Experiments in Model Driven Composition of
User Interfaces

Audrey Occello', Cedric Joffroy!', Anne-Marie Dery-Pinna!

Université de Nice Sophia-Antipolis, Polytech’Nice Sophia,
930, Route des Colles, B.P. 145,
F-06903 Sophia Antipolis cedex, France

Abstract. Reusing and composing pieces of software is a common prac-
tice in software engineering. However, reusing the user interfaces that
come with software systems is still an ongoing work. The Alias frame-
work helps developers to reuse and compose user interfaces according to
the way they are composing new systems from smaller units as a mean
of speeding up the design process. In this paper we describe how we rely
on Model Driven Engineering to operationalize our composition process.

Keywords. User interface composition, metamodeling, transformations.

1 Introduction

Software Composition is about reuse of software artifacts in order to construct
larger systems from smaller ones such as with Service Oriented Architecture
(SOA) [1] or Component-Based Software Engineering (CBSE) [2] paradigms.
Techniques evolve to ever improve the reusability, customizability and maintain-
ability of such composed systems. However composition is often focused on the
functional part of a system and not on its interactive part. Hence, the User Inter-
face (UI) often has to be built from scratch each time a new system is composed
from a set of services or components for example.

Based on the hypothesis that each service comes along with a Ul, we propose
to exploit the relationships between them to deduce the UI of the application
resulting from a composition of services. The Alias framework! builds a UI for
an application A as a function of: 1) the way services are composed to form A;
and 2) the interactions between such services and their corresponding Uls.

The originality of Alias is to reason at the Abstract User Interfaces (AUI)
level which simplifies the composition algorithm and makes it reusable and obliv-
ious to heterogeneity:

— algorithm simplification: the AUT level enables us to focus on the composition rules
without burdening ourselves with widget type and style,

— reuse: the same algorithm can be used to deduce composition of Swing Uls, Flex
Uls, Ajax Uls and so on,

— obliviousness to heterogeneity: we can deduce the composition of Uls written in
different languages, as is done in the plasticity research area [3].

! http://users.polytech.unice.fr/ ~joffroy /ALIAS/

Given these facts, we believe in the legitimacy of adopting a Model Driven
Engineering (MDE) [4] approach. In this paper, we describe how we experiment
with MDE to operationalize our composition process. As there are various ways
of implementing MDE, we also discuss how we deal with modeling and tool
choices and the questions our experiment raises.

The remainder of this paper is organized as follows. Section 2 illustrates the
Alias composition process using a tour operator scenario. Section 3 introduces
the metamodels on which the framework is based to describe user interfaces
and services as well as their compositions. Section 4 gives an overview of the
transformations that operationalize the Alias composition process. Section 5
compares Alias with related work. Section 6 concludes.

2 Alias Composition Process Overview

The strength of the Alias approach is to prevent the developer from implementing
user interfaces from scratch. Instead, the developer focuses on composing busi-
ness components or services as usual. Then, the UI of the resulting composite
application made of services is deduced from: 1) the interaction links between
each user interface and its corresponding service and 2) the way services are
composed to form the composite application.

The only requirement to use the Alias framework is to respect a separation
of concerns between the different elements that compose an application: the Ul
part and the service part need to be clearly identifiable as well as the interaction
links between the two parts (triggering a given operation on event handling is
considered as an interaction link between the UI and the service).

Section 2.1 presents a scenario to illustrate the proposal. Section 2.2 gives
some details about the composition engine and its role in the overall process.

2.1 Tour Operator Scenario

We illustrate the Alias approach with a Hotel Booking and Flight Reservation
composition scenario. We want to reuse these two services and their correspond-
ing user interfaces in order to build a new service that enables users to book a
hotel and a flight simultaneously, as would happen in a tour operator company.
With such a service, the user would be able to plan a trip faster. To illustrate
our proposal, we only focus on the search part of these services. Extensions of
the example can be found on the Alias website.

The Hotel Booking service This service handles two operations: (i) get-
AvailableHotels returns a list of available hotels for a given quadruplet (coun-
try, city, check-in and check-out dates) and (ii) bookARoom books a room in a
hotel. To use this service, there are different user interfaces (as proposed by
http://www.travelocity.com/Hotels). We only focus on the UI that enables the
user to check the availability of hotels. To view available hotels, a user has to
follow the steps above: 1) choose a country, a city and check-in/check-out dates;
2) search for available hotels (getAvailableHotels operation call).

The Flight Reservation service This service handles two operations: (i)
getAvailableFlights returns a list of flights and (ii) reserveAFlight makes
the reservation of the flight. To use this service, there are different user interfaces
(as proposed by http://www.airfrance.us/). We focus only on the UI that checks
available flights). To view available flights, a user has to follow the steps above: 1)
choose a country and a city to select a departure and a destination airport, a de-
parture and a return date; 2) search for available flights (getAvailableFlights
operation call).

2.2 Alias Framework Steps and Role of the Composition Engine

The composition engine aims at deducing which elements of the existing Uls to
keep, which ones to leave and what to do in case of duplicated elements in the
UI corresponding to the service composition. The expression of the resulting Ul
structure as a composition of the existing Ul is not written by the developer.
The composition rules that give the resulting Ul structure are generated by the
engine as a function of composition inputs (the interaction links between each
user interface and its corresponding service and the way services are composed).

Alias uses first order logic to generate such composition rules. The compo-
sition engine is described as PROLOG predicates, the composition inputs are
generated as PROLOG facts and the composition rules to generate the resulting
UI are obtained by inference. We do not detail the composition engine further
as it is not in the scope of this paper.

Using the Alias framework can be divided in 5 steps and implies the ma-
nipulation of services, Uls and compositions at two levels of representation: a
concrete level that corresponds to the Platform Specific Model (PSM) of the
MDA layer modeling stack [5] and an abstract level that corresponds to the
Platform Independant Model (PIM).

1. The developer has to select the services to compose (Hotel Booking service and a
Flight Reservation service in the tour operator scenario);

2. The framework collects information about each service and their Uls to create
abstract representations;

3. The developer makes explicit the composition links between the different services
of the composite application and the interaction links between services and Uls at
the abstract representation level;

4. The composition engine computes the resulting user interface as a set of element
reused from the existing Uls abstract representation;

5. The information of the resulting Ul abstract representation is used to generate a
first sketch of the Concrete User Interface (CUI) at the platform level.

Steps 1, 2 and 5 imply being capable to obtain and interpret differents PSMs
corresponding to various UI description languages (Flex, XUL, Swing, etc), ser-
vice description languages (SCA, OSGI, WS-*, etc) and composition formalisms
(BPEL orchestration, component assembly, etc). Steps 2, 3 and 4 are necessary
to perform the composition in a generic way: Uls, services and the way they are
composed need to be explicit in a pivotal formalism, the PIM, which is presented
in section 3. An overview of the model transformations that operationalize this
process is described in section 4.

3 Metamodels involved in the Ul Composition Process

In previous work [6], we defined three languages in order to describe Uls at
different levels of abstraction: ALTAS-Behavior for modeling Ul elements at a
very high level, ALTAS-Structure for modeling more concrete aspects of the Ul
structure and ALIAS-Layout for modeling the Ul layout. The main goal of this
set of languages was to compose heterogeneous Uls directly: we experimented
with various composition algorithms.

This first step led us to the conclusion that we do not need to take into
account all these aspects in the composition rules. Composing the style or the
layout is not pertinent when considering heterogeneous Uls: for the composite
UI to look coherent, it is necessary to keep the style and the layout of only one of
the Uls to be composed. Such information is reintroduced after the composition
during the transformation to the concrete Ul level. Ongoing work is focused on
ALIAS-Behavior, the pivotal formalism upon which the composition reasoning
is done. This section presents how we metamodeled this pivotal formalism.

In recent work, we moved from a pure Ul composition to a Ul composi-
tion deduced from service composition. As a matter of fact, we have to manage
information not only about Uls but also about services. We could have distin-
guished the formalism describing Uls from the one describing services. However,
the degree of abstraction that we chose allows for manipulating Uls and services
in the same way (see section 3.1). This point facilitates the reasoning about
composition and simplifies the formalism.

We applied separation of concerns and split our formalism design into two
metamodels (PIMs), each one having the most suitable representation to achieve
its goal easily. A first one deals with service and Ul information extraction and
exchange (section 3.1) and the second one deals with the composition itself
(section 3.2). As their structures goals differ, merging the two would have led us
to privilege one representation in such a unified metamodel, making the other
less efficient. Moreover, there is only a small subset of information in common
between the two metamodels.

3.1 AliasExchange Metamodel

The AliasExchange metamodel represents both Uls and services. Information
that needs to be reified for a Ul concerns: the data inputs independently of the
widget chosen to retrieve this data (text fields, lists, trees, etc), the data outputs
again independently of the widget chosen to display this data (labels, etc) and
action triggers (user interactions) independently of the widget chosen to trigger
actions (buttons, menu items, etc). Information that needs to be reified for a
service concerns essentially the signature of the operations implemented by a
service: input parameters, output parameters and the name of the operation.
Then we can identify an isomorphism between the two sets of information and
that is why a unique representation for both UI and services is possible: 1) Ul
data inputs correspond to service operation parameters, 2) service operation

results correspond to UI data outputs, 3) interactions with the user are located
in Ul action elements and service operation calls.

To sum-up, the metamodel (Fig. 1) defines the Entity class, representing
Uls and services which are made of a set of AliasElement and the Input,
Output and Action classes which inherit from the Element class describing Ul
elements and service operations through an id, a name and a type. Each Action
element is associated with Input and Output elements in order to find the
parameters and return of an operation and to associate user interactions to input
and output widgets. In this metamodel, each entity is considered individually: we
reify neither the interactions between the UI and the service nor the interactions
between services.

AliasExchange
7 Element
Entity -elements | . o, .
~id : Strin -id : String
i 9 * |-name : String
-semantic : String
[|
Input Output Action
-type : String -type : String
-inputsTO..* -outputs | 0..* l

Fig. 1. UML Class diagram of the AliasExchange Metamodel

The semantic attribute is a parameter of the composition algorithm used in
case of conflicts. It helps in deciding to merge or group Ul elements if they are
equivalent or if they belong to the same family of information for the user (e.g.
two UI elements that denote contact information). It also makes it possible to
prevent the merging when UI elements own the same structure (name, type) but
differ in their semantics (e.g. hotel check-in and flight departure are dates but
the first one means “way-out” and the second one “way-in").

Currently, this attribute corresponds to some key words (e.g. “way-in”, “way-
out”, “contact information”) and is filled manually in order to validate the com-
position algorithm and to compare different merging alternatives. Ultimately, we
plan to decorate AliasExchange models with ontology annotations to enhance the
conflict detections. The challenge is then to decorate the models automatically.
As a proof of concept, we plan to extract such information from Web Services
ontology languages such as OWL-S (http://www.w3.org/Submission/OWL-S/).

Figure 2 shows the AliasExchange model for the flight availability check-
ing UI of the tour operator scenario. There are six inputs (names of depar-
ture/destination country and city, check-in and check-out dates), one output (a
list of available flights) and one action (users search for flights).

[
id ="ui_input1" id ="ui_input2"
name = "Country From" name = "City From"
type = "string" type = "string"
_ CountryTo: Input L CityTo : Input
id = "ui_input3" id = "ui_input4
name = "Country To" name = "City To"
type = "string" type = "string"
id = "ui_input5" id = "ui_input6"

semantic = "way-in,date”
type = "date"

name = "Date of Departure”

name = "Date of Return"
semantic = "way-out, date"
type = "date"

1
AvailableFli L
Entity

elements = CountryFrom,
CityFrom, CountryTo,
CityTo, Departure, Return,
getAvailableFlights,
ListOfAvailableFlights

id = "getAvailableFlights UI"

istOfAvailableFli .0
id ="ui_output1"

name = "List of Available
Flights"

type = "collection"

id = "ui_action1"
inputs = CountryFrom,

Departure, Return

I

I

Flights"

EEE A aliabie Fighia Shctiony

CityFrom, CountryTo, CityTo,
name = "Search Available

outputs = ListOfAvailableFlights

Fig. 2. Model for the user interface of the Flight Reservation service

Figure 3 represents the Flight Reservation service and highlights the isomor-
phism between the two sets of information: We recognize the data shared with
the UI component for availibility checking as well as the data relative to the
other Ul not depicted in this paper. Inputs are operation parameters, outputs
are operation results and actions are operations such as getAvailableFlights.

Types are not shown to avoid overloading the figure.

:Action

[Qo.unanImm_..lnnm

T id = "fc_action1"

| cityFrom :input

id = "fc_input1"
name = "country_from"

[

id = "fc_input2"
name = "city_from"

inputs =
CountryTo, CityTo, Departure, Return
name = "getAvailableFlights"
outputs = ListOfAvailableFlights

CountryFrom, CityFrom,

CountryTo : Input

CityTo : Input

T
FlightService : Enti

[Tiem : Output

id ="fc_input3"
name = "country_to"

id ="fc_input4"
name = "city_to"

FinalDeparture, Flig|

elements = CountryFrom, CityFrom,
CountryTo, CityTo, Departure,

id = "fc_output1"
name = "listofavailableflights"

Go,
Departure : Input Return : Input FinalReturn, FlightNumberReturn, 4’
id = "fc_input5" id ="fc_inputé" || | getAvailableFlights, bookFlights,
name = "departure” name = "return" ListOfAvailableFlights, BookingResult,
Return
: : : id = "FlightService"
BookingResult : Output
EinalDeparture : Input Go : Input - I — id = "fc_output2"
id = "fc_input7" id ="fc_input8" beokFlights . Action name = "bookingresult"
name = "finaldeparture" name = "flightnumbergo" id = "fc_action2"

n_:Input

e — |

Return : Input

inputs = FinalDeparture,
FlightNumberGo, FinalReturn,

id ="fc_input9"
name = "finalreturn”

id ="fc_input10"
name = "flightnumberreturn”

T

Return

T
name = "bookFlights"

outputs = BookingResult

T

Fig. 3. Model for the Flight Reservation service

This metamodel eases the exchange of service and Ul descriptions between
developers, composing services, and Ul designers, creating the concrete Ul in

function of the abstract Ul deduced from such composition.

3.2 AliasCompose Metamodel

The AliasCompose metamodel represents interactions involved in compositions
between a service and its Uls and between several services. To express the in-
teractions, we use two different binding types: data links and event links. Event
links represent control flows (between two operations or between an operation
and the UI element that triggers the call). Data links represent dataflows (be-
tween Ul elements and operation or between operations).

The metamodel (Fig. 4) looks similar to component metamodels such as
UML2.0 component diagram [7] or SCA [8] because Uls and services are repre-
sented as components with ports. However the granularity of our port is finer: at
the data or operation level not at the programming interface level. We adopt the
component metaphor as this has become a defacto standard to express bindings.
AliasCompose shares some information about each individual Ul and service
with AliasExchange. However, it does not keep neither the name and type of in-
puts/outputs nor the relationships between actions and relative input and output
elements as it does not need a precise definition of each individual service/UT to
express the interaction and composition links.

AliasCompose
Binding

Composite

n—\l/ l -type, PortType
J; * | -subComponents -fromj1 -to 1 1

FCComponent| |UlComponent Port
-id : String
Data Event
Component

-id : String -ow ner -inList | Portin PortOut
1 0.*
-ow ner l 1 -outList]0.4'

Fig. 4. UML Class diagram of the AliasCompose Metamodel

From AliasExchange to AliasCompose: The AliasCompose models for
the Flight Reservation service and the flight availability checking UT are obtained
from the AliasExchange models illustrated in section 3.1. The service and the
UT are components represented as boxes; inputs and outputs are represented at
the left and right sides of the box; and triggers are represented on the top side of
the box. The AliasCompose model for the service is depicted in the lower part of
Figure 5 and the AliasCompose model for its Ul in the upper part of this figure.

First refinement step: To express the interaction links between the service
and the UI, the two corresponding models need to be refined as a third one where
bindings (see the Binding class in figure 4) between component ports are added.
Such bindings are illustrated in Figure 5 as dashed lines. The overall figure
depicts the AliasCompose model corresponding to this refinement.

ui_action1

[

ui_input1 I
ui_input2 1
ui_input3 > |
|

|

|

pr— ui_output1

ui_input4
ui_inputb >——
ui_input6 >——

|
getAvailableFlightsUl

—
r ~‘."..
fc_actionw/ Wf/c_actionz

/

fc_output1
_0 ;

fc_input? >—— ——efc_output2
fc_input8 >———
fc_input9 >——

fc i t10 >—
e-ned _ FlightService /

Fig. 5. AliasCompose model showing the interactions between the UI and the service

Second refinement step: The Composite class (see figure 4) is used to
reify the result of the service composition as a new component. It expresses
which ports are kept and which ones are left and makes it possible to deduce
which UI elements may be merged in the resulting Ul. For example, the lower
part of figure 6 shows the AliasCompose model resulting from the refinement of
the two AliasCompose models corresponding to the Hotel Booking service and
the Flight Reservation service with city input merging.

Results of the composition engine: The upper part of Figure 6 shows
the AliasCompose model for the UI computed by the composition engine. The
bindings between the upper part and the lower part of the figure describe the
interactions between the resulting Ul and the composition of services.

Exploitation of the resulting UI abstract description: When the com-
position engine has computed the abstract description of the UI for a given
composition of services, the resulting AliasCompose model is translated back to
AliasExchange models in order to generate code for specific platforms.

At this step, details concerning UI structure and layout choices need to be
reintroduced. Hence AliasExchange models which correspond to Uls are an-
notated with extra information to describe Ul elements more precisely with
widget-specific characteristics (lists or check-boxes, buttons or menu items, .. .)
and the position of Ul elements. For this, we would reuse our work around
ALTAS-Structure and ALIAS-Layout.

uifactionY

-1—eui_output1'

ui_input4' >——t
ui_inputs' >——t
ui_input6' >——

—eui_output2'

1
I
I
I
I
I
I
I
: VTASearchUI

fc_action 1\'r

fc_action1

fe_input1 o :
o fc_outputt fc_output1'§
@ © v
C
C, fo_inputs fc_output2
G, fe_inputé
G fc_input?
g nDu't'G' !cfinpulsj
- fe_actiont \ HotelService J
fc_output! fc_output2'

fc_output2
—e

VTACompositiy

Fig. 6. AliasCompose model for the composition of the Hotel Booking service and the
Flight Reservation service and the deduced Ul

FlightService ~/

Annotations would be added using the decorator design pattern. This part
of the work is still under progress and what we hope is to be able to transform a
decorated AliasExchange model into an existing model of abstract Ul dedicated
to plasticity (such as Teresa [9] for example) to address an ergonomic final UL
We do not discuss this point further in this paper.

4 Overview of the Transformations involved in the
Composition Process

This section describes the end-to-end transformation chain that operationalizes
the composition process steps described in section 2.2. The overview of the trans-
formation chain is depicted in Figures 7 and 8. Full arrows represent automated
transformations and dashed arrows represent hand-crafted transformations.

Ecore

M3
conformTo conformTo
conformTo
ATL
M2 AliasExchange AliasCompose
MetaModel conformTo MetaModel
conformToT A““SE:C"“‘"Qe I conformTo
o 4+~
AliasCompose R g
M1 AliasExchange Model @) model to model AliasCompose Model)@ S
@
COde COde \ mOdeli TCOde :
model mode code model
MO Functional Core) Concrete User Interface’’ Prolog Facts
(.Net, J2EE, BPEL, .) (XAML, Mxml, ...)
® endogeneous \f
transformation

Fig. 7. Abstraction and composition related transformations

— Transformations 1 and 2 correspond to “step 2” and consist in the extraction
of information about each existing concrete service and Ul and its expression
into the AliasExchange formalism.

— Transformation 3 is a pre-processing task of “step 3”7 to obtain Ul and ser-
vices in the AliasCompose formalism. Transformation 4 corresponds to “step
3” in which the developer specifies: (i) the interaction links that exist be-
tween existing concrete Ul and services in the AliasCompose formalism (first
refinement step) and (ii) the composition links between services in the Alias-
Compose formalism (second refinement step).

— Transformations 5, 5’, 6, 7 and 7’ are related to “step 4” (the use of the
composition engine) and consist in a technological space shift. They corre-
pond respectively to: the generation of prolog facts from alias models, the
internal rule inference, the translation of prolog results back to alias models
specifying the structure of the resulting UI (AliasExchange model) and its
links to the composition of services (AliasCompose).

— Transformation 8 and 8’ correspond to “step 5” and give feedback to appli-
cation developers and Ul designers on the UI composition. These transfor-
mations are very important because one can see whether the result of the
composition is correct or not. It is easier to deal with a concrete Ul than
with Prolog facts or with an abstract Ul

Each transformation has been denoted based on the classifications of Czar-
necki [10] and of Mens [11]. The figure outlines the fact that our composition
process covers a large spectrum of transformations: 1) endogenous and exoge-
nous, 2) vertical and horizontal, 3) reverse engineering (abstraction from PSM to
PIM), synthesis (concretization from PIM to PSM), migration as well as internal
refinement.

M1 AliasExchange Model AliasCompose Model

\
Ay

model to code @

Concrete User Interface
—F\ (XAML, Mxml, ...)

Fancﬁonal dr‘e))
(Net, J2EE, BPEL, ..))

Fig. 8. Concretization related transformations

The diversity of transformations has lead us to experiment with different
tools and mechanisms. Then we use pure MDE tools such as ATL [12] and Ac-
celeo? as well as ad-hoc techniques such as implementing visitor design patterns,
conditional Transformations [13] (which are based on a description of a model
inside Prolog facts - with some rules of transformations we can describe how we
would like to transform a source model into another one or into a source code).

For the time being, we are not sure of which combination of tools best fits.
Some questions are still open such as:

— How to make a transformation bidirectional? We would like to use only one
implementation in order to automate transformations 4 and 8’ because the
latter is really the inverse of the former concerning the first refinement.

— Which technique better deals with runtime and instance level transforma-
tion? We plan to use Alias at runtime in order to adapt the UI as a function
of service discovery and disappearance in the context of ubiquitous comput-
ing. Then, transformations would occur at runtime and data transformation
would be at an instance level not at a class/type level.

Lastly, limits of the current transformation chain essentially concern reverse
engineering of Uls and services. Transformations 1 and 2 are implemented as
a visitor. However, this approach is only possible if we work on source code.
We plan to try out an extraction technique based on language reflection such
as proposed by Bezivin et al [14]. Transformation 4 is handwritten because it
is too complicated to extract interaction links using a visitor or transformation
rules in the case of the first refinement but it can be automated easily for the
second refinement (composition links). The automation of transformation 4 is not
essential in a design approach but is crucial if we want to use Alias at runtime.
We plan to test the extraction technique based on language reflection also for
the automated discovery of composition links by exploiting introspection over
composition formalisms such as component assemblies [8], [15], [16] or service
orchestrations [17], [18].

2 http://www.acceleo.org

5 Related work

Models have long been used in Human-Computer Interaction (HCI) to make
knowledge explicit. Rapidly, efforts have been put on UI code generation to make
explicit and to reuse the know-how in HCI. Nowadays, models and transforma-
tions have been rediscovered under the umbrella of Model Driven Engineering
(MDE) to tackle problems such as UI composition or Ul plasticity (adaptation
of the UI to the context of use while maintaining ergonomic properties [19]).

The Cameleon Reference Framework (CRF) [3] defines four levels of abstrac-
tion of Uls: (i) Task and concept, both defining the user and system tasks and
the concepts of a specific domain, (ii) Abstract User Interface (AUI) describing
the structure of the user interface without any specific widget, (iii) Concrete
User Interface (CUT) describing widgets of the User Interface and specifying also
elements from the AUI, and finally (iv) Final User Interface (FUI) implement-
ing the CUI in a specific language. The two first levels are PIMs. The two last
levels are PSMs (for a language point of view or from a operating system point
of view). The framework also proposes transformations to shift from one level
to the next one. The metamodels described in this article are at the AUI level:
AliasExchange is a subset of AUI, AliasCompose reifies additional information
about composition/interaction links.

Many approaches adopt an MDE approach based on this four level model
abstraction of Uls. For example, [20] or [21] use AUI or CUI to compose user
interfaces. At the end, they use model transformation to generate a FUI us-
able for an end-user. In such work, composition is addressed but mostly from
an ergonomic and usability point of view. the composition process is based on
the structural aspects of user interfaces located at the Abstract/Concrete User
Interface (AUI/CUI) or task level and does not exploit information related to
the functional part as does Alias.

Servface [22], a European project, decorates service descriptions with user
interface annotations. These annotations allow for the generation of a high qual-
ity UI to interact with the annotated services. The generation process of a FUI
is based on refinement in the different models presented in [3]. Servface and
Alias share the same goal: building a user interface for a composition of services.
However, Servface composition is implemented by using a task tree description
(service operations are bound to system tasks) and annotations whereas Alias
composition extracts the tasks sequences in Ul interactions from the service
workflow instead of duplicating such information.

Work on planning [23] proposes an approach to compose interactive services
(e.g. functional core and UI) from user needs. For this, the framework asks
users about what they want in a natural language. Then, an incomplete task
model is built and transformed into a planning problem. After that, the results
of the planning problem are translated back into task models which are refined
successively into a AUI, CUI and then FUI.

Lastly but not least, most of these approaches work at one CRF level and
then define successive transformations to obtain a FUI. Hence, they follow a
top-down approach and use mostly model-to-code transformation. In contrast,

the Alias composition process adopts a top down approach as well as a bottom
up one as existing artifacts are extracted from code. Alias makes greater use of
transformation techniques as mentioned in section 4. However, work on plan-
ning and Alias have both demonstrated the power of model transformation for
bridging domains together: the first one between Ul composition and planning
and the second one between UI composition and predicate logic.

6 Conclusion

Alias is a logical approach for composing user interfaces at the Abstract User
Interface (AUI) level. Its originality comes from the fact that the composition is
deduced from the way services are composed. This paper has shown the perti-
nence of adopting a MDE [4] approach with regards to our needs:

— expressing the composition algorithm in a formalism that best fits,

— reusing the composition algorithm for different concrete platforms (service-
based platforms such as OSGi, web services, SCA or component-based plat-
forms such as Fractal, OpenCCM, Sofa and so on),

— handling heterogeneity of UI description languages.

We have shown how we used MDE to operationalize the Alias composition
process. We definitively think that MDE brings a lot of benefits in the UI com-
position research area. This approach enables the isolation of the composition
algorithm. Changing of formalism will not impact all the framework but only the
transformations directly related to this aspect. In the same way, using reverse
engineering prevents the designer from focusing on platform diversity and avoids
combination issues that would arise if we translate the concrete services and Ul
directly into the composition algorithm in PROLOG.

In addition, the use of MDE gives a lot of opportunities to the Alias frame-
work. Considering that work around plasticity in the Human-Computer Interac-
tion (HCI) community is based on models at different levels, our ultimate goal
is to transform Alias models into plasticity models to obtain final user interfaces
with ergonomic properties.

Acknowledgements

We thank the DGE M-Pub 08 2 93 0702 project for his funding.

References

1. Natis, Y.V.: Service-oriented architecture scenario. Gartner, Inc (2003)

2. Heineman, G., Councill, W., eds.: Component-Based Software Engineering,
Putting the Pieces Together. Addison-Westley (2001) ISBN: 0-201-70485-4.

3. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A unifying reference framework for multi-target user interfaces. Interacting
With Computers 15/3 (2003) 289-308

o

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39 (2006) 25-32
OMG: Model Driven Architecture. OMG Document ormsc/2001-07-01 (2001)
Pinna-Déry, A.M., Joffroy, C., Renevier, P.; Riveill, M., Vergoni, C.: ALIAS: A Set
of Abstract Languages for User Interface Assembly. In: SEA’08, Orlando, Florida,
USA, TASTED, ACTA Press (2008) 77-82

The Object Managemant Group: Unified Modeling Language Specification 2. OMG
Document formal/2009-02-02 (2009)

Marino, J., Rowley, M.: Understanding SCA (Service Component Architecture).
Addison-Wesley Professional (2009)

Mori, G., Paterno, F., Santoro, C.: Design and development of multidevice user
interfaces through multiple logical descriptions. IEEE Transactions on Software
Engineering 30 (2004) 507-520

Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture. (2003)

Mens, T., Gorp, P.V.: Applying a model transformation taxonomy to graph trans-
formation technology. Electronic Notes in Theoretical Computer Science 152
(2006) 143-159

Jouault, F., Kurtev, I.: Transforming models with ATL. Lecture Notes in Computer
Science 3844 (2006) 128

Kniesel, G., Koch, H.: Program-independent composition of conditional transfor-
mations. Technical Report IAI-TR-03-1, ISSN 0944-8535, CS Dept. I1I, University
of Bonn, Germany (2003) updated Feb. 2004.

Bézivin, J., Chevrel, R., Bruneliere, H., Jossic, A., Jouault, F., Piers, W.: Modelex-
tractor: an automatic parametric model extractor. The international workshop on
Object-Oriented Reengineering (WOOR) at the ECOOP 2006 Conference, Nantes,
France (2006)

The Object Managemant Group: CORBA Component Model Specification, 4.0
edition. OMG Document formal/2006-04-01 (2006)

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36 (2006) 1257-1284

Peltz, C.: Web services orchestration and choreography. Computer 36 (2003) 46-52
Khalaf, R., Mukhi, N., Weerawarana, S.: Service-oriented composition in bpeldws.
In: WWW (Alternate Paper Tracks). (2003)

Scapin, D., Bastien, J.: Ergonomic criteria for evaluating the ergonomic quality of
interactive systems. Behaviour & Information Technology 16 (1997) 220-231
Lepreux, S., Hariri, A., Rouillard, J., Tabary, D., Tarby, J., Kolski, C.: Towards
Multimodal User Interfaces Composition Based on UsiXML and MBD Principles.
Lecture Notes in Computer Science 4552 (2007) 134

Pinna-Déry, A.M., Fierstone, J.: Component model and programming: a first
step to manage Human Computer Interaction Adaptation. In: 5th International
Symposium on Human-Computer Interaction with Mobile Devices and Services
(Mobile HCI). Volume LNCS 2795., Udine, Italy, L. Chittaro (Ed.), Springer Verlag
(2003) 456-460

Servface Project: Service annotation for user interface composition (7th Framework
European Programme Project). http://www.servface.org (2008)

Gabillon, Y., Calvary, G., Fiorino, H.: Composing interactive systems by planning.
In: UbiMob’08, Saint Malo, France (2008) 37-40

