
Fault-Tolerant Aggregation by Flow Updating

Paulo Jesus, Carlos Baquero, and Paulo Sérgio Almeida

University of Minho (CCTC-DI)
Campus de Gualtar, 4710-057 Braga, Portugal

{pcoj, cbm, psa}@di.uminho.pt

Abstract. Data aggregation plays an important role in the design of
scalable systems, allowing the determination of meaningful system-wide
properties to direct the execution of distributed applications. In the par-
ticular case of wireless sensor networks, data collection is often only
practicable if aggregation is performed. Several aggregation algorithms
have been proposed in the last few years, exhibiting different properties
in terms of accuracy, speed and communication tradeoffs. Nonetheless,
existing approaches are found lacking in terms of fault tolerance. In this
paper, we introduce a novel fault-tolerant averaging based data aggrega-
tion algorithm. It tolerates substantial message loss (link failures), while
competing algorithms in the same class can be affected by a single lost
message. The algorithm is based on manipulating flows (in the graph the-
oretical sense), that are updated using idempotent messages, providing
it with unique robustness capabilities. Furthermore, evaluation results
obtained by comparing it with other averaging approaches have revealed
that it outperforms them in terms of time and message complexity.

1 Introduction

Traditional solutions based on centralized and tightly architected computation
infrastructures are being challenged by new designs that amass the resources
in highly distributed computing systems. Notable examples are found in large
scale peer-to-peer systems, now in common use, and in the algorithms that will
support the deployment of vast sensor networks.

In these settings, aggregation of data across large numbers of nodes plays a
basal role in the design of scalable solutions [1]. Distributed aggregation along
active nodes allows the efficient determination of meaningful global system prop-
erties, that can direct the actions of self-adaptive distributed algorithms.

Examples can be found when using estimates of the network size to direct
the dimensioning of distributed hash table structures [2], when setting a quorum
for voting algorithms [3], when estimates of the average system load are needed
to direct local load-balancing decisions, or when an estimate of the total disk
space in the network is required in a P2P sharing system.

Several aggregation algorithms have been introduced in the recent years,
tackling the problem for different settings, and yielding different characteristics
in terms of accuracy, time and communication tradeoffs. Traditional approaches

relay on the existence of a specific aggregation structure (e.g. tree) [4–6], ex-
ecuting the aggregation process along a predefined routing topology. Another
common class of distributed aggregation algorithms is based on averaging tech-
niques [7–10]; Here, the values of a variable across all nodes are averaged itera-
tively. This kind of approaches are independent from the routing topology, often
using a gossip-based communication scheme between peers.

Averaging techniques allow the derivation of different aggregation functions
besides average (like counts, sums, and ranks), according to the combinations of
input values. In particular, if the input value is set to 1 in a single node and to
0 in all remaining nodes, it is possible to derive an estimate of the network size,
by averaging until a given level of convergence is reached, and later inspecting
the inverse of the resulting value [8]. Other types of aggregation algorithms are
also known, based on the application of probabilistic methods. This is the case
of Extrema Propagation [11] and COMP [12], which reduce the computation of
an aggregation function to the determination of the maximum/minimum of a
collection of random numbers. These probabilistic techniques tend to emphasize
speed, being less accurate than averaging techniques.

Specific aggregations, such as counting the number of nodes, are amenable to
specialized probabilistic algorithms that can operate using properties of random
walks, sample and re-sample techniques and other statistic tools [13–15].

Up to now, it has not been proposed any aggregation technique which is si-
multaneously accurate and tolerates faults (e.g. message loss) efficiently. In this
paper, we introduce a novel averaging based aggregation technique: Flow Up-
dating. This new algorithm tolerates quite easily high levels of message loss; a
feature that was lacking in previous approaches, where message loss often im-
plies “mass” loss in the amount subject to averaging. Moreover, even in lossless
scenarios, our new technique achieves an improved convergence speed compared
to previous approaches. We compare the new algorithm with two other estab-
lished averaging algorithms (Push-Sum Protocol [7] and DRG [9]) in a common
simulation environment and contrast the results.

The rest of this paper is organized as follows. The closest related work, in
terms of averaging aggregation algorithms, is discussed in Section 2. Flow Up-
dating will be described in Section 3. The evaluation of the proposed approach
will be presented in Section 4, comparing it to other averaging algorithms, and
discussing the obtained results. Finally, conclusions and future work directions
will be drawn in Section 5.

2 Related Work

Unlike classical tree-based approaches (e.g. TAG [4]), some approaches that are
independent from the routing strategy used to communicate have been proposed
in the recent years. Commonly, these distributed aggregation algorithms are
based on averaging techniques. Nodes start with a given real value, xi, and an
anti-entropy protocol is used to iteratively average the values between pairs of
nodes. Eventually all values will converge to the same amount.

This kind of approaches tend to be very accurate, producing the correct
result or converging to it along time. Compared with tree-based schemes, these
algorithms remove the dependency from a specific routing topology, introducing
more flexibility, and allowing the iterative calculation of the aggregation result
at all network nodes (instead of a single node). Follows, a brief description of
some of those algorithms.

2.1 Push-sum protocol

The push-sum protocol [7] is a gossip-based aggregation algorithm, which essen-
tially consists of an iterative pairwise distribution of aggregated values through-
out the network. At each round t, each node i maintains and propagates in-
formation of a pair of values (st,i, wt,i), where st,i represents the sum of the
exchanged aggregates, and wt,i denotes the weight associated to this sum at the
given time t and node i. In order to compute distinct aggregation functions,
from the initial input value xi of node i, one resorts to distinct initializations to
the pair of values, (s0,i, w0,i) in each i. E.g. average: s0,i = xi and w0,i = 1
for all nodes; sum: s0,i = xi for all nodes, only one node sets w0,i = 1 and the
remaining assume w0,i = 0; count: s0,i = 1 for all nodes, only one with w0,i = 1
and the others with w0,i = 0.

The protocol works has follows: at each round, each node sends a pair of
values corresponding to half of their current values (st,i, wt,i) to a target node
chosen uniformly at random, and to itself. The local values are updated with the
correspondent sum of all the data received in the previous round. At each time t,
the aggregation result can be estimated at each node by st,i/wt,i. The accuracy
of the produced estimate will tend to increase along each round, converging to
the correct value.

As referred by the authors, the correctness of this algorithm relies on a funda-
mental property defined as the mass conservation: the global sum of all network
estimates is always constant along time. When no messages are in transit, the
value

∑
i

st,i

wt,i
is the same for any round t. The convergence to the true result will

depend on the conservation of this property. Considering the crucial importance
of this property, the authors assume the existence of a fault detection mecha-
nism, that allows nodes to detect when a message did not reach its destination.
In this situation, the “mass” is restored by sending the undelivered message to
the node itself.

We should point out that, contrary to indulgent distributed algorithms in
which an incorrect output from the failure detector (FD) merely postpones ter-
mination, assuming the use of a FD is problematic for realistic implementations,
as FD inaccuracy means violating mass conservation.

2.2 Push-pull gossiping

A push-pull gossiping approach, similar to the previous one, is proposed in [16,
8]. This protocol benefits from the better convergence of push-pull interactions,

as opposed to push only. Periodically, each node sends its current aggregated
value to a random neighbor and waits for the response with the aggregate value
of the target. The aggregation function is further applied to both values (sent
and received), in order to determine the new estimation and update the local
aggregate. Each time a node receives an aggregate from a neighbor, it sends back
its current value, and afterwards computes the new aggregate, using the received
and sent value as inputs.

Unlike push-sum, the protocol does not use weight variables, imposing greater
atomicity requirements on the interaction between node pairs.

2.3 DRG (Distributed Random Grouping)

A different approach based on a distributed random grouping (DRG) was pro-
posed in [9]. DRG was designed to take advantage of the broadcast nature of
wireless transmission, in which all nodes within radio range will be prone to
hear a transmission. This algorithm defines three different working modes for
each node: leader, member, and idle mode.

According to the defined modes, one could divide the execution of the algo-
rithm in three main steps. First, each node in idle mode independently decides
to become a group leader (according to a predefined probability), and conse-
quently broadcasts a Group Call Message (GCM) to all its neighbors, subse-
quently waiting for members. Second, all nodes in idle mode respond to the first
received GCM with a Joining Acknowledgment (JACK) tagged with their ag-
gregated value, updating their state mode accordingly to become members of
that group. Finally, after gathering the group members values from all received
JACKs, the leader computes the group aggregate and broadcast a Group Assign-
ment Message (GAM) with the result, returning to idle mode afterwards. Each
group member waits for the leader GAM, not responding to any other request
until then, to update its local state (setting its local value with the received
group aggregate and returning to idle mode).

The execution of this scheme along time creates distributed random groups
that coordinate in-group aggregation. Since groups overlap over time, the estima-
tion will convergence at all nodes to the desired network wide global aggregate.
The performance of this algorithm is highly influenced by its capacity to cre-
ate aggregation groups (quantity and size of groups), which is defined by the
predefined probability of a node becoming leader.

This algorithm is vulnerable to message loss between coordinators and neigh-
bors, partial fixes to avoid the possibility of nodes waiting forever may incur in
violating mass conservation.

2.4 Further considerations

Averaging aggregation algorithms depend on the mass conservation principle to
converge to a correct result. Consequently, the robustness of these algorithms is
strongly related to their ability to preserve the global mass of the system. The

loss of a partial aggregate (mass) may result in the subtraction of the lost value
from the global mass, and convergence to an incorrect value.

A few approaches have recently introduced some practical concerns about
aggregation robustness. This is the case of G-GAP [10], that tackles the mass
conservation problem, extending the push-synopses protocol [7] in order to pro-
vide accurate estimates in the presence of node failures. Despite their effort,
G-GAP only supports discontinuous failures of adjacent nodes within a short
time period.

In this paper, we introduce an aggregation algorithm that fully overcomes the
mass conservation issue under link failures. Apart from its robustness properties,
our technique also exhibits good performance. We compare it, in failure-free
scenarios, with a representative set of the existing averaging approaches, namely
the push-sum protocol [7] and DRG [9].

Push-pull gossiping [16, 8] is not considered in the comparison, since simula-
tions exhibited a violation of mass conservation. We found out that this is due to
message interleaving resulting from the natural concurrency in the distributed
system model we adopted. This means it does not work, even under no failures,
in a realistic model. Fixes can be devised, towards making a pair of push and
pull messages to behave as if they are atomic (as implied by the papers pre-
senting the mechanism). However, it means some substantial changes (including
preventing deadlock), and we would not be making a comparison with the orig-
inal algorithm. Even so, we found out the corrected algorithm to be even slower
and it does make an unfair comparison.

3 Flow Updating

3.1 System Model

We model a distributed system as a connected undirected graph G(V, E), in
which the set of vertices V represent the network computation nodes, and the
set of edges E correspond to bidirectional communication links. We consider
only a fixed topology. We define Di as the set of adjacent nodes of i in the
communication graph, and denote its size as |Di| which corresponds to the node
degree. The existence of global unique identifiers to distinguish nodes is not
considered, nor required. We only assume that each node is able to distinguish
its neighbors.

We consider the execution of the aggregation algorithms in a synchronous
model (as in Chapter 2 of [17]). Each round, executed in lockstep, is composed
of two steps: message generation, where each node uses its local state to compute
and send messages to its neighbors; and state transition, where each node uses
its local state and the received messages to compute the new state.

We use this model in order to provide a fair comparison of the simulated
algorithms. For example, each iteration in DRG, consisting of three phases with
different kinds of messages sent in each one, will be three rounds.

We do not consider node failures, only link failures, in the algorithm and its
evaluation. However, in Section 4.3 we briefly discuss why the Flow Updating

algorithm is suitable to be adapted to cope with node failures and be used in
asynchronous systems.

3.2 Key idea

Flow Updating is a novel averaging based aggregation algorithm, which enables
the computation of aggregation functions (e.g. average, count or sum) over
a distributed system. It works independently from the network communication
topology, and it is robust against message loss, a common fault in relevant ap-
plication scenarios, such as Wireless Sensor Networks (WSN).

This algorithm departs from current approaches, that send “mass” in mes-
sages (with message loss implying mass loss) and keep the current mass value
in a variable. The key idea is to use the flow concept from graph theory (which
serves as an abstraction for many things like water flow or electric current; see
Chapter 6 of [18]), and instead of storing in each node the current average in
a variable, compute it from the initial value and the contribution of the flows
along edges to the neighbors:

ai = vi −
∑
j∈Di

fij . (1)

This can be read as: the current average in a node is the initial input value
less the flows from the node to each neighbor. Here we are not concerned with
classic network flow concepts like capacity or trying to maximize flows; we focus
on exploring the symmetry property of the flow along an edge:

fij = −fji. (2)

This says that the flow from node i to node j is the symmetrical of the flow
from node j to node i (see Figure 1(a)). The essence of the algorithm is: each
node i stores the flow fij to each neighbor j; node i sends flow fij to j in a mes-
sage; a node j receiving fij updates its variable fji with −fij . Messages simply
update flows, being idempotent; the value in a subsequent message overwrites
the previous one, it does not add to the previous value.

If the symmetry property of flows holds, the sum of the averages for all nodes
(the global mass) will remain constant:∑

i∈V
ai =

∑
i∈V

(vi −
∑
j∈Di

fij) =
∑
i∈V

vi. (3)

The intuition is that if a message is lost the symmetry is temporarily broken,
but as long as a successful messages arrives, it re-establishes the symmetry (see
Figure 1(b) and 1(c)). What really happens, due to interleaving, is that the sym-
metry may never hold but fij converges to −fji, and the global mass converges
to the sum of the input values of all nodes.

22
-2

0
3

-32

2 3

0
-2

0
3

-32

1-1
-2

1
3

-32

(a) (b) (c)

Fig. 1. Key concept of Flow Updating, illustrated by arbitrary flow exchanges between
3 nodes, considering a temporary link failure in (b).

3.3 Algorithm

Algorithm 1 shows Flow Updating, according to the defined system model (Sec-
tion 3.1). In this algorithm, the local state of each node i will keep a variable
vi with the local input value, the individual flows fij toward its neighbors, and
the estimated aggregates eij of the neighborhood. Initially, at each node i the
neighbors flows and estimates are set to zero (fij = 0 and eij = 0 for all j ∈ Di),
and vi to the local input value to aggregate.

state variables:
fij , ∀j ∈ Di, flows, initially fij = 0
eij , ∀j ∈ Di, estimates, initially eij = 0
vi, input value

message-generation function:
msg(i, j) = (fij , eij), ∀j ∈ Di

state-transition function:
forall (fji, eji) received do

fij ← −fji

eij ← eji

ei ←

(
vi−
∑

j∈Di
fij

)
+
∑

j∈Di
eij

|Di|+1

forall j ∈ Di do
fij ← fij + (ei − eij)
eij ← ei

Algorithm 1: Flow Updating algorithm (at each node i).

In the message generation step a pair of values (flow and estimate) is created
for each neighbor j, to be sent by i. An individual flow value fij is assigned and
send to each neighbor, while the same estimate ei is send by i to all its neighbors
(both calculated and locally stored at the end of the previous round).

In the state transition step, each node starts by setting the local values
associated to the sender of each received message with the ones (estimate and
symmetric flow) within the message pair addressed to him. Notice that, different
estimates (and corresponding flows) may be received from different neighbors.
Thereafter, each node computes a new prediction of the aggregation value ei

by averaging the received estimates and the one locally calculated by (1), and
updates its state accordingly, in order to produce the new result. To do so, to
the flow fij is added the difference between the new estimate ei and the received
estimate from j; the estimates eij of all neighbors j are set directly with the new
foreseen estimate ei. The newly computed state will be used in the next round
to generate and send the proper data values to all neighbors, in order to lead
them to the same estimate. The iterative execution of this algorithm across all
the network allows the convergence of the value estimated at each node to the
correct global average of the input values.

state variables:
fij , ∀j ∈ Di, flows, initially fij = 0
eij , ∀j ∈ Di, estimates, initially eij = 0
vi, input value
k, chosen neighbor

message-generation function:
msg(i, k) = (fik, eik)

state-transition function:
forall (fji, eji) received do

fij ← −fji

eij ← eji

ei ←

(
vi−
∑

j∈Di
fij

)
+
∑

j∈Di
eij

|Di|+1

k ← chooseNeighbor(Di);
fik ← fik + (ei − eik)
eik ← ei

Algorithm 2: Unicast version of Flow Updating (at each node i).

Notice that, in practice, when broadcast is supported by the physical com-
munication medium, all the messages generated at each round by a node can
be sent in a single transmission to all neighbors. If broadcast is not physically
supported, the messages are individually transmitted to each adjacent node. Ac-

cording to this, and in order to supply an impartial evaluation of this algorithm,
when compared with others that do not take advantage of message broadcast
(e.g. push-sum protocol), we defined an unicast version of Flow Updating. The
differences of this variation of the algorithm are depicted by Algorithm 2, mainly
consisting in the addition of a function chooseNeighbor(Di) to choose a specific
target k from the set of neighbors of node i. In the state transition process,
only the flow and estimate corresponding to the chosen node k will be updated,
instead of all neighbor nodes. Afterwards, in the next round, a single message
will be generated and sent to the previously chosen node k.

Several heuristics can be used to implement the function chooseNeighbor(Di).
For instance, the node can be simply picked up uniformly at random from the
set of neighbors Di, or it can be chosen in accordance to a specific criteria, taking
advantage of the neighbors data locally available. In particular, in the evaluated
unicast version of the algorithm, we consider a criteria in which the neighbor
possessing the estimate with the greater discrepancy relatively to the averaged
estimate ei will be selected in each round.

Considering the system settings in which the algorithm is executed, the choice
of the correct heuristic to select the target neighbor in each round may improve
the overall performance of the aggregation process. Some simulations comparing
both of the the referred heuristics have evidenced an improved performance of
the unicast version of the algorithm using the latter criteria, instead of using a
naif random choice. This optimization study is out of the scope of this paper.

4 Evaluation

4.1 Simulation Setup

We prepared a simulation environment compliant with the system model enun-
ciated in Section 3.1, in order to allow comparisons between Flow Updating and
two established approaches: the push-sum protocol [7] and DRG [9]. We evalu-
ated all the aggregation algorithms under strictly identical simulation settings
(same network topologies and initial distribution of input values), aiming for
an impartial and fair comparison between them. Two different network topolo-
gies were taken into account for simulation purposes: random and 2D/mesh.
The random network fits the Erdős–Rényi model [19] and consists on a con-
nected network in which all nodes are randomly linked to each other (according
to a predefined average connection degree). The 2D/mesh network defines a
connected network in which the communication links are established according
to geographical proximity, modeling an approximation to the connectivity in
WSN. Nodes are spread uniformly at random and links are set within a given
fixed radius. Independently from the topology, along the algorithms execution
the network remains static (no link changes, and no nodes arriving or leaving).

In order to evaluate the robustness of Flow Updating, we consider that each
message sent in each round can be lost according to a predefined probability.

The same aggregation function is computed by all algorithms: count, which
can be used to determine the network size of the system. Shown results cor-

respond to the average value obtained from 50 repetitions of the execution of
the same algorithm under identical simulation settings, using different generated
networks with the same characteristics in each repetition. Two main metrics are
used to evaluate each aggregation algorithm: speed and overhead. The first crite-
ria defines how fast, in number of rounds, a given accuracy is reached. Accuracy
is expressed by the normalized RMSE (Root Mean Square Error) of the estimate
when contrasted to the target value. The second criteria is defined in terms of
the number of messages required to compute the aggregation result with the de-
sired accuracy. This message overhead can be interpreted as an approximation to
energy expenditure in WSN, since message transmission is often the dominating
factor in those settings.

4.2 Results

The first scenario corresponds to a random network with 1000 nodes (n = 1000)
and an average connection degree d approximately equal to log n (= 3). The
same network size (n = 1000) and degree (d ≈ log n) are considered in the
second scenario, but a different network topology is used: 2D/mesh. We choose
to use a degree of value log n, since it is the degree value that nodes must have in
order to keep the network connected with constant probability, considering that
all nodes fail with a probability of 0.5 [20]. Notice that all specific parameters
of the analyzed algorithms (e.g. the probability to become leader in DRG) have
been tuned to provide them with the best performance in each scenario.

For a matter of convenience, to reduce the space consumed by graphics, we
depict unicast and broadcast algorithms in the same figure. Nevertheless, in
order to perform a correct analysis of the obtained results, approaches using
different communication assumptions should be observed separately. Concretely,
the push-sum protocol should be contrasted with the unicast version of Flow
Updating, and DRG with the broadcast version. The simulation results obtained
for the outlined network topologies (random and 2D/mesh) are respectively de-
picted by Figure 2 and Figure 3.

In the random network scenario, the two versions of Flow Updating clearly
outperform both competitors, both in terms of convergence speed Figure 2(a)
(from 4 to more than 10 times faster), and resource consumption (sending con-
siderably less messages) Figure 2(b).

As expected, the 2D/mesh topology penalizes the convergence rate in all al-
gorithms. Again, both Flow Updating variations (unicast and broadcast) reach
better results than the ones obtained by the other aggregation algorithms (Fig-
ure 3). The broadcast version of Flow Updating shows the best overall results
both in speed and overhead.

We now concentrate on the behavior of Flow Updating under message loss,
since under this failure pattern the other algorithms (without extensions) do
not converge to the correct value. Here we compare three levels of message loss
affecting transmitted messages, 0% (no loss), 20% and 40%. This values are
compared in a random network running the unicast version and in a 2D/mesh
network using the broadcast version of the algorithm. These combinations should

 0.001

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

No
rm

al
ize

d
RM

SE

Rounds

Push-Sum Protocol
Flow Updating (unicast)

DRG
Flow Updating

(a) Speed

 0.001

 0.01

 0.1

 1

 10

 100

0 100 200 300 400 500 600 700 800

No
rm

al
ize

d
RM

SE

Total Messages Sent (x1000)

Push-Sum Protocol
Flow Updating (unicast)

DRG
Flow Updating

(b) Overhead

Fig. 2. Random networks, n = 1000, and d ≈ 3 (log n).

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

No
rm

al
ize

d
RM

SE

Rounds

Push-Sum Protocol
Flow Updating (unicast)

DRG
Flow Updating

(a) Speed

 0.1

 1

 10

 100

0 100 200 300 400 500 600 700 800

No
rm

al
ize

d
RM

SE

Total Messages Sent (x1000)

Push-Sum Protocol
Flow Updating (unicast)

DRG
Flow Updating

(b) Overhead

Fig. 3. 2D/mesh networks, n = 1000, and d ≈ 3 (log n).

reflect the more commonly available communication capabilities in each topol-
ogy. Although not shown in the figures, we confirmed that the broadcast version
is always better than the unicast, so that when possible broadcast should be
preferred.

Figure 4 shows a degradation of the performance of the algorithm propor-
tional to each fault rate. The results show that message loss does not prevent
convergence of the estimate, it only increases the time and messages needed to
reach it.

It is curious to observe that even under the occurrence of high amounts of
message loss Flow Updating can still outperform the classical algorithms oper-
ating under no message loss. Notice that, comparing the results of Figure 2(a)
against Figure 4(a) for the random network scenario, and the results of Fig-
ure 3(a) versus Figure 4(b) for the 2D/mesh network, even considering a substan-
tial amount of faults (40%) on both versions of Flow Updating, they outperform
the other approaches without faults.

 0.001

 0.01

 0.1

 1

 10

 100

 0 20 40 60 80 100 120 140 160 180

No
rm

al
ize

d
RM

SE

Rounds

No loss
20% of message loss
40% of message loss

(a) Random network (unicast version)

 0.01

 0.1

 1

 10

 100

 0 200 400 600 800 1000 1200 1400 1600

No
rm

al
ize

d
RM

SE

Rounds

No loss
20% of message loss
40% of message loss

(b) 2D/mesh network (broadcast version)

Fig. 4. Flow Updating fault tolerance – n = 1000, and d ≈ 3 (log n).

4.3 Discussion

The obtained results reveal a significantly greater performance of Flow Updating
on all evaluated scenarios, both in terms of speed and overhead, when compared
to well-known approaches. Most important, Flow Updating is naturally robust
against message loss, due to its flow exchange scheme that keeps the aggregation
inputs unchanged along the execution of the algorithm.

Fault tolerance has not been a key concern in the design of aggregation by av-
eraging. Typically, existing approaches require the use of additional mechanisms
in order to tolerate faults. For instance, G-GAP [10] extended the push-sum
protocol by explicitly acknowledging mass and computing recovery shares, in
order to support discontinuous failures of adjacent nodes within a short time pe-
riod. As we pointed out, failure detection is trickier in this setting, since wrong
assessments will lead to deviations in the total mass and ruin convergence. Ad-
ditionally, the use of acknowledgment messages and timeouts leads to extra con-
sumption of resources and time, adding to the overall overhead of the underlying
algorithm even if no faults occur. In contrast, Flow Updating is per se tolerant
to message loss faults, and its performance is only affected when faults do occur.

In presenting and evaluating Flow Updating we have focused on message loss
(transient link failures). However, the basic algorithm can be trivially extended
to cope with both permanent link failures and node failures. In fact, even though
it can be impossible in a distributed system to distinguish between these types of
failure, Flow Updating can tolerate both without having to make a distinction.
The principle is quite simple: if a link/neighbor is suspected to have permanently
failed (e.g. because no message arrived for some rounds), the entries (flow and
estimate) regarding that neighbor are removed from the state. For all purposes
the flow will converge as if that link or node did not exist. If the suspicion turns
out to be wrong because a message arrives, the state can be simply augmented
using the message content. Even if the network becomes partitioned, each parti-
tion will be aggregated independently (in the case of counting, only the partition
having the 1 initial value will be counted).

A similar strategy could also be applied, in order to cope with dynamic
changes of the network structure, adding or removing the local neighbors infor-
mation whenever a node is arriving or leaving the neighborhood. Even in this
case, the flow values should adjust and all the estimates should converge to a
correct value, continuously adapting to reach the network equilibrium. The tol-
erance exhibited by Flow Updating when working in adverse scenarios prone to
considerable amounts of message loss, suggest that the algorithm can be suc-
cessfully used in practice on asynchronous and dynamic systems. We leave the
analysis and study of Flow Updating in this kind of setting for future work.

5 Conclusion

The main contribution of this paper consists on the introduction of a new dis-
tributed data aggregation approach: Flow Updating. An empirical analysis of
the proposed algorithm is provided, comparing it with existing approaches un-
der identical simulation settings. Flow Updating was shown to be robust against
message loss, overcoming the problem of “mass” loss verified on existing averag-
ing algorithms, and can be easily extended to tolerate permanent link failures or
node failures. Moreover, the results obtained reveal that our algorithm performs
better than its peers, requiring less time and communication resources.

Flow Updating allows the accurate computation of aggregates at all nodes,
converging to the exact result along time. The algorithm execution is indepen-
dent from the network routing topology. The “flow” exchange scheme imple-
mented by this algorithm enables the execution of idempotent update operations,
which is the key to its unique robustness capabilities.

Averaging based aggregation is of special relevance when seeking high accu-
racy estimates of a given global property in a distributed system. The proposed
approach can be used on overlay networks with unicast, and is particularly ef-
ficient when broadcast capabilities are present. The broadcast version of the
algorithm can bring a robust implementation of aggregation by averaging to
wireless sensor networks, where a high level of message loss can be expected.

References

1. Robbert Van Renesse. The importance of aggregation. Future Directions in Dis-
tributed Computing, Lecture Notes in Computer Science, 2584:87–92, 2003.

2. Ion Stoica, Robert Morris, David Karger, M Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. SIGCOMM
’01: Proceedings of the 2001 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 149–160, Aug 2001.

3. Ittai Abraham and Dahlia Malkhi. Probabilistic quorums for dynamic systems.
Distributed Computing, Springer Berlin/Heidelberg, 18(2):113–124, Dec 2005.

4. Samuel Madden, Michael Franklin, Joseph Hellerstein, and Wei Hong. TAG: a
Tiny AGgregation service for ad-hoc sensor networks. ACM SIGOPS Operating
Systems Review, 36(SI):131–146, Dec 2002.

5. J Li, K Sollins, and D Lim. Implementing aggregation and broadcast over
distributed hash tables. ACM SIGCOMM Computer Communication Review,
35(1):81–92, 2005.

6. Yitzhak Birk, Idit Keidar, Liran Liss, Assaf Schuster, and Ran Wolff. Veracity
radius: capturing the locality of distributed computations. PODC ’06: Proceedings
of the twenty-fifth annual ACM symposium on Principles of distributed computing,
Jul 2006.

7. D Kempe, A Dobra, and J Gehrke. Gossip-based computation of aggregate infor-
mation. Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE
Symposium on, pages 482– 491, 2003.

8. M Jelasity, A Montresor, and O Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Transactions on Computer Systems (TOCS), 2005.

9. Jen-Yeu Chen, G Pandurangan, and Dongyan Xu;. Robust computation of aggre-
gates in wireless sensor networks: Distributed randomized algorithms and analy-
sis. IEEE Transactions on Parallel and Distributed Systems, 17(9):987 – 1000, Sep
2006.

10. Fetahi Wuhib, Mads Dam, Rolf Stadler, and Alexander Clemm. Robust monitor-
ing of network-wide aggregates through gossiping. 10th IFIP/IEEE International
Symposium on Integrated Network Management, pages 226 – 235, 2007.

11. Carlos Baquero, Paulo Sérgio Almeida, and Raquel Menezes. Fast estimation of
aggregates in unstructured networks. In International Conference on Autonomic
and Autonomous Systems (ICAS), Valencia, Spain, Apr 2009. IEEE Computer
Society.

12. D Mosk-Aoyama and D Shah. Computing separable functions via gossip. PODC
’06: Proceedings of the twenty-fifth annual ACM symposium on Principles of Dis-
tributed Computing, pages 113–122, 2006.

13. D Kostoulas, D Psaltoulis, Indranil Gupta, K Birman, and Al Demers. Decen-
tralized schemes for size estimation in large and dynamic groups. Fourth IEEE
International Symposium on Network Computing and Applications, pages 41–48,
2005.

14. Laurent Massoulié, Erwan Merrer, Anne-Marie Kermarrec, and Ayalvadi Ganesh.
Peer counting and sampling in overlay networks: random walk methods. PODC 06:
Proceedings of the twenty-fifth annual ACM symposium on Principles of Distributed
Computing, Jul 2006.

15. A Ganesh, A Kermarrec, E Le Merrer, and L Massoulié. Peer counting and
sampling in overlay networks based on random walks. Distributed Computing,
20(4):267–278, 2007.

16. M Jelasity and A Montresor. Epidemic-style proactive aggregation in large overlay
networks. 24th International Conference on Distributed Computing Systems, 2004.

17. Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
18. Reinhard Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics.

Springer, 3 edition, 2005.
19. Paul Erdős and Alfréd Rényi. On the evolution of random graphs. Publications of

the Mathematical Institute of the Hungarian Academy of Sciences, 5:17–61, 1960.
20. M. Frans Kaashoek and David R. Karger. Koorde: A simple degree-optimal dis-

tributed hash table. In M. Frans Kaashoek and Ion Stoica, editors, IPTPS, volume
2735 of Lecture Notes in Computer Science, pages 98–107. Springer, 2003.

