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Abstract. This paper presents gradienTv, a distributed, market-based approac
to live streaming. In gradienTv, multiple streaming trees are construcied u

a market-based approach, such that nodes with increasing uplodditidnare
located closer to the media source at the roots of the trees. Market-apsed
proaches, however, exhibit slow convergence properties on maoderlay net-
works, so to facilitate the timely discovery of neighbours with similar upload
bandwidth capacities (thus, enabling faster convergence of strearag®),tive
use the gossip-generated Gradient overlay network. In the Gradienédy nodes
are ordered by a gradient of node upload capacities and the medae ssthe
highest point in the gradient. We compare gradienTv with state-of-thideav-
Coolstreaming in simulation, and the results show significantly improved-band
width utilization, playback latency, playback continuity, and reduction in the av
erage number of hops from the media source to nodes.

1 Introduction

Live streaming using overlay networks is a challenging f@ob It requires distributed
algorithms that, in a heterogeneous network environmegréve system performance
by maximizing the nodes’ upload bandwidth utilization, amghrove user viewing ex-
perience by minimizing the playback latency, and maxingzime playback continuity
of the stream at nodes.

In this paper, we improve on the state-of-the-art NewCoedshing system [7] for
these requirements by building multiple media streamireglay trees, where each tree
delivers a part of the stream. The trees are constructed distributed algorithms such
that a node’s depth in each tree is inversely proportiondstelative available upload
bandwidth. That is, nodes with relatively higher uploaddaiath end up closer to the
media source(s), at the root of each tree. This reduces loddeosource, maximizes
the utilization of available upload bandwidth at nodes, anidds lower height trees
(reducing the number of hops from nodes to the source). Athave only consider
upload bandwidth for constructing the Gradient overlayhis paper, the model can
easily be extended to include other important node chaiatits such as node uptime,
load and reputation.

Our system, calledradienTy uses a market-based approach to construct multiple
streaming overlay trees. Firstly, the media source spiigsstream into a set of sub-
streams, calledtripes and divides each stripe into a numberbdbcks Sub-streams
allow more nodes to contribute bandwidth and enable morastofystems through



redundancy [4]. Nodes in the system compete to becohildren of nodes that are
closer to the root (the media source), gratentsprefer children nodes who offer to
forward the highest number of copies of the stripes. A chddenexplicitly requests
andpulls the first block it requires in a stripe from its parent. Thegmarthenpushes

to the child subsequent blocks in the stripe, as long as ianesrthe child’s parent.
Children can proactively switch parent when the market-efied benefit of switching

is greater than the cost of switching.

The challenge with implementing this market-based apprésaio find the best pos-
sible matching between parents and children in a timely mamwhile having as few
parent switches as possible. In general, for a market-tsassdm to work efficiently,
information and prices need to be spread quickly betweeticfants. Insufficient in-
formation at market participants results in inefficient keds. In a market implemented
using an overlay network, where the nodes are market gaatits, the communication
of information and prices between nodes is expensive. Famele, finding the opti-
mal parent for each node requires, in principle, floodingaimmunicate with all other
nodes in the system. Flooding, however, is not scalableradtively, an approach to
find parents based on random walks or sampling from a randemtagvproduces slow
convergence time for the market and results in excessivenpawitching, as infor-
mation only spreads slowly in the market. We present a fagaximate solution to
this problem based on tHeradient overlay{17]. The Gradient is a gossip-generated
overlay network, built by sampling from a random overlay,aennodes organize into
a gradient structure with the media source at the centreeofjtadient and nodes with
decreasing relative upload bandwidth found at increasistanice from the centre. A
node’s neighbours in the Gradient have similar, or slighilyher upload bandwidth.
The Gradient, therefore, efficiently acts asarket makethat matches up nodes with
similar upload bandwidths, enabling the market mechanisnegiickly construct sta-
ble streaming overlay trees. As nodes with low relative aglbandwidths are rarely
matched with nodes with high relative upload bandwidthscéasbe the case in a ran-
dom overlay), there is significantly less parent-switctiefpre streaming overlay trees
converge.

We evaluate gradienTv by comparison with NewCoolstreamanguccessful and
widely used media streaming solution. We show in simulatthat our market-based ap-
proach ensures that the system’s upload bandwidth can benae@mally utilized, the
playback continuity at clients is improved compared to NewiStreaming, the height
of the media streaming trees constructed is much lower thleiwCoolstreaming, and,
as a consequence, playback latency is less than NewC@olshg.

2 Related work

There are two fundamental problems in building data defiyaredia streaming) over-
lay networks: (i) what overlay topology is built for data sksnination, and (ii) how a
node discovers other nodes supplying the stream.

Early data delivery overlays use a tree structure, whermtigia is pushed from the
root to interior nodes to leave nodes. Examples of such mysiteclude Climber [14],
ZigZag [18] and NICE [3]. The short latency of data delivesytiie main advantage of



this approach [24]. Disadvantages, however, include thgility of the tree structure
upon the failure of nodes close to the root and the fact thahaltraffic is only for-
warded by the interior nodes. SplitStream [4] improved thizdel by using multiple
trees, where the stream is split into sub-streams and eaeli¢livers one sub-stream.
Orchard [11], ChunkySpread [19] and CoopNet [12] are sorheragolutions in this
class.

An alternative to tree structured overlays is mesh stre¢tuarwhich the nodes are
connected in a mesh-network [24], and nodes request mibicgs of data explicitly.
The mesh structure is highly resilient to node failures,ibigtsubject to unpredictable
latencies due to the frequent exchange of notifications aqdests [24]. SopCast [9],
DONet/Coolstreaming [25], Chainsaw [13], BiToS [20] andLEBE [15] are examples
of mesh-based systems.

Another class of systems combine tree and mesh structuesiruct a data de-
livery overlay. Example systems include CliqueStreamifZlreebone [22], NewCool-
Streaming [7], Prime [10] and [8]. GradienTv belongs to ttiass, where the mesh is
the Gradient overlay.

The second fundamental problem is how nodes discover tlee ntues that supply
the stream. CoopNet [12] uses a centralized coordinatarSBaam [6] uses controlled
flooding requests, SplitStream [4] and [8] use DHTSs, whilevi@eolstreaming [7],
DONet/Coolstreaming [25] and PULSE [15] use a gossip-geedrrandom overlay
network to search for the nodes.

NewCoolstreaming [7] has the most similarities with gradie Both systems have
the same data dissemination model where a node subscribesitbstream at a parent
node, and the parent subsequently pushes the stream talthéHzwever, gradienTv’s
use of the Gradient overlay to discover nodes to supply tieaust contrasts with New-
CoolStreaming that samples nodes from a random overlagr(esf to as the partner-
list). A second major difference is that NewCoolStreamimdy aeactively changes a
parent when a sub-stream is identified as being slow, wheyealenTv proactively
changes parents to improve system performance.

3 Gradient overlay

The Gradient overlay is a class of P2P overlays that arrandesusing a local utility
function at each node, such that nodes are ordered in desgemility values away
from a core of the highest utility nodes [16, 17]. As can bensad-igure 1, the highest
utility nodes (darkest colour) are found at the core of thadimt, and nodes with
decreasing utility values (lighter grays) are found atéasing distance from the centre.
The Gradient maintains two sets of neighbours using gessgdgorithms: aimilar-
viewand arandom-view The similar-view of a node is a partial view of the nodes whos
utility values are close to, but slightly higher than, thiéitytvalue of this node. Nodes
periodically gossip with each other and exchange theirlaimviews. Upon receiving
a similar-view, a node updates its own similar-view by reig its entries with those
nodes that have closer (but higher) utility value to its owitity value. In contrast, the
random-view constitutes a random sample of nodes in themsystnd it is used both to
discover new nodes for the similar-view and to prevent panting of the similar-view.



Fig. 1. Gradient overlay network

4 GradienTv system

In gradienTv, the media source splits the media into a nurobstripesand divides
each stripe into a sequenceldbcks GradienTv constructs a media streaming overlay
tree for each stripe, where blocks are pushed from parerdkilidren. Newly joined
nodes discover stripe providers using the Gradient overaycompete with each other
to establish a parent-child relationship with providersndde proactively changes its
parent for a stripe, if it finds a lower depth parent for thapstand if that parent either
has a freaipload slotor prefers this node to one of its existing children.

We use the terntdlownload slotto define a network connection at a node used to
download a stripe. Likewise, an upload slot refers to a ngtwonnection at a node
that is used to forward a stripe. If nogeassigns its upload slot to nodé& download
slot, we sayp is theparentof ¢ andq is thechild of p.

Our market model uses the following three properties, ¢aled at each node, to
match nodes that can forward a stripe with nodes that warawmbbad that stripe:

1. Currency the total number of upload slots at a node, that is, the nuwitsripes a
node is willing and able to forward simultaneously. A nodeauis currency when
requesting to connect to another node’s upload slot.

2. Connection costthe minimum currency that should be provided for estabiigh
a connection to receive a stripe. The connection cost to a tiat has an unused
upload slot is zero, otherwise the node’s connection castledhe lowest currency
of its already connected children. For example, if npdas three upload slots and
three children with currencies 2, 3 and 4, the connectiohafgsis 2.

3. Depth the shortest path (number of hops) from a node to the roca feairticular
stripe. Since the media stream consists of several stmpeles may have different
depths in different trees. The lower the depth a node has &iripe, the more
desirable a parent it is for that stripe. Nodes constanyiytdrreduce their depth
over all their stripes by competing with other nodes for @stions to lower depth
nodes.

4.1 Gradient overlay construction

Each node maintains two sets of neighbouring nodes: a ravilmnand a similar-
view. Cyclon [21] is used to create and update the randonv-aied a modified version



Fig. 2. Different market-levels of a system, the similar-view oflep and its fingers

of the Gradient protocol is used to build and update the amvilew. The node refer-
ences stored in each view contain thitdity value for the nodes. The utility value of a
node is calculated using two factors: a node’s upload baditivand a disjoint set of
discrete utility values that we catharket-levelsA market-level is defined as a range of
network upload bandwidths that have the same utility vafioe.example, in figure 2,
we define some example market-levels: mobile broadband 284K bps) with utility
value 1, slow DSL (128-51Kbps) with utility value 2, DSL (512-1023 bps) with
utility value 3, Fibre 1024 Kbps) with utility value 4, and the media source with
utility value 5. A node measures its upload bandwidth (auging a server or trusted
neighbour) and calculates its utility value as the markeeél that its upload bandwidth
falls into. For instance, a node with 236bps upload bandwidth falls into slow DSL
market-level, so its utility value is 2.

A node prefers to fill its similar-view with the nodes from tekame market-level
or one level higher. A feature of this preference functiothist low-bandwidth nodes
only have connections to one another. However, low bandwidides often do not
have enough upload bandwidth to simultaneously delivestafies in a stream. There-
fore, in order to enable low bandwidth nodes to utilize tharsslots of higher band-
width nodes, nodes maintairfiager list where eaclingerpoints to a node in a higher
market-level (if one is available). In Figure 2, each ringressents a market-level, the
black links show the links within the similar-view and theagtinks are the fingers to
nodes in higher market-levels.

Nodes bootstrap their similar-view using a bootstrap searal, initially, the similar-
view of a node is filled with random nodes that have equal ohdrgutility value.
Algorithm 1 is executed periodically by the noggo maintain its similar-view. The
algorithm describes how on every roundincrements the age of all the nodes in its
similar-view. It removes the oldest nodg,from its similar-view and sends a subset of
nodes in its similar-view tq@ (lines 3-6). Nodey responds by sending back a subset of



Algorithm 1 Updating the similar-view

1: procedure UpdateSimilarView (this)

this.similarView.update Age()
q < oldest node fronthis.similarView
this.similarView.remove(q)

pView « this.similarView.subset() > a random subset frop's similarView
SendpView to ¢
RecvgView from g > qView is a subset of's stmilarView

for all node; in gView do
if Up(node;) = U(p) OR Up(node;) = U(p) + 1 then
if this.similarView.contains(node;) then
this.similarView.update Age(node;)
else ifthis.similarView has free entriethen
this.simialrView.add(node;)
else
node; «— pView.poll() > get and remove one entry fropl iew
this.similarView.remove(node;)
this.simialrView.add(node;)
end if
end if
end for
for all node, in this.randomView do
if Up(node,) = U(p) OR Up(nodeq,) = U(p) + 1 then
if this.similarView has free entriethen
this.simialrView.add(nodeg)
else
nodey, «— (z € this.similarView suchthaty,(z) > U(p) + 1)
if (nodep # null) then
this.similarView.remove(nodey)
this.simialrView.add(nodeg)
end if
end if
end if
end for

34: end procedure

Algorithm 2 Parent assignment

1: procedure assignParent)

for all stripe; in stripes do
candidates «— findParent{)
if candidates # null then
newParent « arandom node fromandidates
send(ASSIGNREQUEST| ) to new Parent
end if
end for

end procedure

Algorithm 3 Select candidate parent from the similar-view and the fimger

1: procedure findParent (i)

candidates — O

if this.stripe;.parnet =null then
this.stripe;.parnet.depth «— oo

end if

for all node; in (similarView | fingers) do
if node;.stripe;.depth < this.stripe;.parent.depth
AND node;.connectionCost < this.currency then

candidates.addode )

end if

end for

return candidates

13: end procedure




its own similar-view tgp. Nodep then merges the view received frgmwvith its existing
similar-view by iterating through the received list of ngdand preferentially selecting
those nodes in the same market-levep as at most one level higher. If the similar-view
is not full, it adds the node, and if a reference to the nodestmbrged already exists
in p’'s similar-view, p just refreshes the age of its reference. If the similar-viefull,

p replaces one of the nodes it had senj teith the selected node (lines 8-20). What is
more,p also merges its similar-view with its own local random-vjémwthe same way
described above. Upon merging, when the similar-view is fuleplaces a node whose
utility value is more tham’s utility value plus one (lines 21-33).

The fingers to higher market-levels are also updated peatigdi Nodep goes
through its random-view, and for each higher market-lepatks a node from that
market-level if there exists such a node in the random-viéthere is not,p keeps
the old finger.

4.2 Streaming tree overlay construction

Algorithm 2 is called periodically by nodes to build and ntain a streaming overlay
tree for each stripe. For each strijea nodep checks if it has a node in its similar-
view or finger list that has (i) a lower depth than its curresatgmt, and (ii) a connection
cost less thap’s currency. If such a node is found, it is a added to a list ofdidate
parents for stripe (Algorithm 3). Next, we use a random policy to select a nodenfr
the candidate parents, as it fairly balances connectiamestg over nodes in the system.
In contrast, if we select the candidate parent with the mimmdepth, then for even low
variance in currency of nodes, it causes excessive commejuests to those nodes
with high upload bandwidth.

Algorithm 4 Handling the assign request
1: upon event(AssIGNREQUEST| 4) from p

2: if has freeuploadSiot then
3: assign aruploadSlot to p
4. send (ASSIGNACCEPTED]| i) to p
5: else
6: worstChild < lowest currency child
7. if worstChild.currency > p.currency then
8: send(ASSIGNNOTACCEPTED]| i) to p
9: else
10: assign aruploadSlot to p
11: send(RELEASE| i) to worstChild
12: send(ASSIGNACCEPTED| i) to p
13: end if
14:  endif

15: end event

Algorithm 4 is called whenever a receiver nagesceives a connection request from
nodep. If ¢ has a free upload slot, it accepts the request, otherwige durrency is
greater than the connection cost@fq abandons one of its children with the lowest
currency and accepgsas a new child. In this case, the abandoned node has to find a
new parent. Ify’s connection cost is greater thals currency,g declines the request.
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5 Experiments and evaluation

In this section, we compare the performance of gradienTh iWegwCoolstreaming un-
der simulation. In summary, we define three different experit scenarios: join-only,
flash-crowds, and catastrophic failure, and, we show treatignTv outperforms New-
Coolstreaming in all of these scenarios for the followingmgs: playback continuity,
bandwidth utilization, playback latency, and path lendth.

Experiment setup

We have implemented both gradienTV and NewCoolstreamiimguke Kompics plat-
form [1]. Kompics provides a framework for building P2P mrotls, and simulation
support using a discrete event simulator. Our implemeoriaif NewCoolstreaming is
based on the system description in [7,23]. We have validatedmplementation of
NewCoolstreaming by replicating, in simulation, the résédom [7].

In our experimental setup, we set the streaming rate to/blj2 and unless stated
otherwise, experiments involve 1000 nodes. The streamitdrgp 4 stripes and each
stripe is divided into a sequence of 1883 blocks. The media source is a single node
with 40 upload slots. Nodes start playing the media aftefelinfy it for 30 seconds.
This is comparable with the most widely deployed P2P liveastring system, Sop-
Cast's that has average startup time of 30-45 seconds [8]sife of a hode’s partial
view (the similar-view in gradienTv, the partner list in N€aolstreaming) is 15 nodes.

The number of upload slots for the non-root nodes is pickedamly from 1 to 10,
which corresponds to upload bandwidths from ¥2&s to 1.25M bps. As the average
upload bandwidth of 70& bps is not much higher than the streaming rate of Klis,
nodes have to find good matches as parents in order for gcemhsitrg performance.
We assume all the nodes have enough download bandwidth éiveeall the stripes
simultaneously. In gradienTv, we define 11 market-levealshghat the nodes with the
the same number of upload slots are located at the same ntewkétFor example,
nodes with one upload slot (128bps) are the members of the first market-level, nodes
with two upload slots (256 bps) are located in the second market-level, and the media
source with 40 upload slots-6 M bps) is the only member of the 11th market-level.

Latencies between nodes are modelled using a latency mag baghe King data-
set [5]. In the experiments, we measure the following metric

1. Playback continuitythe percentage of blocks that a node received before tlagir p
back time. In our experiments to measure playback qualiéycaunt the number
of nodes that have a playback continuity of greater than 90%;

2. Bandwidth utilization the ratio of the total number of utilized upload slots to the
total number of requested download slots;

3. Playback latencythe difference in seconds between the playback point ofde no
and the playback point at the media source;

4. Path length the minimum distance in number of hops between the medieceou
and a node for a stripe.

We compare our system with NewCoolstreaming using theviafig scenarios:

! The source code and the results are available at: http://www.sicsusér/gradientv
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Fig. 3. Playback continuity in percent (Y-axis), against time in@®ds (X-axis).

1. Join-only. 1000 nodes join the system following a Poisson distributigth an
average inter-arrival time of 100 milliseconds;

2. Flash crowd first, 100 nodes join the system following a Poisson distidn with
an average inter-arrival time of 100 milliseconds. Ther@Q.Aodes join following
the same distribution with a shortened average interatiime of 10 milliseconds;

3. Catastrophic failure as in the join-only scenario, 1000 nodes join the system fol
lowing a Poisson distribution with an average inter-atrivae of 100 milliseconds.
Then, 400 existing nodes fail following a Poisson distribatvith an average inter-
arrival time 10 milliseconds. The system then continuespiration with only 600
nodes.

In addition to these scenarios, we also evaluate the balraeigradienTv when vary-
ing two key parameters: (i) the playback buffering time andlfe number of nodes.

Playback Continuity

In this section, we compare the playback continuity of geadiiv and NewCoolstream-
ing in three different scenarios: join-only, flash crowd aathstrophic failure. In figures
3(a) and 3(b), the X-axis shows the time in seconds, whil&'thris shows the percent-
age of the nodes in the overlay that have a playback congimate thard0%. We can
see that gradienTv significantly outperforms NewCoolstiag for the whole duration
of the experiment in all scenarios. Moreover, after theesysstabilizes, we observe a
full playback continuity in gradienTv. This out-perforn@mnis due to the faster con-
vergence of the streaming overlay trees in gradienTv, whigie-capacity nodes can
quickly discover and connect to the source using the simikw, while in NewCool-
streaming nodes take longer to find parents as they searcpdating their random
view through gossiping. Another reason for out-perforneaiscthe difference in poli-
cies used by a child to pull the first block from a new parengdadienTv, whenever
a nodep selects a new parent p informs ¢ of the last block it has in its buffer, and
sends subsequent blocksgtowhile in NewCoolstreaming, the requested block is de-
termined by looking at the head of the partners. This caugggddolstreaming to miss
blocks when switching parent.
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Bandwidth Utilization

Our second experiment compares the bandwidth utilizatfaradienTv (figure 4(a))
and NewCoolstreaming (figure 4(b)). We observe that whersyiseem has no churn,
as in the join-only scenario, both systems equally utilitesl bandwidth. In the flash
crowd and catastrophic failure scenarios, the performafdhe both systems drops
significantly. However, gradienTv recovers faster, as s@e able to find parents more
quickly using the Gradient overlay.
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(a) gradienTv. (b) NewCoolstreaming.

Fig. 4. Bandwidth utilization in percent (Y-axis), against timesieconds (X-axis).

Path Length

In the third experiment, we compare the average path lerfgtbth streaming overlays.
Before looking at the experiment results, we calculate tiramum depth of ak-ary

tree withn nodes usindogy (n). In our experiments, there are on average 5 upload slots
per node (as upload slots are uniformly distributed from 1@y and the minimum
depth of the trees is expected tolbbe; (1000) ~ 4.29. Figures 5(a) and 5(b) show tree
depth of the system for gradienTv and NewCoolstreaming. B¢eve that gradienTv
constructs trees with an average height of 4.3, which is etoge to the minimum
height. The figures also show that the depth of the trees dligmav are half the depth

of the trees in NewCoolstreaming. Shorter trees enablerlplagback latency.

What is more, we observe that the average depth of the treeddpéndent of the
inter-arrival time of the joining nodes. This can be seengnriés 5(a) and 5(b), where
the depth of the trees, after the system stabilizes, is the silore interestingly, in the
catastrophic failure scenario, we can see a sharp drop irCelstreaming tree depth,
as a result of the drop in the number of nodes remaining inythiees and the fact that
many remaining nodes do not have any path to the media sotheesame behaviour
is observed in gradienTv, but since the nodes can find apateprodes to connect to
more quickly, the fluctuation in the average depth of tredgss than in NewCool-
streaming.

Playback Latency
This experiment shows how the average playback latency @ésichanges over time
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Fig. 5. Average path length in number of hops (Y-axis), against tmseconds (X-axis).

in our three scenarios (figures 6(a) and 6(b)). In the joily-enenario, we can see that
200 seconds after starting the simulation, the playbaéntin gradienTv converges
to just over 30 seconds, close to the initial buffering tireet at 30 seconds. For the
join-only scenario, gradienTv exhibits lower average pkgk latency than NewCool-
streaming. This is because its streaming trees have lovph dand, therefore, nodes
receive blocks earlier than in NewCoolstreaming. Thisse éhe case for the two other
experiment scenarios, flash crowd and catastrophic falleee, we can see an increase
in the average playback latency for both systems. This igatiee increased demand
for parents by new nodes and nodes with failed parents. Wieladdes are competing
for parents, they may fail to receive the media blocks in tforeplayback. Therefore,
they have to pause until a parent is found and the streamimgisned. This results in
higher playback latency. Nevertheless, when both systéahdize, nodes will ignore
the missing blocks and fast forward to the play from the blwbkre the streaming from
the new parent is resumed. Hence, the playback latencymjitave after the system
has settled down.
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Fig. 6. Average playback latency in seconds (Y-axis), against timseconds (X-axis).
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There is a significant difference between the behaviouradignTv and NewCool-
streaming upon an increase in the playback latency. In gnddi if playback latency
exceeds the initial buffering time and enough blocks ardahla in the buffer, nodes
are given a choice to fast forward the stream and decreagdayizack latency. In con-
trast, NewCoolstreaming jumps ahead in playback by switgparent(s) causing it to
miss blocks, thus it negatively affects playback contiuit

Buffering Time

We now evaluate the behaviour of gradienTv for differentiahiplayback buffering
times. We compare four different settings: 0, 10, 20 and 80rss of initial buffering
time. Two metrics that are affected by changing the initigffdring time are playback
continuity and playback latency. Figure 7(a) shows thatmthere is no initial buffer-
ing, the playback continuity drops to under 20% after 50 sdsmf playback, but as
the system stabilizes the playback continuity increaseffeBng 10 seconds of blocks
in advance results in less playback interruptions when siglange their parents, but
better playback continuity is achieved for 20 and 30 secarfidsiffering. Figure 7(b)
shows how playback latency increases when the buffering tinincreased. Thus, the
initial buffering time is a parameter that trades off befilryback continuity against
worse playback latency.

Number of Nodes

In this experiment, we evaluate the performance of the sydtr different system
sizes. We simulate systems with 128, 256, 512, 1024, 20484886 nodes, where
nodes join the system following a Poisson distribution wath average inter-arrival
time of 100 milliseconds. In figure 8(a), we show the bandwidtilization after all
the nodes have joined (for the different system sizes). Vilaalé as the time when
all nodes have joined for a particular size. This means thiathfe system with 128
nodes,d is 13 seconds, while for the system with 4096 nodés 410 seconds. This
experiment shows that, regardless of system size, nodesssfally utilize the upload
slots at other nodes. This implies that convergence in ta&fhmsatching upload slots
to download slots, appears to be independent of the numberdsfs in the system. A
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necessary condition, of course, is that there is enoughai@iupload and download
bandwidth to deliver the stream to all nodes.
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(a) Bandwidth utilization againsttime.  (b) Path Iengtmﬁ(ZQainst time.
Fig. 8. Bandwidth utilization and path length for varying numbefsodes

In the second experiment, we measure the tree depth whifgngasystem sizes.
We can see in figure 8(b) that the depth of the trees are vesg dtmthe theoretical
minimum depth in each scenario. For example, the averagh déthe trees with 1024
nodes is 4.34, which is very closelays (1024) ~ 4.30.

6 Conclusions

In this paper, we presented gradienTv, a P2P live streanyisigrs that uses both the
Gradient overlay and a market-based approach to build pheilstreaming trees. The
constructed streaming trees had the property that the hayhede’s upload capacity,
the closer that node is to the root of the tree. We showed hewGitadient overlay
helped nodes efficiently find good neighbours for buildingsta streaming trees. Our
simulations showed that, compared to NewCoolstreamiraglignTv has higher play-
back continuity, builds lower-depth streaming trees, hetseb bandwidth utilization
performance, and lower playback latency.
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