogene-
ity means that processes have to be able to migrate between heterogeneous
nodes, without requiring the developer to manually implement code for convert-
ing incompatible data representations. Interoperability between different vendor
implementations of the infrastructure calls for using standardised protocols.

In previous work, we proposed the concept of a self-adaptive mobile pro-
cess [3]. It can be seen as an ordered execution of services and is able to adapt
itself in terms of state, functionality and implementation to the current context
(which is represented by the runtime environment) and to migrate either for
locally executing services or for accessing particular context, while maintaining
its unique identity. We suggest an implementation of mobile processes with Web
service technology on the basis of the model-driven architecture (MDA) [4]: de-
velopers specify behaviour and interactions of an application using a self-adaptive
mobile process description, which is mapped on a self-adaptive migratable Web
service (SAM-WS). In this paper, we focus only on the infrastructure for imple-
menting such SAM-WSes without details on the MDA code generation process.

The novel contribution of our infrastructure is that it combines Web service
technology with mobility mechanisms that support adaptation and heterogene-
ity. The key difference to related work on migratable Web services [5, 6] is the
support for adaptation to the application context by dynamically changing the
service interface, the available state and the implementation while maintaining a
persistent Web service identity. Unlike our previous work on context-aware mi-
gration of CORBA objects [7], in this paper we propose the use of standard Web
service technology as core mechanism, which simplifies interoperability between
heterogeneous infrastructures of different vendors and allows disconnected oper-
ation. On the basis of our dynamic code loading infrastructure [8], the platform
contains a novel dynamic deployment service that allows service migration to
machines on which the needed code is unavailable and thus has to be loaded on
demand. We support client-transparent migration by providing persistent Web
service references for the whole life cycle by introducing a persistent Web service
identity. Although our prototype is implemented using Apache Axis, the concept
provides a generic life cycle service specification for Web services.

The paper is structured as follows. First, we discuss related work. In Sec-
tion 3, we present our design of adaptive Web service migration: basic principles,
requirements and logical entities. After an in-depth description of our infrastruc-
ture in Section 4, we sketch a basic example application and show performance
measurements in Section 5. We conclude and draft future work in Section 6.

2 Related Work

There are several projects targeting adaptation and context-sensitivity of Web
services. For instance Erradi et al. developed a policy-based middleware for adap-

tive composite Web services [9]. Adaptation is based on dynamic Web service
composition in these systems, wheras we replace the original Web service with
an adapted one. Thus, our approach allows optimal resource usage by adapting
a Web service to a device-tailored one. The Web service composition approach
for adaptation can be used for integrating legacy services in our approach.

There exists a lot of work in the area of object migration, in particular for
mobile agents (objects with an autonomous activity). However, many systems,
such as Aglets [10] rely on native Java serialisation and are therefore restricted
to a homogeneous environment and do not support adaptation to the context.

In previous work, we presented a concept for weak object migration on ba-
sis of the CORBA life cycle service [11]. For implementing mobile objects we
use CORBA value types, i.e., objects with call-by-copy semantics. Thus, the de-
veloper does not have to care about externalisation and internalisation of the
mobile object as this is handled transparently by the CORBA system. Our im-
plementation does not support adaptation to the current application context.

There also exist systems that support adaptive object migration. For
instance, Almeida et al. developed a dynamic reconfiguration service for
CORBA [12]. The developer has to implement methods for internalising and
externalising the object state, which may lead to error-prone implementations.

Recently, we introduced a concept for context-aware object migration on
basis of the CORBA life cycle service [7]. To the best of our knowledge, this
service is the only one allowing dynamic adaptive object migration regarding
state, interface and code at runtime. However, it is restricted to CORBA and
does not enable Web service migration and disconnected operation.

Hammerschmidt and Linnemann developed a service for stateful Web service
migration [5]. However, as the approach builds on native Java serialisation, it is
limited to homogeneous Java environments. The system does not provide con-
cepts for adaptation of the state, interface and code. Furthermore, Ishikawa et
al. describe a system for supporting Web service integration for pervasive com-
puting [6]. In this approach mobile agents implement workflows. The agents can
move to Web service locations in order to obtain efficient local access. However,
their system does not support adaptation and is restricted to Java as it uses
native Java serialisation.

Our system enables the implementation of mobile workflows (see example in
Section 5). However, in contrast to a mobile workflow management system such
as proposed by Satoh [13], which transfers documents, our system allows the
complete migration of services. This enables tailored adaptation of the applica-
tion to the current context and an on-demand instantiation of the application
on devices that are not aware of the application in advance.

3 Design of Adaptive Web Service Migration

In this section, we first give an overview on basic principles on which our concept
for adaptive Web service migration builds. Then, we present requirements that
we identified and present necessary logical entities.

3.1 Basic Principles of Self-adaptive Web Service Migration

Web Service migration is the concept of moving a Web service from one machine
to another at runtime. This requires transferring the Web service’s implemen-
tation code. In this paper, we introduce stateful self-adaptive migratable Web
services (SAM-WS), which have the advantage of supporting dynamic adapta-
tion on the basis of current run-time environment and explicitly specified cri-
teria. Our infrastructure introduces a concept for uniquely referencing a Web
service independent of its location on basis of a location tracking service (see
Section 4.5). For this purpose, the service URL is augmented with a globally
unique ID (GUID). This allows the coexistence of several Web service instances
at a particular location. We allow adaptation of the Web service’s provided func-
tionality (i.e., interface), the used internal state (i.e., set of variables) and the
implementation code. Neither adaptation nor migration influence the GUID of
the Web service, which allows continuous identification and addressing of the
Web service. The GUID is automatically generated at deployment time.

Node 1 Migration | Node 2
SAM-WS (Facet #1) L ———""- SAM-WS (Facet #2)
O Interface: A Interface: B
O State: a, b, ¢ O State: b, ¢, d
Implementation: A.java Implementation: B.cpp

Fig. 1. Adaptive migration from one Web service facet into another one

For implementing self-adaptation, we introduce the concept of Web service
facets. These represent a particular characteristic of the migratable Web service
with a specific configuration of interface, state and implementation. Figure 1
shows a Web service facet providing interface A, using internal state a, b, and
¢ and running an implementation in Java which adapts itself in context of mi-
gration to a Web service facet providing interface B, using internal state b, ¢, d
and running an implementation in C++. As mentioned before, it is important to
note that the globally unique ID is preserved during migration. The assignment
of service state from one Web service facet to another one is realised using a
name matching algorithm: If a Web service facet #1 contains state attributes
with name b and c, the states b and ¢ within another Web service facet #2 are
considered the same (see Figure 1). Thus, after adaptation from Web service
facet #1 into Web service facet #2, the state b and ¢ of facet #2 has to be set
to the prior state b and c of facet #1 (type incompatibilities result in an error).

Stateful adaptive Web service migration requires transferring the service
state from the source to the target. By enabling a replacement of the imple-
mentation upon migration of the Web service, transfer states have to be inter-
pretable by any possible implementation. Thus, we differentiate implementation-
dependent and implementation-independent state of a Web service. We define

implementation-independent state as the part of the service state that should
be interpretable by any possible implementation of a specific functionality. For
example, in case of a hash table functionality this would be only the key-value
pairs. We consider state such as internal variables of managing structures for the
hash function as implementation-dependent state which varies from one imple-
mentation to another. In case of migration, such implementation-dependent state
can only be interpreted by the same target implementation. Thus, we transfer
implementation-independent state only. However, implementation-independent
state cannot be automatically determined. Thus, the developer of a SAM-WS
has to tag implementation-independent state manually (see Section 4.1).

Additionally, for enabling SAM-WSes, we introduce a differentiation of active
and passive service state. By adapting a Web service to a specific Web service
facet, parts of the service state can be left out and other parts can be added.
We call leaving out parts of the service state passivation and allow a subsequent
activation of this state within another Web service facet. Therefore, passive state
has to be stored for later use (see Section 3.3).

3.2 Requirements for Web Service Migration

We identified several requirements for our infrastructure:

Ubiquitous computing environments are characterised by high dynamics and
heterogeneous infrastructure. Dynamics require supporting run-time decisions,
e.g., selecting appropriate migration targets. Additionally, dynamic loading of
locally unavailable code should be supported for allowing migration to any pos-
sible target location (even if the code is not known there before). The hetero-
geneous infrastructure requires platform- and language-independent techniques
for communication and for state transfer. We think that by building on XML,
Web service technology is appropriate for such environments.

Due to the heterogeneous infrastructure, we advocate requiring self-
adaptation according to the application context. For example, this enables dy-
namic replacement of the implementation and thus running the same function-
ality on a mobile device with a lean and restricted implementation as well as on
a workstation with a fully-fledged implementation.

For intuitive usage of SAM-WSes these should offer client-side transparency.
Clients should notice neither migration nor adaptation of the Web service. This
requires continuous addressing of the migratable Web service for the whole life
cycle without client notice. Every SAM-WS should have a service-specific man-
agement interface, which every possible Web service facet has to support for
providing some kind of stable interface part.

Furthermore, there should be application development support. For instance,
developers should be offered an interface that provides high-level migration and
adaptation support based on criteria, which allow the specification of target
locations, context requirements and adaptation requirements.

3.3 Logical Entities and Collaboration

This section provides a brief overview of logical entities for SAM-WS migration.
Figure 2 shows the interaction.

[Factory Finder] 5: load state SAM-WS (Target)]
] y Y A
2: search factory | 1:save stateI | State Store] 4: <<create>>

SAM-WS (Source] J Factol]
[¢) J 3: create target "L v

Fig. 2. Collaboration of logical entities for adaptive Web service migration

When a SAM-WS decides to migrate (this could be triggered internally or
externally), it has to store the Web service’s active state into a state store service
for later use (passivation, see Section 3.1). To guarantee a consistent state trans-
fer, migration has to be coordinated with request execution (see Section 4.3).
Then, the SAM-WS tries to discover possible migration targets with the help of
a factory finder service. Therefore, the SAM-WS passes criteria to the factory
finder service (e.g., required context and provided interface at the target) accord-
ing to which appropriate factory services (i.e., migration targets) are returned.
These factory services enable the remote deployment of arbitrary Web services
(if code is existent and executable for the particular platform). The factory ser-
vice allows the creation of the criteria-specified Web service facet at the desired
location. Last, the newly created Web service is updated with the necessary
state from the state store service, the original Web service is undeployed and
references to the Web service are updated to the new location (see Section 4.5).

4 Infrastructure for Adaptive Web Service Migration

In this section, we sketch our infrastructure for supporting SAM-WSes. First, we
give details on the adaptive Web service migration process with its compulsory
entities within our prototype for Apache Axis 4. However, our concept is generic
and can be applied to other Web service containers as well. Then, we show devel-
opment steps for implementing SAM-WSes. Furthermore, we present advanced
concepts for coordination of migration with request execution, dynamic loading
of code and continuously addressing a SAM-WS for its whole life time.

4.1 Process of Adaptive Web Service Migration

Figure 3 shows the collaboration of implementation entities for adaptive Web
service migration. However, before migration is processed it has to be coordi-
nated with request execution (see Section 4.3). In the first step, the SAM-WS’s

* http://ws.apache.org/axis/

move method is called®. The method can either be called directly by a client
or by the SAM-WS itself, which provides a mechanism to enable autonomous
behaviour. For specifying the migration target, the URI to the preferred factory
finder service as well as (key, value)-pairs of non-functional criteria describing
appropriate migration targets (e.g., required context and interface) have to be
passed as parameters.

E :AWSMService 9: create :AWSMFactory Fﬂ[:AWSMGenericFactory]

: 7}
i Target Node 8: load

-- 6. create

:AWSMService [:AWSMManager 4:findFactories [:AWSMFactoryFinder

1: move 5: selectFactory

Fig. 3. Collaboration of implementation entities for adaptive Web service migration

AWSMManager For simplifying development, we provide a local AWSMManager
Web service, which manages further migration steps. It provides a move method
that is called by the migrating SAM-WS. As parameters, the SAM-WS passes
the given factory finder URI and criteria describing appropriate migration tar-
gets. Additionally, a self-reference, which is used for state introspection, and the
service ID have to be passed.

Before migrating the SAM-WS, the implementation-independent state has
to be extracted. Therefore, this state has to be described within the WSDL de-
scription to allow a language-independent specification (see Fig. 4). Within our
prototype implementation running in Java we allow annotating implementation-
independent state and provide a tool, which automatically generates the
WSDL description. On the basis of the WSDL description, the implementation-
independent state can be extracted automatically. Then, the state has to be
stored (i.e., passivated) to the state store service for future use (see below).

The infrastructure has to select an appropriate migration target. A factory
finder service assists in this selection by, given a list of criteria, returning appro-
priate factory services as a list (see below). The AWSMManager invokes a call-back
method at the migrating SAM-WS to support an application-specific selection.

5 The SAM-WS implements the interface AWSMService within our prototype

<wsdl:definitions xmlns:wsdl="...">
<wsdl:types>...</wsdl:types>
<wsdl:portType name="Test" >
<wsdl:operation name="getX"> ...
< /wsdl:operation>
<wsdl:service name="TestService">
<wsdl:port>...</wsdl:port>
<awsm:states xmlns:awsm="...">
<state>x</state> ...
10 < /awsm:states>
11 < /wsdl:service>
12 | < /wsdl:definitions>

O~ O O W+

©

Fig. 4. WSDL description with implementation-independent state

Last, our AWSMManager creates and deploys the necessary SAM-WS facet at
the new location according to the given requirements, undeploys the original
SAM-WS and updates the SAM-WS reference (see Section 4.5).

AWSMStateStore The AWSMStateStore Web service provides methods for
storing and retrieving state with respect to a specific service ID. As already men-
tioned in Section 3.1 this is needed for implementing passive state of the SAM-
WS, which is non-existent within a particular facet, but may be used again within
another facet. Figure 5 shows the interface of the AWSMStateStore. For retriev-
ing only necessary parts of the current Web service facet, the AWSMStateStore
service provides a custom getStates method with a parameter for specifying
such parts of the state. For interoperability reasons with other Web service plat-
forms, we use an XML string representation for passing state. This XML state
representation is automatically generated within our AWSMManager on the basis
of the WSDL description containing the implementation-independent state and
parsed within the AWSMStateStore.

public interface AWSMStateStore {
public String getStates(int id, String stateNames[]);
public String getStates(int id);
public void store(int id, String xmlState);

U W N =

}

Fig. 5. Java interface of the AWSMStateStore Web service

We provide a basic AWSMStateStore Web service implementation that inter-
nally stores the XML state data in the memory. However, on the basis of the
AWSMStateStore interface, there can also be more complex implementations,
e.g., using a database or peer-to-peer mechanisms for decentrally storing data.

AWSMPFactoryFinder The AWSMFactoryFinder implements a kind of fac-
tory service repository and represents an abstract service location. Factory ser-
vices can be discovered as soon as they make an initial registration at the
AWSMFactoryFinder. The factory finder service has a register method, which
receives the WSDL-URI of a factory service and a corresponding set of criteria
that the factory service provides (see Fig. 6). For interoperability reasons with
other platforms, these criteria are transferred as an XML string representation.
This data is stored in some kind of factory service repository with provided cri-
teria. For deleting factory services there is an unregister method accepting the
affected factory service’s WSDL-URI as a parameter.

public interface AWSMFactoryFinder {
public void register(String xmlCriteria, String wsdlAddress);
public void unregister(String wsdlAddress);
public String[] findFactories (String xmlCriteria);

Uk W N~

}

Fig. 6. Java interface of the AWSMFactoryFinder Web service

The AWSMFactoryFinder service provides an interface with methods for
searching for factory services according to given criteria. We allow the specifica-
tion of required context (e.g., physical/network location, CPU power, memory)
and provided functionality. These capabilities of the AWSMFactoryFinder enable
two types of Web service migration: Contezt-based migration targets at running
the SAM-WS on a platform that provides the desired context and functionality-
based migration targets at running a specific Web service facet, e.g., for im-
plementing the next step within mobile workflows (i.e., the mobile workflow is
implicitly implemented by a SAM-WS, workflow steps are implemented by adap-
tation to specific Web service facets; see Section 5). Internally, for searching for
appropriate factory services, the AWSMFactoryFinder selects adequate factory
services from its repository and returns the corresponding WSDL-URIs.

We also allow using UDDI for discovery of factory services. In contrast to
UDDI, our factory finder service eases the integration of policies according to
which factories are returned (e.g., unordered list and best-fitting first).

AWSMGenericFactory and AWSMFactory The logical factory service en-
tity from Section 3.3 is split into two entities in our prototype implementation.
The AWSMGenericFactory Web service is responsible for creating a SAM-WS-
facet-specific AWSMFactory Web service. We need this delegation mechanism for
integration of our dynamic code loading infrastructure [8], because it allows load-
ing the AWSMFactory code before creation (see Section 4.4). Direct registration
of an AWSMFactory at the AWSMFactoryFinder is possible as well.

The AWSMFactory enables dynamic deployment of necessary SAM-WS facets.
Therefore, it offers a create method, which takes the SAM-WS ID as well as

mandatory criteria as parameters. On the basis of the passed criteria, an appro-
priate SAM-WS facet is selected and instantiated. By using the given ID, the
necessary state is retrieved from the AWSMStateStore and initialised within the
new SAM-WS facet with keeping the original ID. Then, the Web service facet is
deployed to allow remote access. Therefore, a deployment descriptor as well as
the WSDL interface is generated automatically at runtime if required.

4.2 Development of Self-adaptive Mobile Web Services

For developing a SAM-WS, the developer has to decide which kind of facets a
service should offer. Then, she has to implement them for each platform that
should be supported, according to these conventions:

— Only implementation-independent state should be considered for migration
and adaptation. It has to be marked either by our Java annotation @Imple-
mentationIndependentState or within the WSDL file (see Section 4.1)

— Implementation-independent state defined within one SAM-WS facet is
mapped to another facet by name matching (see Section 3.1)

— The implementation has to implement the AWSMService interface, which
provides life-cycle methods of the SAM-WS (move, copy, remove)

— The implementation has to implement the StatefulService interface,
which provides introspection methods of the SAM-WS (getState, setState)

For easing development efforts, we provide an abstract AWSMServiceImpl
class, which contains generic code for introspection (on the basis of annotations
and WSDL), generation of the globally unique ID and migration methods. Thus,
the developer only has to inherit from this class and to ensure specification of
state and state consistency among the different SAM-WS facets.

Then, the developer has to generate standard Web service packages of the
SAM-WS facets for the required platforms (e.g., standard Web archive for
Apache Axis). These packages are deployed and registered at our dynamic code
loading infrastructure for loading these packages on demand (see Section 4.4).

4.3 Coordination

For maintaining consistent state with migration and adaptation, coordination
is required. First, migration should only be possible if no other requests are
currently handled by the SAM-WS. We use an interceptor at the server side
for counting the number of currently active requests. Safe migration is possible
if the current migration or adaptation request is the only active. Thus, such a
request can only execute as soon as the request counter is equal to 1. As soon
as a migration or adaptation is requested, all subsequent requests are deferred.
After all previous requests have returned, the migration is started, and after
successful migration, the deferred requests are forwarded to the new location.
In our prototype implementation for Apache Axis, we implemented a
SO0APHandler by extending Apache Axis’ abstract class BasicHandler. There, an

invoke method is called with passing a MessageContext object from the Apache
Axis container for every SOAP request and response. The MessageContext ob-
ject contains the affected service and service method. This allows the sole inter-
ception of a specific SAM-WS; otherwise, other Web services would be affected
as well. The SOAPHandler has to be registered at the container.

4.4 Dynamic Loading of Code

For enabling migration to Web service containers where the necessary code is
locally unavailable, we integrated a dynamic code loading service. Dynamic code
loading is an essential part of service migration, especially in a dynamic envi-
ronment without guarantee of local existence of required code.

We developed a decentralised code loading service (P2P-DLS) [8]. It allows
any peer to offer and to obtain platform-specific code. We proposed a dynamic
loading infrastructure that is independent from the peer-to-peer mechanism in
use. Based on our generic concept, we developed a JXTA-based service [14].

For supporting dynamic code loading within our infrastructure, we integrated
the P2P-DLS into the AWSMGenericFactory (see Section 4.1). The generic fac-
tory service queries the P2P-DLS for appropriate location-dependent Web ser-
vice facet implementations. The AWSMGenericFactory service identifies the nec-
essary code by the interface name, and loads this code on demand for instanti-
ating factories, which are specific for deploying a particular Web service facet.

For addressing security issues regarding dynamic code loading standard se-
curity mechanisms like code signing could be easily integrated.

4.5 Addressing Self-adaptive Mobile Web Services

Even though a SAM-WS is mobile as well as self-adaptive it can be continuously
addressed using the SAM-WS service URL, which also contains the service ID.
We implemented a location tracking service that is able to manage current lo-
cations of a defined set of SAM-WSes. Therefore, Web services initially register
a public service address at the location tracking service and identify themselves
using their current service address with the globally unique ID. The public ser-
vice address, which is located at the location tracking service container, is used
as permanent Web service reference; invocations are redirected by the Web ser-
vice container using the location tracking service data. Whenever a Web service
changes its location, it notifies the location tracking service about the new loca-
tion (i.e., reference is updated). For client-transparency SAM-WSes should im-
plement a management interface being stable within each facet (see Section 3.2).

For improving performance in our prototype for Apache Axis, we imple-
mented an HTTPRedirector for client-side interception of SOAP requests over
HTTP. This redirector has to be deployed at client-side, which results in ev-
ery invocation going through the interceptor. Current locations of SAM-WSes,
which are given in a redirect response, are cached. Thus, further invocations are
directly forwarded without redirection (an error, i.e., a 404 Not Found response,
leads to invoking the original service URL again).

5 Example Application

Our approach provides a basis for the development of flexible and dynamic ap-
plications, e.g., for UbiComp. We present a mobile reporter application, in which
reporters spontaneously initiate a mobile workflow: reporters enter data into a
local Web service, which migrates onto a reviewer’s machine for checking the
data, and then migrates on a publisher’s machine for publishing the content.
Reporters become reviewers after a number of accepted reports. This requires
dynamic deployment, which is also enforced by the fact that participants may
spontaneously join and therefore have to deploy the application on demand.

Such an application can be implemented using SAM-WSes. Web service facets
represent different roles within the mobile workflow: reporter, reviewer and pub-
lisher facet (see Fig. 7). In contrast to standard workflow systems, the workflow
in our system comes along with the code, which can preserve computing resources
for workflow interpretation on resource-limited devices. Our transparent concept
for addressing the SAM-WS enables service observation whenever required.

Node 1 Node 2
SAM-WS (Facet #1) SAM-WS (Facet #2)
Interface: Interface:
O_ Reporter O_ Reviewer

State:) Migration State:)
Subject] Subject
Content 1 =<l Content
Reviewer Date
Date Implemementation:

Implemementation: Reviewer.java

Reporter.java

Fig. 7. Self-adaptive migration from reporter facet into reviewer facet

We measured the time for migrating from the reporter into the reviewer facet.
The measurements were performed on an AMD Athlon with 1.73 GHz and 1GB
RAM with two Apache Axis 1.4 containers (migration source/target) running
on Apache Tomcat 5.5.12 with Java 1.5.0_.08. Table 1 shows the overall result
and the time for each of the process steps. We measured the performance of 30
Web service migrations and calculated the average time needed.

Overall, self-adaptive migration takes some time; especially WSDL gener-
ation as well as deployment are noticeable at the migration target. However,
WSDL generation performance can be improved using caching mechanisms.
Deployment at the migration target within the Apache Axis container takes
around 72% of overall migration time. We are confident that future generations
of Apache Axis provide improved deployment performance, which may rigorously
improve overall migration time.

For comparison, we measured the time for migration without adaptation of
the reporter facet. As migration steps are the same, overall time is comparable:

10229 (£582) ms. The moderately increased migration time compared to Table 1
results from the fact that the complete state is transferred, whereas in case of
migration into the reviewer Web service facet the reporter state is omitted.

Migration source (reporter facet)

State extraction |State storage|Find factories Sum
3£13 ms 101+103 ms | 35£29 ms 139 ms
Migration target (reviewer facet)

WSDL generation|State loading| Deployment |State setting| Sum
2378458 ms 90+34 ms | 7399+32 ms | 19417 ms | 9886 ms
Overall: 10184 ms
+580 ms

Table 1. Migration from reporter into reviewer facet on standard device

Considering embedded and mobile devices, we have done the same perfor-
mance measurement for two somewhat outdated ARM-based as well as for a
current x86-based device (see Table 2). On outdated devices our Apache Axis
approach does not perform well, but the measurement on the current device with
much more computing power result in better figures. As our concept relies on
standard Web service technology, this can be improved even further by optimised
Web service containers for small devices.

| Device [CPU Memory|Migration Time
Embedded System Strong ARM 233 MHz | 256 MB 80+4 s
Handheld (HP Jornada) Strong ARM 200 MHz | 32 MB 230+12 s
Subnotebook (Asus EeePC 4G)|Intel Celeron M 900 Mhz| 512 MB 940.5 s

Table 2. Migration from reporter into reviewer facet on embedded/mobile devices

6 Conclusion and Future Work

In this paper, we proposed a novel infrastructure for self-adaptive migratable
Web services. These Web services enable the implementation of UbiComp appli-
cations by supporting very flexible adaptation to particular application context
(dynamic change of the interface, locally available state and implementation in
use). This allows an adaptation of a fully-fledged implementation on a powerful
device to a restricted implementation on a resource-limited device. We imple-
mented a prototype for the Apache Axis Web service container. As our system
builds on top of standard Web service technology without any modifications, we

allow interoperable implementations for other Web service containers as well.
However, for supporting coordination and continuous addressing of the SAM-
WS clients as well as containers have to support interception of invocations. We
prove the feasibility of our approach with a basic reporter example application
and performance measurements for different platforms.

For future work, we plan to implement a prototype for another Web service
platform. We do not expect interoperability problems, as we designed our in-
frastructure to only rely on standard Web service technology. For an improved
appliance in ubiquitous computing scenarios we will investigate the implemen-
tation of our concept using the Java Micro Edition.

Our approach for self-adaptive migratable Web services provides a very flex-
ible concept. This may lead to error-prone applications whenever migrating into
unanticipated facets (this may, e.g., result in unavailable state). Therefore, we
will examine concepts for defining rules for the specification of allowed migration
of Web service facets into other ones. For supporting this specification process
we are investigating an MDA-like approach as proposed in our recent work [3].

References

1. M. Weiser. The computer for the 21st Century. Sci. American, 265(3):66-75, 1991.
. C. P. Kunze, S. Zaplata, and W. Lamersdorf. Mobile Process Description and

Execution. In DAIS ’06, 2006.

3. H. Schmidt and F. J. Hauck. SAMProc: Middleware for Self-adaptive Mobile
Processes in Heterogeneous Ubiquitous Environments. In MDS ’07. ACM Press,
2007. Accepted for publication.

4. OMG. MDA Guide Version 1.0.1. OMG Doc. omg/2003-06-01, 2003.

5. B. C. Hammerschmidt and V. Linnemann. Migratable Web Services: Increasing
Performance and Privacy in Service Oriented Architectures. IADIS Int. J. on
Comp. Sci. and Info. Sys., 1(1):42-56, 2006.

6. F. Ishikawa, N. Yoshioka, Y. Tahara, and S. Honiden. Mobile Agent System for
Web Services Integration in Pervasive Networks. In IWUC' ’04, pages 38-47, 2004.

7. R. Kapitza, H. Schmidt, G. Soldner, and F. J. Hauck. A Framework for Adaptive
Mobile Objects in Heterogeneous Environments. In OTM ’06, LNCS 4276, 2006.

8. R. Kapitza, H. Schmidt, U. Bartlang, and F. J. Hauck. A Generic Infrastructure
for Decentralised Dynamic Loading of Platform-Specific Code. In DAIS ’07, 2007.

9. A. Erradi, V. Tosic, and P. Maheshwari. MASC - .NET-Based Middleware for
Adaptive Composite Web Services. ICWS ’07, pages 727-734, 2007.

10. D.B. Lange and M. Oshima. Programming and Deploying Java Mobile Agents with
Aglets. Addison-Wesley, 1998.

11. R. Kapitza, H. Schmidt, and F. J. Hauck. Platform-Independent Object Migration
in CORBA. In OTM ’05, LNCS 3760, 2005.

12. J. Almeida, M. Wegdam, M. van Sinderen, and L. Nieuwenhuis. Transparent
Dynamic Reconfiguration for CORBA. In DOA ’01. IEEE, Sept 2001.

13. 1. Satoh. Network Processing of Documents, for Documents, by Documents. In
Middleware ’05, LNCS 3790, pages 421-430, 2005.

14. L. Gong. JXTA: A Network Programming Environment. IFEFE Internet Comp.,
5(3):88-95, 2001.

[\]

