
Service Discovery in Ubiquitous Feedback
Control Loops

Daniel Romero, Romain Rouvoy, Lionel Seinturier, and Pierre Carton

INRIA Lille-Nord Europe, ADAM Project-team
University of Lille 1, LIFL CNRS UMR 8022

59650 Villeneuve d’Ascq, France
firstname.lastname@inria.fr

Abstract. Nowadays, context-aware applications can discovery and in-
teract with services in ubiquitous environments in order to customize
their behavior. In general, these providers use diverse discovery and in-
teraction protocols. Furthermore, they can join and leave the environ-
ment at anytime, making difficult the utilization of services. Therefore,
this mobility and variability in terms of protocols impose a low coupling
between the interacting entities and the need for spontaneous communi-
cations. Unfortunately, the existing works in literature fail to deal with
these needs in a simple and flexible way. In this paper we face this prob-
lem by defining ubiquitous bindings for SCA (Service Component Archi-
tecture) applications. These bindings modularize the discovery concerns
promoting sharing of common discovery functionalities and simplifying
the integration of discovery protocols. In this way, these bindings enable
the transparent advertisement, discovery, filter, and access of services
available in the environment. Our ubiquitous bindings are integrated into
the FraSCAti platform and their benefits are demonstrated by building
ubiquitous feedback control loops.

1 Introduction

In ubiquitous environments, different computational entities (mobile devices,
laptops, sensors, etc.), both providing and consuming services, arrive and leave
routinely [1]. The different applications executing in these environments exploit
this richness to adapt and improve their behavior. However, in ubiquitous envi-
ronments, because there is no standard discovery protocol, the service providers
are used to select the most suitable according to their capabilities. This results in
a collection of advertised services using heterogeneous discovery and interaction
protocols, and characterized by their dynamism, that cannot always be discov-
ered and accessed by clients. Therefore, spontaneous communications become
an important issue to deal with dynamicity and unpredictability of ubiquitous
environments [1]. Unfortunately, the works in the literature to deal with this
issue tend to be complex, not flexible enough or do not consider the needs of
consumers in terms of interaction mechanism [2,3,4].

In this paper, we extend the SCA (Service Component Architecture)
model [5] with the notion of ubiquitous bindings in order to support service

2 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

discovery in ubiquitous environments. These bindings enable applications to
discover and filter SCA services available in the environment, which are then
accessed using the supported SCA bindings. We claim that SCA extensibility
and independence from communication and implementation technologies allow
the transparent management of service discovery. Furthermore, by encapsulat-
ing spontaneous communications in SCA bindings, we provide the flexibility re-
quired for choosing the most suitable discovery and communication mechanism
between consumers and providers. We illustrate the utilization of our bindings by
designing ubiquitous feedback control loops (FCLs) [6]. This kind of FCLs allows
us to deal with runtime adaption of context-aware applications supporting the
mobility of the participating entities. The ubiquitous bindings are implemented
as SCA components for promoting reuse and integration into the FraSCAti
platform [7].

The rest of this paper is organized as follows. We start by introducing the
motivations for discovery and adaptation in the landscape of context-aware appli-
cations (cf. section 2). We continue with the foundation of our proposal (cf. sec-
tion 3) before introducing our ubiquitous FCLs (cf. section 4). Then, we present
our lightweight solution for supporting discovery in SCA applications (cf. sec-
tion 5) and the evaluation of our implementation (cf. section 6). In section 7,
we compare our approach with existing solutions for service discovery in ubiqui-
tous environments. Finally, we summarize the conclusions of this work and the
promising research directions in section 8.

2 Motivations and Challenges

This section highlights the challenges for context-aware applications in ubiqui-
tous environments. We start by describing a motivating scenario (cf. section 2.1)
before introducing the challenges it exhibits (cf. section 2.2).

2.1 Motivating Scenario

A smart home generally refers to a house environment equipped with various
types of sensor nodes, which collect information about the current temperature,
occupancy (movement detection), noise level, and light states. In addition to
that, actuators are also deployed within rooms to physically control appliances,
such as lights, air conditioning, blinds, television, and stereo. In this environ-
ment, both sensors and actuators can be accessed from mobile devices owned by
the family. Furthermore, the control system deployed in such a smart home is
able to retrieve preferences about room configuration from mobile devices and
change the room state according to them. For example, preferences can describe
the temperature and light levels accepted by each family member. When sev-
eral people share the same room, the decision is based on merged preferences.
In case of conflict, the decision prioritizes the first person that enters the room.
The mobile devices also have an application that enables users to control the ap-
pliances in home. This application has several modules (one for each appliance)

Service Discovery in Ubiquitous Feedback Control Loops 3

that are activated or deactivated according to the current battery level, the bat-
tery saving preference and activation of modules preference (this information is
also provided by the mobile device). The modules also are installed/uninstalled
regarding the changes in the appliance configurations. The following paragraphs
describe two concrete situations of the scenario.

Alice listens to music in the living room. The temperature conforms to her
preferences. When Bob enters the living room, the controller detects his device
and retrieves the preferences (related to the room configuration as well as for
the application allowing the access to appliances). Let assume that there is no
conflict with the temperature level. However, the light level is too low for Bob’s
tolerance. The light range specified by Alice includes the level accepted by Bob.
Hence, the system decides to modify the light level of the room according to
Bob’s preferences. On the other hand, the system analyses battery level and
decides that it must deactivate the multimedia module allowing downloads from
a multimedia server available at home.

In another situation, Alice installs a new TV. The system detects the new
device and retrieves the required module to control it. When Bob arrives home,
the system detects his device and installs the module as well.

2.2 Key Challenges

According to our scenario, we can identify three key challenges for context-
aware applications in ubiquitous environments: i) heterogeneity, ii) mobility and
iii) runtime adaptation. The first one refers to the variability in terms of devices
(that differ in their processing capabilities), services (implemented with several
technologies) and context information (that has different syntax and semantic)
present in the environment. This requires a flexible solution in terms of com-
munication (e.g., protocols and data representation) that allows applications to
access the context and services. The mobility is concerned with the dynamicity
of services and context providers, which can spontaneously join and leave (e.g.,
mobile devices in the scenario). Hence, the applications should keep working
even if some providers are gone as well as they should have the possibility to
discover new services. Finally, the adaptation of context-aware applications re-
quires the retrieval and processing of the context information for deciding the
needed reconfigurations. In this adaptation should be considered the variable
capabilities of the different devices that execute the context-aware applications.

As presented in this paper, we face the mobility and heterogeneity issues using
our RESTful (cf. section 3.3) and ubiquitous bindings (cf. section 5). We also
provide some highlights for dealing with the adaptation at runtime by defining
ubiquitous feedback control loops (cf. section 4).

3 Background

In this section, we present the foundation of our proposal—i.e., the feedback
control loops (cf. section 3.1) and SCA (cf. section 3.2). We also introduce the

4 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

FraSCAti platform (cf. section 3.2) and RESTful bindings (cf. section 3.3),
which we use for implementing ubiquitous FCLs.

3.1 Feedback Control Loops for Autonomic Computing

The Autonomic computing enables the development of applications that ex-
hibit properties such as self-configuration, self-optimization, self-healing and
self-optimization [6,8]. These properties are generally achieved by means of the
MAPE-K model, which is composed by the followings phases: i) Monitoring
phase to collect, aggregate, and filter events from a managed resource, ii) Anal-
ysis phase that consist in the processing of the information recollected in the
previous step, iii) Planning phase that defines the actions needed to achieve
goals and objectives determined in the analysis, and iv) Execution phase for
executing the plan determined in the previous step and using the adaptability
capabilities of the system. All the different phases share the Knowledge base that
includes historical logs, configuration information, metrics and policies.

3.2 The Service Component Architecture (SCA)

The Service Component Architecture [5] is a set of specifications for building dis-
tributed application based on SOA and Component-Based Software Engineering
(CBSE) principles. In SCA, the basic construction blocks are the software com-
ponents, which have services (or provided interfaces), references (or required
interfaces) and expose properties. The references and services are connected by
means of wires. SCA specifies a hierarchical component model. This means that
components can be implemented either by primitive language entities or by sub-
components. In the latter case the components are called composites.

SCA is designed to be independent from programming languages, Interface
Definition Languages (IDLs), communication protocols and non-functional prop-
erties. In this way an SCA-based application can be built, for example, using
components in Java, PHP and COBOL. Furthermore, several IDLs are sup-
ported, such as WSDL and Java Interfaces. In order to support interaction via
different communication protocols, SCA provides the notion of binding. For SCA
references, bindings describe the access mechanism used to call a service. In the
case of services, the bindings describe the access mechanism that clients have to
use to invoke the service. Finally, an SCA component may be associated with pol-
icy sets or intents that declare the set of non-functional services that it depends
upon. The SCA specification includes security and transactions policies [9], but
the model may be extended with new ones if required.

The FraSCAti Platform. This platform [7] allows the development and execu-
tion of SCA based distributed applications. The platform itself is built as an SCA
application, i.e., its different subsystems are implemented as SCA components.
FraSCAti extends the SCA component model to add reflective capabilities in

Service Discovery in Ubiquitous Feedback Control Loops 5

the application level as well as in the platform. Furthermore, the platform ap-
plies interception techniques for extending SCA components with non-functional
services, such as confidentiality, integrity and authentication.

3.3 REpresentational State Transfer (REST)

REST [10] is an architectural style to define distributed applications. Typically,
REST defines the principles for encoding (content types), addressing (nouns) and
accessing (verbs) resources using Internet standards (e.g., URIs, HTTP, XML
and mime-types). Resources, which are key to REST, are addressable using a uni-
versal syntax (e.g., a URL in HTTP) and share a uniform interface for the trans-
fer of application states between client and server (e.g., GET/POST/PUT/DELETE
in HTTP). REST resources may typically exhibit multiple typed representations
using—for example—XML, JSON, YAML, or plain text documents. Therefore,
the simplicity, lightness, reusability, extensibility and flexibility properties that
characterized REST make it a suitable option for exchanging context informa-
tion in ubiquitous environments.

RESTful Bindings The REST bindings [11] follow the REpresentational State
Transfer Principles. In this way, these bindings support multiple context repre-
sentations (e.g., XML, JSON and Java Object Serialization) and communication
protocols (HTTP, XMPP, FTP, etc.). This flexibility allows us to deal with the
heterogeneous context managers and context-aware applications as well as with
the different capabilities of the devices that execute them. Details about the
architecture of these bindings are presented in [11].

Synthesis : SCA provides a flexible and extensible component model that can be
used in ubiquitous environments to deal with heterogeneity and mobility. In par-
ticular, as we present in section 5, we benefit from the protocol independence for
defining ubiquitous bindings that enable spontaneous communications. Further-
more, the FraSCAti capabilities in terms of runtime adaptation for applications
and the platform itself make it a good option for dealing with autonomic FCL
in ubiquitous environments.

4 Ubiquitous Feedback Control Loops

In order to face the adaptation challenge in ubiquitous environments, we propose
the architecture presented in Figure 1 to implement our ubiquitous FCLs [11]. We
choose FCLs to support dynamic reconfigurations because they provide a clear
isolation of the different steps of the adaptation process. This feature allows us to
distribute the concerns in several entities and reduce the coupling between them.
We give the ”ubiquitous” adjective to these FCLs because they have the capacity
to configure themselves at execution time. This means that some parts of the
loop can dynamically join and leave, such as the applications running on mobile

6 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

devices in our smart home scenario. Furthermore, the low coupling between the
FCL parts promotes their integration at runtime with others ubiquitous FCLs.

In our FCL (cf. Figure 1), the Controller encapsulates the functionalities re-
quired for monitoring, analyzing and planning. This means that the Controller
detects the presence of new services, collects the information from the mobile
devices (that join and leave the environment), processes the retrieved informa-
tion and decides the required reconfigurations of the context-aware applications.
These applications can be either deployed on the mobile devices or be one of the
available services in the environment (e.g., Multimedia Server). Consequently,
the Controller requires to dynamically locate the service that operates reconfig-
urations of the context-aware applications. In particular, the mobile device and
Multimedia Server enclose the execution part of our FCL. Moreover, the mo-
bile device also hosts monitoring responsibilities since it notifies the Controller
when changes in the provided context information occur (e.g., the battery level
decreases or increases). Thus, the mobility of the different elements (mobile de-
vices and services) in the FLC makes necessary the definition of ubiquitous FCL.
The next section introduces the required bindings in SCA in order to deal with
this mobility.

Multimedia
Server

Server Runtime

SCA Platform
(FraSCAti)

Context
Policy

Multimedia Provider

Reconguration
Engine (FScript)

Module
Store

UPnP TV
UB

Mobile
Device

Mobile Runtime

SCA Platform
(FraSCAme)

Context
Policy

Client-side
Application

Reconguration
Engine (FScript)

View Controller

SCA wire (local)

SCA wire (remote)

SCA service

SCA reference
A

SCA component

B
SCA compositeThird-party provider

Controller

Adaptation Runtime

Home Control System

Context
Processing

SCA Platform
(FraSCAti)

Reconguration
Engine

(FScript)

Adaptation
Triggering

Rule Engine
Reconguration

Executor
RPC (SOAP)

Multimedia
Module

TV Control
Module

...
Legend:

UB

UB

UB

UB Ubiquitous Binding

UB

Fig. 1. Ubiquitous Feedback Control Loop for the smart home scenario.

5 Discovery of Ubiquitous Services

As already mentioned, one of the challenges for context-aware applications is the
mobility. In this paper, we tackle this issue by defining a new type of binding for
the SCA component model: ubiquitous bindings. These bindings provide a simple
and lightweight mechanism for communications and promote a low coupling
between the interacting entities. Furthermore, following the SCA principles, the

Service Discovery in Ubiquitous Feedback Control Loops 7

ubiquitous bindings enable the management of the SCA service discovery in
a transparent way. These advantages make the ubiquitous bindings a suitable
solution to deal with dynamicity in our ubiquitous FCL. In the rest of this section
we present the design (cf. section 5.1) and implementation (cf. section 5.2) of
ubiquitous bindings enabling the discovery of SCA services.

5.1 Ubiquitous Bindings

In ubiquitous environments, services constantly join and leave. For this reason,
we need to provide our SCA-based FCLs with the functionality required to deal
with this dynamicity. In order to introduce spontaneous interoperable commu-
nications [1,12] in SCA, we define the concept of ubiquitous binding. This new
type of binding integrates state-of-the-art Service Discovery Protocols (SDPs)
and enable the establishment of communication wires at runtime. To do that,
we consider three design aspects of the SDPs [12]: i) provider invocation, ii)
description and attribute definition, and iii) provider selection. Regarding the
invocation, some SDPs (e.g., UPnP [13]) define the communication mechanism.
However, this mechanism is not always the most suitable. Therefore, an ubiqui-
tous binding advertises a service provided by the SCA component as being ac-
cessible via the different SCA bindings associated with it. On the other hand, we
are interested in the service description and provider selection because we need
to choose the service provider according to the costumer requirements. Hence,
we benefit from the discovery protocol flexibility to define properties associated
with the QoS (Quality of Service) or QoC (Quality of Context) attributes (in
the case of context-aware applications) [14] in the service advertisements. For
defining the filters allowing provider matching, we use LDAP filters [15].

Figure 2 depicts the definition of the ubiquitous bindings for services (left
side) and references (right side). The Discovery Protocol is the name of the dis-
covery protocol associated to the binding. The definition of an ubiquitous binding
has the filter attribute in the client-side. This attribute specifies an LDAP filter
that expresses restrictions of the required service in terms of its properties. In
the server-side, the ubiquitous binding can have properties that provide addi-
tional information about the service, such as QoC attributes. Each property is
described by the property element. By defining the ubiquitous bindings in this
way, we can support the discovery of SCA context services via different discovery
protocols and then access the services using the most suitable communication
protocol according to the application needs. The lower part of Figure 2 shows
examples of an ubiquitous binding with the SLP [16] protocol. The precision and
probabilityOfCorrection are QoC attributes [17] that describe the context pro-
vided by the service. These attributes and the contextType properties are used
in the definition of the LDAP filter in the reference. The bindings in the service
side correspond to the different communication that can be used to access the
context information.

8 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

<binding.Discovery_Protocol>
 <property name="..." value="...">
 ...
</binding.Discovery_Protocol>

<binding.Discovery_Protocol filter="..."/>

<reference name="battery-level">
 <interface.java interface="cosmos.core.Pull">
 <binding.rest .../>
 ...
 <binding.slp filter="(&(probabilityOfCorrection=high)
 (reputation=medium)
 (contextType=batteryLevel)
 (protocol=rest))"/>
 ...
</reference>

<service name="battery-level">
 <interface.java interface="cosmos.core.Pull">
 <binding.rmi .../>
 <binding.rest .../>
 ...
 <binding.slp>
 <property name="probabilityOfCorrection"
 value="medium"/>
 <property name="reputation" value="medium"/>
 <property name="contextType" value="batteryLevel"/>
 </binding.slp>
 ...
</service>

Service (server-side) Reference (client-side)

Fig. 2. SCA definition of the ubiquitous bindings.

5.2 Implementation of the Ubiquitous Bindings in the FraSCAti
platform

We have integrated our ubiquitous bindings into the FraSCAti [7] platform.
The FraSCAti selection is motived by two main reasons: i) the reflective ca-
pabilities that it introduces in the SCA programming model to allow dynamic
introspection and reconfiguration of SCA based context consumers and produc-
ers, and ii) we can run the light version of platform (FraSCAme) on the mobile
devices with limited capabilities [11].

Figure 3 depicts the integration of our ubiquitous bindings into FraSCAti.
As it can be seen, an ubiquitous binding is composed of the Discoverer and
Advertiser components. The Discoverer plays the role of a stub in a traditional
FraSCAti binding [18]. In other words, a reference of the client component
is connected to the Discoverer and is responsible for providing access to the
remote SCA services. In addition to that, the Discoverer enables SCA components
to search the required services at runtime. When the service is detected and
selected, the Discoverer component provides access to it. At the server side,
the Advertiser (or the skeleton in the FraSCAti terminology) publishes the
services whose bindings are declared as ubiquitous. Both of them, the Discoverer
and the Advertiser, are associated with a specific discovery protocol (e.g., UPnP
or SLP). The proposed architecture for these components modularizes different
concerns of service discovery (i.e., search, selection, and provider monitoring)
and introduces some optional optimizations (in the Discoverer case). In this way
we foster the reuse of the different components (in particular for the selection
of providers), the flexibility to use different implementations and choose the
required components (not all the components are mandatory). In the following
sections, we present the detailed architecture of the Discoverer and Advertiser
components.

Discoverer Component. This component is associated with a specific SCA
reference. In order to reduce the memory footprint, we externalize the compo-

Service Discovery in Ubiquitous Feedback Control Loops 9

Adaptation
Runtime

Context
Processing

<<Stub>>
Discoverer

Advertisements/ Search Responses

Mobile
Runtime

Search Requests

Communication
Channel

Context
Policy

<<Skeleton>>
 Advertiser

<<Skeleton>>
REST

Legend:

ServiceReference

Composite
Wire

Component

Active Stub

Provider Selector

Stubs Registry

Fig. 3. Integration of ubiquitous bindings into FraSCAti.

nents providing common functionality to different discoverers. In particular, dif-
ferent implementations of the discoverer can share the components for provider
selection, the active stubs (that encapsulate the communication with the remote
service) and the stub registry (that keeps a list of the stubs already instantiated).
The Discoverer Component (left side in Figure 4) has a Discoverer Orchestrator
that coordinates the discovery of the requested SCA service. The Finder com-
ponent sends the requests to detect the potential providers in the environment.
If the filters with attributes are supported (e.g., SLP), the Finder translates the
LDAP filters to the protocol scheme. If the SDP does not support automatic ser-
vice selection and it is needed (e.g., UPnP), the Finder uses a provider selector
for choosing the service. When the provider is selected, the Discovery Orchestra-
tor disables the Finder and uses the Provider Monitor for monitoring the service
availability. When the service is invoked the first time, the Discovery Orchestrator
verifies in the stubs registry if there is a stub for the service provider. When this
happens, the Discovery Orchestrator selects the registered stub as Active Stub.
Otherwise, the Orchestrator uses the FraSCAti binding factory [11] (which is
used to create wires and binding in the platform) in order to instantiate and
configure the Active Stub. When the provider becomes unavailable, the Provider
Monitor notifies the Orchestrator that actives again the Finder and asks it to find
a new provider.

Advertiser Component. The Advertiser (right side in Figure 4) contains a
component Promoter with the following responsibilities:

1. Advertise the available SCA services in the Service Registry. Each entry
in the Service Registry contains the required information for the published
service (e.g., name, type) that is required to advertise the service. This in-
formation can be updated at runtime.

2. Listen and process search requests.
3. Notify events associated with the SCA component state.

10 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

Discoverer

binding-factory

Finder

ldap-lter

Provider Monitor

Discovery
Orchestrator

Advertiser

Service Registry
Promoter

Legend:

Service

ReferenceComposite

Wire

Component

Optional
Component

stub-registry

active-stub

provider-selector

component-state

Property

change-service-property-value

Fig. 4. Discoverer and Advertiser Architecture.

A given SCA component contains one Advertiser of an ubiquitous binding
type. This means that all the services with a same ubiquitous binding type may
be exported using the same advertiser instance.

Implementation Details. We have implemented ubiquitous bindings for SLP
and UPnP. For the discovery via UPnP, we use Cyberlink for Java1 version
1.7 and for SLP the jSLP library2. Our RESTful bindings are based in the
Comanche3 web server [19]. Both FraSCAti zand Comanche are based on the
Fractal component model and use the Julia4 implementation of the Fractal
runtime environment [19].

Synthesis: The ubiquitous bindings provide a flexible and simple mechanism
that allows a transparent management of mobility in our ubiquitous FCLs.
These bindings leverage on the clear separation of concerns promoted by the
SCA component model to avoid impact the business logic. On the other hand,
the modularity of the SCA architecture of our bindings promotes their reuse
and the flexibility to select the more suitable implementations of the different
components.

6 Empirical Validation

To evaluate the performance of ubiquitous bindings, we implemented the scene 1
of the smart home scenario (cf. section 2.1). We tested several configurations of
the scenario using two Dell Latitude 430 laptops, with the following software and
hardware configurations: 1.33 GHz processor, 2 GB of RAM, Intel Pro wireless
1 Cyberlink for Java: http://cgupnpjava.sourceforge.net/
2 jSLP: http://jslp.sourceforge.net/
3 Comanche web server: http://fractal.ow2.org/tutorials/comanche.html
4 Julia: http://fractal.ow2.org/julia

Service Discovery in Ubiquitous Feedback Control Loops 11

3945ABG card, WIndows XP SP3, Java Virtual Machine 1.6.0 14, Julia 2.5.2 and
FraSCAti 1.2. The mobile clients are two Nokia N800 Internet Table with 400
Mhz, 128 MB of RAM, interface WLAN 802.11 b/e/g, Linux Maemo (kernel
2.6.21), CACAOVM Java Virtual Machine 0.99.4, Julia 2.5.2 and FraSCAti
1.2. We also evaluate the RESTful bindings using XML, JSON and the Java
Object Serialization for context representations. We used the library Xerces2
Java Parser 2.9.1 5 for XML, and JSON-lib 2.2.34 6 to serialize the information
as JSON documents. We used SCA services to simulate the home sensors and
actuators. These services are always executed on the same Dell Latitude hosting
the server part of the scenario.

Providers
Conguration Provider

b) 1 External Provider

c) 1 External Provider

d) 2 External Providers

e) 2 External Providers

Laptop

N800

Laptop & N800

N800 A & B

Retrieval Latency

Object (ms) JSON (ms) XML (ms)

292 252 261
513 817 818
576 839
641 989 1046

N/A 244 304 315a) 1 Local Providers

845

Discovery Latency

SLP (ms) UPnP (ms)

91 111
216 284
507
736 769

68 73

547

Table 1. Performances of RESTful bindings

Table 1 summarizes the overhead observed for discovery via the ubiquitous
bindings. This time includes the discovery, instantiation, and configuration of
the SCA wires. The given measures are the average of 10.000 successful tests,
of which the first 100 were considered as part of the warm-up. We have reduced
the UPnP execution time avoiding the recovery of the service description file.
We do not need this file because the advertisement messages already contain
the properties required to select the provider. Regarding the discovery cost, we
observe that it is possible to integrate the ubiquitous bindings in the feedback
control loops with a reasonable overhead (68ms per message). We also notice that
the network increments the discovery latency approximately 25%, comparing
the tests with a local provider (configuration a) and the laptop as provider
(configuration b). Although the measures with mobile devices (configuration c,
d and e) demonstrate that we can discovery services in a rational time, their
use as providers considerably increase the discovery latency. This additional cost
is mainly due to the limited processing capacity of these devices. As expected,
SLP is more efficient than UPnP, as it is a higher-level protocol.

Table 1 also reports the costs of interactions once the services are discov-
ered in the feedback control loop. In these tests, we use our RESTful bindings
(cf. section 3.3) and three different representations for information retrieval (Java
Object Serialization, JSON and XML) for the communication. As it can be seen,
the exchange the information costs 244ms per message (configuration a). In the
5 Xerces2 Java Parser: http://xerces.apache.org/xerces2-j/
6 JSON-lib: http://json-lib.sourceforge.net

12 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

case of configurations including the mobile device (c, d and e), we again observe
the additional overhead.

7 Related Work

In this section we present some works that deal with service discovery in ubiq-
uitous environments. INDISS [2] (INteroperable DIscovery System for network
Services) is a system based on event-based parsing techniques to provide full
service discovery interoperability. The authors claim that this interoperability is
achieved without altering existing applications and services. INDISS exploits the
multicast groups used by different discovered protocols to detect the protocols
being used in the environment. Then, INDISS transforms the SDP messages to
events that will be transformed again into messages that correspond to the SDP
supported by the client application. Although interoperability between discov-
ery protocols is an interesting solution for the mobility problem, the applications
have yet to use always the same communication protocols defined by the SDP
even if it is not suitable. Our SCA-based solution provides the required flexibil-
ity for client (resp. server) applications can search (resp. advertiser) the required
(resp. provided) services using the more suitable discovery and interaction pro-
tocols. In this way, the devices only deploy the required functionality.

In [20], authors propose a framework for the development of an adaptive
multi-personality service discovery middleware, which operate in fixed and ad-
hoc networks. According to authors, the framework promotes component re-use
and simplifies configuration and dynamic reconfiguration of multiple concurrent
protocols. With our ubiquitous bindings we also foster re-use and dynamic recon-
figuration capabilities thanks to the combination of the SCA component model
and the FraSCAti platform.

ReMMoC (Reflective Middleware for Mobile Computing) [4] is an adaptive
middleware for discovery and access of services in mobile clients. According
to authors, ReMMoC reconfigures itself to use the current discovery protocols
present in the environment. Furthermore the middleware interoperate with ser-
vices implemented upon different interaction types. Although in our approach we
do not deal with the adaptation issue in the communication level, by using the
reconfigurability capabilities offered by FraSCAti and our ubiquitous feedback
control loops, we could identify situations where new discovery or interaction
bindings are required and deploy them on the clients. Furthermore, the integra-
tion of ubiquitous bindings in SCA promotes the use of these bindings in any
SCA application not only mobile clients.

8 Conclusions and Perspectives

In order to deal with the mobility issue in ubiquitous environments, we have
enabled spontaneous communications in the SCA-based applications. To do it,
in this paper, we define ubiquitous bindings, a new kind of binding for the SCA

Service Discovery in Ubiquitous Feedback Control Loops 13

standard that allows the integration at runtime of service providers and con-
sumers. Our ubiquitous bindings advertise and discover services via different
discovery protocols and select them applying LDAP filters. The flexibility of the
ubiquitous bindings allows the service access using the SCA traditional bindings
associated with the services. Furthermore, the design of the ubiquitous bindings
is based on SCA to enable their integration in any SCA runtime platform. By
benefiting from SCA extensibility and its clear separation of concerns, we in-
tegrate in applications discovery management in a transparent way. Thus, the
originality of our solution rests on its simplicity and efficiency achieved by the
combination of well defined and accepted standards and protocols.

To illustrate the use of ubiquitous bindings, we define ubiquitous FCLs en-
abling adaptation of context-aware applications. The exchange of context in-
formation in these FCLs is achieved via RESTful bindings that allow us to face
heterogeneity in ubiquitous environments. The ubiquitous bindings have been in-
tegrated into the FraSCAti platform, following an architecture that promotes
the sharing of common functionality of service discovery. The suitability of our
ubiquitous bindings was confirmed with tests executed using a smart home sce-
nario.

Future work includes further tests using different kinds of mobile devices,
protocols and service providers. In the particular case of ubiquitous FCLs, we
plan to improve the performance of our solution by introducing a cache mecha-
nism that enables the temporal storing of the retrieved context information. In
this way, when all the required information is gathered, it can be processed even
if any of the context providers is not available (or the connection was lost). Fi-
nally, we will exploit the introspection and reconfiguration capabilities brought
into SCA by the FraSCAti platform in order to instrument the adaptation
process in the mobile devices via our RESTful bindings.

References

1. Kindberg, T., Fox, A.: System software for ubiquitous computing. IEEE Pervasive
Computing 1(1) (2002) 70–81

2. Bromberg, Y.D., Issarny, V.: Indiss: interoperable discovery system for networked
services. In: Middleware ’05: Proceedings of the ACM/IFIP/USENIX 2005 Inter-
national Conference on Middleware, New York, NY, USA, Springer-Verlag New
York, Inc. (2005) 164–183

3. Nakazawa, J., Tokuda, H., Edwards, W.K., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: ICDCS ’06: Proceed-
ings of the 26th IEEE International Conference on Distributed Computing Sys-
tems, Washington, DC, USA, IEEE Computer Society (2006) 3

4. Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and interac-
tion in heterogeneous mobile environments. SIGMOBILE Mob. Comput. Commun.
Rev. 9(1) (2005) 2–14

5. Beisiegel, M. et al: Service Component Architecture (November 2007)
6. Hariri, S., Khargharia, B., Chen, H., Yang, J., Zhang, Y., Parashar, M., Liu, H.:

The Autonomic Computing Paradigm. Cluster Computing 9(1) (2006) 5–17

14 D. Romero, R. Rouvoy, L. Seinturier, P. Carton

7. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.B.: Re-
configurable sca applications with the frascati platform. In: SCC ’09: Proceedings
of the 2009 IEEE International Conference on Services Computing, Washington,
DC, USA, IEEE Computer Society (2009) 268–275

8. Parashar, M., Hariri, S.: Autonomic Computing: An Overview. Unconventional
Programming Paradigms (2005) 257–269

9. Open SOA: SCA Transaction Policy. (December 2007) Version 1.0.
10. Fielding, R.T.: Architectural Styles and the Design of Network-based Software

Architectures. PhD thesis, University of California, Irvine (2000)
11. Romero, D., Rouvoy, R., Seinturier, L., Chabridon, S., Denis, C., Nicolas, P.: En-

abling Context-Aware Web Services: A Middleware Approach for Ubiquitous Envi-
ronments. In Michael Sheng, Jian Yu, Schahram Dustdar, eds.: Enabling Context-
Aware Web Services: Methods, Architectures, and Technologies. Chapman and
Hall/CRC (07 2009)

12. Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing envi-
ronments. IEEE Pervasive Computing 4(4) (2005) 81–90

13. UPnP Forum: UPnP Device Architecture 1.0. http://www.upnp.org/resources/
documents.asp (april 2008)

14. Krause, M., Hochstatter, I.: Challenges in Modelling and Using Quality of Context
(QoC). In: Proceedings of the 2nd International Workshop on Mobility Aware
Technologies and Applications, Montreal, Canada (2005) 324–333

15. Smith, M., Howes, T.: RFC 4515 - Lightweight Directory Access Protocol (LDAP):
String Representation of Search Filters. IETF RFC (1996)

16. Guttman, E., Perkins, C., Veizades, J., Day, M.: Service Location Protocol, Version
2. RFC 2608 (Proposed Standard). http://tools.ietf.org/html/rfc2608 (june
1999)

17. Dey, A.K., Abowd, G.D., Salber, D.: A conceptual framework and a toolkit for
supporting the rapid prototyping of context-aware applications. Hum.-Comput.
Interact. 16(2) (2001) 97–166

18. SCOrWare Project: SCA Platform Specifications - Version 1.0 (2007)
19. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal

component model and its support in Java. Software: Practice and Experience
– Special issue on Experiences with Auto-adaptive and Reconfigurable Systems
36(11-12) (August 2006) 1257–1284 John Wiley & Sons.

20. Flores-Cortés, C.A., Blair, G.S., Grace, P.: A multi-protocol framework for ad-hoc
service discovery. In: MPAC ’06: Proceedings of the 4th international workshop
on Middleware for Pervasive and Ad-Hoc Computing, New York, NY, USA, ACM
(2006) 10

