Co-ordinated Utility-based Adaptation of Multiple
Applications on Resource-constrained Mobile Devices

Ulrich Scholz and Stephan Mehlhase

European Media Laboratory GmbH
SchloR-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
{Ulrich.Scholz, Stephan.Mehlhase}@eml-development.de

Abstract. Running several applications on a small, mobile device requires their
constant adjustment to changing environments, user preferemcesesources.
The decision upon this adjustment has to regard various factors of wieabp-
timality of the result is only one: Further non-functional aspects includsey u
distraction and the smoothness of operation have to be taken into accaunt, to
This paper explains various events causing adaptation and details|severa
functional aspects to be considered. It then presents Serene Gagadgmatic
approach for deciding upon adaptation and non-adaptation of simultsigean-
ning applications in resource constrained, mobile settings. Finally, this gape
cusses Serene Greedy by comparing it against other adaptatiomireptech-
niques for performance and the mentioned non-functional properties

1 Introduction

With the emergence of ubiquitous computing, common futaemarios will consist in
people moving around carrying general-purpose mobilecagsyiwhich they use exten-
sively to assist both leisure and business related taskardlig, the users expect their
devices to run powerful applications as well as to run séadrthem simultaneously,
serving diferent purposes at the same time.

For developers of mobile applications this scenario is eésllenging. Users expect
applications on these devices to have capabilities cloges®e of contemporary laptop
PCs. But on top of that, such applications have to cope witltoua additional restric-
tions, such as sudden context changes, scarce resourddisniged device capabilities.
Applications that meet these complex requirements haveotage the variability to ad-
just to the varying environment as well as a reasoning meshmathat selects the best
fitting variant for every specific situation. Implementirgese capabilities in addition
to the application functionality is indeed a demanding task

Developers can meet the challenges of a mobile setting Wgibgion dedicated
middleware platforms that provide reasoning and varigbitiodeling support [5,9].
For example, utility-based adaptation reasoning allowigétor out the optimization
mechanism from the business logic: The developer providasaion as measure for

* This work was partly funded by the European Commission through theqiilUSIC (EU
IST 035166) as well as by the Klaus Tschira foundation.

2 Ulrich Scholz and Stephan Mehlhase

the usefulness of a particular application variant in aigsi€uation; a reasoning mecha-
nism then selects the optimal variant. While utility-basdd@ation reasoning has been
demonstrated to work well for individual applications, Hing multiple simultaneous
applications poses additional challenges that curreatgive little attention.

The contributions of this paper are as follows: First, ita#®es issues arising when
handling multiple applications, in particular performantecrease through excessive
adaptations as well as non-functional problems such alingtand user distraction
caused by low-yielding re-configurations. It then pres&aiene Greedy, a utility-based
adaptation reasoning technique suitable for co-ordinatightation of multiple applica-
tions. Finally, it discusses the results of applying thishtdéque in the context of the
MUSIC middleware [9].

The next section introduces terms and concepts relateditg-based adaptation of
multiple applications, while Sect. 3 describes non-fumwdl aspects of adapting them.
Section 4 gives a detailed analysis offeient adaptation reasons as well as their influ-
ence and importance for maintaining the optimal usefulr@sstion 5 presents Serene
Greedy, a pragmatic approach to the adaptation of sets aftsineously running appli-
cations. Section 6 demonstrates and discusses Sereng/Geetion 7 reviews related
work and gives further directions. Section 8 concludes Hyeep

2 Utility-based Adaptation of Multiple Applications

Non-functional adaptation of multiple applications pogasous challenges for the ap-
plication developer. We describe these problems in theegbof an execution environ-
ment for applications which facilitates adaptation to wagycontext [4]. We assume
such an environment to follow an externalized approachédrtiplementation of self-
adaptation where the adaptation logic is delegated to gemeddleware working on
the basis of models of the software and its context repredeattruntime. We also pre-
suppose the use of utilities as a means to specify the olgedtiat guide the adaptation
logic [7].

2.1 Components, Variants, Context, and Resources

Applications are assembled obmponentsi.e., pieces of code, and severaffeient
collections of components, each calledaiant, can realize the same application. At
runtime, the knowledge required for adaptation is represkinyplans where each plan
contains the code of a component and information how to asigdins component with
others. Plans can be installed and removed at runtime, &ose tused by a running
variant, so the set of available variants of an applicatemchange dynamically.
Contextis a set of values that describes the world from the view ohtiddleware
(but not properties of the middleware itself). Applicatsostate which context they de-
pend on and the middleware provides the corresponding yanerequest. Context
values change in accordance with changes in the world andriniple such changes
are outside of the control of the middleware, the applicegj@nd the user.
Resourcese.g., memory and CPU, are specific context values whoséahbildy
determines whether a variant can be executed in a specifatisih. Each variant an-
nounces a specific, fixed amount for each resource that itresgjiResources are being

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 3

assigned to variants by the middleware and only the middiewan take them away.
Consequently, running variants can continue to run regasdbf resource changes.

An application variant ivalid if it is given enough resources, i.e., if for each re-
source the required amount is smaller than what is avaijlanid if it uses installed
plans only; otherwise, it i;walid. In addition, a valid, running variant becomes invalid
if the user removes a plan that is used by that variant.

2.2 Utility and the Utility Function

Many variants provide the same function to the user (e.gtjgg@ation in a picture
sharing community), but often with fierent quality (e.g., with respect to reliability
and bandwidth). The degree to which a particular varianthagotential to satisfy the
user’s needs is called thaility of that variant, which is a real number between zero and
one (worst and best).

Each application variant has an associatiity functionand the utility of a running
application at a specific time point is given by evaluating turrent variant’s utility
function on the current context. Formally, the utility fuion is a mappindy, : VxC +—

[0, 1], whereV is the set of variants and is the set of possible contexts. As shorthand,
we sayultility function of variant vto refer to the utility function where the variant is
held constant toe. Because the functioff, is arbitrary, the utility values of a variant
under two diferent contexts are unrelated in the general case; likethisaytilities of
two different variants under the same context are unrelated.

When working with multiple applications, the user takesriestin them to varying
degree. To allow the user to indicate his preferences to tdleware, it is possible to
assign goriority to applications, which is a real number between zero and lonet
and highest). We call an unprioritized utilityraw utility. Priorities enable the user to
weight the relevance of applications according tghesreal needs: Giving low priority
to an application with high utility indicates that this ajggltion does not help the user
much despite it provides optimal service on an absolutescal

The product of priority and raw utility of an application Fsetapplication’sveighted
utility and the sum of the weighted utilities of all running applicas, normalized by
the sum of their weights, is theverall weighted utility g, = 2"Piti/zp;, or simply
overall utility. Utility-based adaptation assumes thgf equals user satisfaction and
has the aim to keep this number high at all times.

2.3 Application States and Adaptation

Depending on the interest of the user, an installed appitatan be in use or not.
Consequently, applications can be in twéfelient states calledhstalled andrunning
users carstart andstopthem. Figure 1 gives a state diagram of the possible transiti
On starting an application, the middleware selects and gorgs its initial variant.
After an event that might render the current variant suliregdf the middleware has to
adapt i.e., to re-consider all currently valid variants of alhning applications together
with their priorities. If necessary, it then has to exchatige current variant of some
applications with another variant. The first step in thisgess is calleddaptation rea-
soning the seconde-configuration The latter step handles state transfer transparently.

4 Ulrich Scholz and Stephan Mehlhase

/\start adapt

(22 one))

starting > 7

aborted terminated
Fig. 1: State diagram of application states

Besides re-configuring a running application and lettingntouched, adaptation
reasoning can also decidetesminatean application, i.e., to stop it without user request:
If your running applications consume all available researthen running another one
does not work. In the component based approach, terminiatedways necessary if an
application does not have longer a valid variant as well assiét of applications does
not have a set of variants that is valid in combination (iedl. sets contain an invalid
variant). In the latter case, one or more applications ofstitehave to be terminated.
For the same reasons as with termination, adaptation riegscanabort the start of an
application. The next section shows another possible nsfasdermination.

2.4 Indirect Dependencies between Applications

In this work, we consider the adaptation of multiple, indegient applications running
on the same device. Although such applications do not fanatly depend on each
other, there is aimdirect dependencgmong them via their shared use of system re-
sources. In resource-constrained settings, giving maeurees to one application re-
quires to take them away from another. Therefore, distniguthe available resources
is part of finding a valid variant set. The same is true if theghted utility of an appli-
cation changes. For this reason, finding the variant settivitihighest overall utility in
general requires considering all running applications.

Because of indirect dependencies, the maintenance of theadverall utility can
cause termination: Consider the case of two applicatioasdan run simultaneously,
i.e., which have variants that are valid in combination. {fasiant of one application
has a high weighted utility but uses so much resources theanant of the second can
run then this variant alone might yield a higher overalligytithan running any valid
pair of variants. In this case, the middleware might stopstmond application.

3 Non-functional Aspects of Adaptation

The utility-based adaptation approach takes the overagjivied utility as sole measure
for the quality of its result. In other words, utility is thglat to equal user satisfac-
tion. Ideally, the middleware constantly adapts the rugrapplications such that their
current variants provide optimal overall utility at all ta®. Changes in the variant set
remain unnoticed by the user except for modifications iniapfpbn functionality. The
user is expected to approve these user-perceivable chhegasse they are essential
for maintaining high utility, i.e., user satisfaction.

Obviously, this approach is based on strong assumptiorexyliires the application
designer to encode the user’s perceived application gualib a real value between

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 5

zero and one. But there are additional user-visilffeats that influence user satisfac-
tion, especially when considering multiple applicatiosen if each adaptation con-
stantly upholds an optimal utility, the sidéfects of this mechanism are noticeable by
the user. In the following we discuss the sidéeets performance decrease, stalling of
applications, fidgetiness, and application termination.

Performance decreaseAdaptation requires processing resources and if the rea-
soning runs on a machine that is shared with applications ttese resources are not
available for the latter. Because in the worst case, findingpdimal set of variants is ex-
ponential in the number of variants, the user might expegensignificant performance
decrease. For multiple applications this problem is paldicprominent because it re-
sults in long search times even if each application has a mtelaumber of variants.

Application stalling: After the reasoning mechanism has decided upon the new
variants of applications, they are re-configured by the gomdition middleware. This
process requires to suspend and to re-start applicatidrishwhe user experiences as
stalling. In general, we can assume that the middlewarddithe negative féects of
re-configuration by detecting and discarding requestsrichanged applications.

Fidgetiness User-visible changes, e.g., of the GUI and of applicatiorcfionality,
have the potential of annoying the user. In case of expl®#ractions (e.g., discon-
nection of a device and change of location), the user “utdeds” and endorses a
resulting adaptation. Drastic changes of unimportantiegipbns that yield only slight
improvements are less accepted. Systems that exhibit @ldvior are fidget.

Consider the case of an application with two, visually distivariants. The utility
functions of all variants are almost the same, except fod&pendency on a binary con-
text property: Each variant is slightly better than the oftbeone of the property values.
If the property quickly oscillates between these two valties application changes ac-
cordingly, although the absolute utility improvement iglgible for each change. In
such cases, suppressing re-configurations for small inepments reduces the fidgeti-
ness of the system.

Application termination : The user can be displeased by applications that terminate
on their own, i.e., without explicit user request. The satignation can occur if the user
starts an application the middleware decides it is bettétamand aborts. As detailed
in Sect. 2.3, this drastic measure must be taken if an apiolicaannot be started or
cannot continue to run and it might be the result of maintajrthe optimal overall
utility.

4 Adaptation Events and Affected Applications

Mobile applications have to react to changes in their emvitent. If suchadaptation
eventscan dfect the utility of the currently running applications thére tmiddleware
may have to adapt. Adaptation events can occur at any timenaady number. An
application can beftected by one or more events or it can befteaed. For each of the
various combinations, the consequences for the adapeatidthe overall systemfdiér.

In the following, we first examine the flierent events and then classify applications
according to the events they ar@ezted by.

6 Ulrich Scholz and Stephan Mehlhase

4.1 Adaptation Events

For our notion of utility-based adaptation, we can distisgdive classes of events:

Changes in Application Status A user request to start or to stop an application
results in an event of this kind.

Plan Changes Plans can be installed and uninstalled by the user at ang. tim
Adding a plan can féect the utility of an application because it possibly allawesw
variants that improve utility. Removing a used plan rendbesusing application in-
valid; removing an unused one has rteet.

Context Changes If an application depends on a particular context elemtaer t
changes in that element can cause a change of the utilitia wdriants of that appli-
cation. Because the mapping from context to utility is agbjt and cannot be foreseen,
finding the new best variant requires examining all varia®@ts the other hand, a run-
ning application can continue to run regardless of changesntext, although its utility
might no longer be optimal.

Priority Changes: The priority of an application scales the raw applicatioifity.
Consequently, a change in priority does nfieet the validity of a variant nor the or-
dering of the variant of an application regarding utility. é@urse, changing application
priority can render the current variant set sub-optimalingirect dependencies.

Resource Changesvariants of an application tfer in their use of system resources.
Because of indirect dependencies between applicatiopsaitiount of available re-
sources determines the set of valid variants.

4.2 Classification of Applications Afected by Adaptation Events

An adaptation event carffact the running applications inféeérent ways: For example,
if the user stops one application, the others can continuernionithout change. On
the other hand, preserving the optimal utility requires eosider all applications in
combination: If one application adapts, the others havel&pg too.

In the following we define four classes in which we group thening applications
in case of an adaptation event. To which class an applicaiongs depends on the
kind of event and whether the application is directiigated or not. Loosely spoken, the
classes are ordered top-down according to the “seriousaesst adapting their appli-
cations. The classes are mutually exclusive and if an agific could belong to several
classes then it is included in the one mentioned first. Fomgika, if an application is
affected by a change of context and of resources, it is in clagbtigés Changed”.

Adaptation Required: Contains applications that are started or stopped and that
use a removed plan. Applications in this class must be addpt¢he middleware.

Applications not in this class do not require adaptatian, all valid variants before
the event are valid afterwards, although they might yieldve utility. For these appli-
cations the middleware can decide to skip adaptation réagamnd re-configuration.

Utilities Changed: Contains applicationsfiizcted by a context change. Because
the utilities of the &ected variants change arbitrarily, it is unknown withouajatgtion
whether there is a better valid variant.

Utilities Similar : Contains applications with new plans and with a new prorit
Furthermore, it contains any application in case of a resouncrease. The utility func-
tions previously valid variants of an application with nelans are unchanged while

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 7

new variants might be available. The same is true for anyiegdmn in case of a re-
source increase. If an application has a new priority, itsava set is unchanged but its
utility function is scaled by a constant factor.

Unaffected Contains all applications not directlyfacted by any adaptation event.
Adapting an unfiected application is least likely to improve overall uyiliProvided
it is given the same amount of resources then adaptatioongaswill decide for the
currently running variant again. Because of indirect deje@cies between applications,
it might still be useful to adapt ufi@cted applications along withfacted ones.

5 The Serene Greedy Adaptation Reasoning Technique

This section presents an adaptation reasoning technigsigngel for resource-con-
strained mobile devices that pragmatically balances @iiynversus the non-functional
aspects of adaptation presented in Sect. 3. In principésetlaspects are relevant for
the adaptation of multiple applications in general. Afeadent settings require ftier-
ent adaptation mechanisms, we state several propertiesvghassume to be present
in resource-constrained platforms. We continue with datpiwo adaptation mecha-
nisms that have been demonstrated applicable to solve #padabn problem. Finally,
we present the Serene Greedy adaptation technique.

5.1 Adaptation in Resource-constrained, Mobile Settings

Adaptation in a mobile setting is assumed to be performeddiygde algorithm running
as part of the middleware; there are no resources to perfetengve negotiations and
to wait for external consultancy. The adaptation procesgamic from the viewpoint
of the applications and potentiallyfacts all applications controlled by the middleware.

Application adaptation has two parts: Adaptation reaspr@ind re-configuration.
Changing a running variant as well as starting an applinagguires both steps. Adap-
tation reasoning is computationally expensive but doesstuyi applications that are
reasoned about. Re-configuration is cheaper than reasbningequires suspending
and re-starting a running application. Performing ad&pateasoning for an applica-
tion yields a list of all valid variants, sorted by utility.dlways considers all variants of
an application, caching and pre-processing betwegfardnt adaptations are not used.
Nevertheless, adaptation reasoning has to be performedsttamce for an application
during one adaptation process.

In the following, we refer with “applications” to those ortlyat can potentially run
after adaptation, i.e., to non-stopped running applicatias well as started ones.

5.2 Brute Force and Greedy

The Brute Force adaptation technique [1] can serve as haseli adaptation reason-
ing. It searches through all sets of variants of all appiicet In particular, it always
performs adaptation reasoning for all applications anaésdnot distinguish between
adaptation events. Termination handling is taken into aetdy applying two opti-
mization criteria: The first prefers large valid variantsseéhe second optimizes overall

8 Ulrich Scholz and Stephan Mehlhase

sereneGreedy
c_sig := 0.1 /* Double value in the range [0,1] */
A := set of all applications; sumP := 0

while(|A] > 0)
S := {t | a in A, t:=getSereneGuess(a, c_sig), t!=null}

if(s = {bH
terminateOrAbortStarting(A)
return
else
(p_a, u_a, v_a) := tuple in S with highest p_a*u_a
A := A\{a}; sumP := sumP + p_a
if(p_a*u_a/sumP >= c_sig || cannotContinueToRun(a))
establishVariant(v_a)
else
continue(a)

Fig. 2: The Serene Greedy reasoning method

weighted utility. Therefore, Brute Force will prefer a lardow-yielding variant set over
a single variant with high utility. If all applications canmn, i.e., in a resource-rich set-
ting, Brute Force will yield the optimal utility. On the dowside, it is exponential in
the number of variants: If it is applied tp applications withg variants each then it
considerspt variant sets.

The Greedy adaptation technique [1] performs adaptatiasor@ng on each appli-
cation individually. It then selects applications one by gpreferring those that provide
a valid variant yielding the highest weighted utility. Ifethesources are used up then it
stops the remaining applications or aborts their startal\suGreedy evaluates much
fewer variant combinations than Brute Force, i.e., only aptx g. A drawback of
Greedy is that the selected application variants may quiekhaust the available re-
sources. Thus often, the user will be able to run fewer apfitins than with an optimal
Brute Force approach.

5.3 Serene Greedy

The simplest way to prevent the non-functional downsidesdaiptation is to not adapt.
Reasoning techniques, such as Brute Force and Greedy,Mfgtsareason about all
applications and that re-configure indiscriminately arengrto waste resources, stall
applications, and annoy the user by being fidget. But oblypnst adapting — if possi-
ble at all — will likely result in a sub-optimal overall utii.

Serene Greedy tries to reach a pragmatic balance betweerabipt versus the non-
functional aspects of adaptation in two ways: (i) It uses t@onoof significance, i.e., it
tries to make unforced change to the system only if the imgmeant is deemed to be
significant and (ii) it tries to guess whether an adaptatasignificant or not, based on
the classification of application$facted by adaptation events (cf. Sect. 4.2).

Figures 2 to 4 present the Serene Greedy algorithm. Figuhe®ssthe main loop,
which collects guesses of achievable weighted utility,os®s the application with the
best guess, and then either re-configures it or keeps itmgnmichanged. The latter op-
tion is taken if it is available and if a change would not yialdignificant improvement.

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 9

getSereneGuess(a, c_sig): (p, u, v)

if(adaptationRequired(a) || cannotContinueToRun(a))
return adaptationReasoning(a)

else
v_a := running variant of a
u_a := raw utility of v_a under the current context
p_a := current priority of a

if(lunaffected(a) && u_a<l-c_sig && p_a>=c_sig)
return adaptationReasoning(a)

else
return (p_a, u_a, v_a)

Fig. 3: Making serene guesses

cannotContinueToRun(a): Boolean
Yields true if either applicatiom is currently not running or if there is no valid variant
of a that can run with the available resources; false otherwise.
adaptationReasoning(a): Tuple of priority, utility, and variant
Performs adaptation reasoning on applicatioReturns the tupl€p_a, u_a, v_a),
wherev_a is a valid variant that provides the optimal raw utilitya andp_a is the
priority of a. It returnsnull if there is no valid variant. On the first call to this function,
all variants ofa are considered; subsequent calls simply return a cached result.
establishVariant(v_a) and continue(a)
After applying the first methody_a is the running variant of applicatioa If v_a is
currently running then it remains untouched; otherwise, the methodnigares or
startsv_a. The second method keeps the running variant of applicatiomchanged.
adaptationRequired(a): Boolean and unaffected(a): Boolean
These functions yield true if applicatianis classified in the respective class according
to Sect. 4.2; false otherwise.
terminateOrAbortStarting(A)
All applications in set are terminated if running; otherwise starting them is aborted.

Fig. 4: Additional functions and methods of Serene Greedy

Figure 3 supplies the serene guesses: If an adaptatioruisedgit reports the resulting
variant and its utility. For applications in class “Utected” it hands back the running
variant and its current utility. For applications in clasédtilities Changed” and “Util-
ities Similar” adaptation reasoning is performed only éithcurrent raw utility is less
than excellentifs < 1 - cgg) and their priority allows for a significant weighted utlit
(pa > Csig). Figure 4 describes the functions and methods used by goeitaim.

6 Discussion

In this section we demonstrate and discuss the Serene Gadagiation mechanism re-
garding the non-functional aspects detailed in Sect. 3.dEmeonstration uses artificial
applications that clearly exhibit thefects under discussion. Of course, an evaluation
with real applications and users would be preferable. Baabse the impact of, e.g.,
fidgetiness is subjective, such studies require large sguid are out of scope of this

10 Ulrich Scholz and Stephan Mehlhase

paper. The applied algorithms were implemented as partedfAdSIC framework [9],
which provides an externalized approach as it was descith&ect. 2.1. The source
code of MUSIC and of the applications used in this sectiowaslable online®

For pragmatic reasons, MUSIC does not consider resouraggelaas adaptation
causing event, i.e., it categorizes an application thatnly affected by a resource
change as “Uni@ected” and not as “Utilities Similar”. MUSIC currently deggards
these events because they happen frequently and congidleeim would result in con-
stant adaptation reasoning. Note however that the argsngéven in Sects. 3 and 4
remain valid despite the change, Serene Greedy is demttstracording to Sect. 5,
and resources are heeded during adaptation reasoningprSéaletails an extension
that would allow taking advantage of resource changes.

Serene Greedy requires as input a value for significancehifiiner this value, the
more applications remain unchanged during adaptationtal@éy, this value should
be chosen in accordance with the applications under cagide: Important changes
should yield a significant utility increase. For the follogi demonstration we have
decided for a significance value @fg = 0.1.

6.1 Performance

The performance of an adaptation mechanism strongly depamthe number of eval-
uated variants. A multi-application setting allows rechgcihis number in an easy way
by avoiding the adaptation of ufiacted applications. We demonstrate thiget with
four applications in a resource-rich setting, where onlg tf them depend on a spe-
cific context element. Each of the applications has f@dint variants. After a context
change event, we measure the total number of evaluatedtsead the total number
of applications that were subject to adaptation reasoWegalso measure the average
adaptation time on a normal PC. The results of this scenegisiammarized in Table 1.

Table 1: Performance of filerent reasoning algorithms

Algorithm Avg. time (ms) # Variants # Apps reasoned about
Brute Force 117.72 10000 4

Greedy 15.70 40 4

Serene Greedy 9.41 20 2

The numbers clearly show the performanc&eadences of the three algorithms:
Brute Forces evaluates an exponential number of variatighwesults in a large run
time. Furthermore, Brute Force and Greedy reason aboyppglications, while Serene
Greedy reasons only about two. Note that all three algostreyconfigure only the two
applications that aref@ected by the context change.

Although certainly synthetic, the given scenario is reé@lisThe number of applica-
tions is kept small, as on small devices most users do hobeseany applications at
the same time. Also, applications usuallyter in their context dependencies. Note that
using a resource-constrained setting, e.g., a small mdbilee, would show an even
more significant performance gain of Serene Greedy overtties bwo.

Thttp://developer.berlios.de/projects/ist-music

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 11

Table 2: Priorities, utilities, and memory requirementgpplicationsA andB

Variant Priority Utility (context “1”) Utility (context “2") Memory requirema (kB)

A 0.5 0.9 0.8 100
Ay 0.8 0.7 40
B1 0.15 0.8 0.1 120
B, 0.3 0.4 70
Bs 0.4 0.3 80

6.2 Fidgetiness and Stalling

Fidget applications waste resources for reasoning and eftdl. The following exper-
iment shows how Serene Greedy improves on béice while loosing only little in
utility. The set up consists of two applicatioAsandB in a resource-constrained setting
that does not allow all variant combinations to be valid. Tle applications depend
on a context element that oscillates between the valuesrid™a". Furthermore, ap-
plication A has a higher priority as applicatid® Table 2 gives the priorities of the
applications and the utility values of their variants, adlvae their memory require-
ments. The available memory is 190 kB.

Scene 1 in Fig. 5 shows the initial situation of the experitnesing context value
“1”. The variant set with optimal overall utilityA;, B;} is not valid because of resource
constraints. Therefore, Brute Force selects thg/&etB,}. Greedy and Serene Greedy
select bothA; because it has the highest weighted utility. We also asshatétiey both
selectBs, so that they initially yield the same overall utility.

After changing the context to “2” (scene 2), all reasonerangfe to sef{As, B,}.
Brute Force adapts both applications, the others only ometh® following context
change back to “1” (scene 3), their behavidfelis: Brute Force selects its initial variant
set, thus re-configuring both applications; Greedy re-goméis applicatiorB; while
Serene Greedy does not re-configures at all. The additibiaaige fromB, to B; yields
an increase of overall utility of about@®@}, which is insignificant. Regarding overall
utility, Brute Force always yields the best value®,@.71, and 08, while the others are
sub-optimal under context “1”. After reaching context “hietsecond time, Greedy is
slightly better than Serene Greedy, because the latteew#ie re-configuration 8.

The experiment shows that Serene Greedy re-configuresstiadls less than the
other two while yielding sub-optimal but comparable wildompared to Greedy for
applications in classes other than \ffieated . The latter observation is supported by an
analysis of the maximal fierence between the two reasoners in case of a sub-optimal
decision of Serene Greedy for a single applicatafter a sequence of identical ones.
This difference is at most the overall utility using the optimal vatriminus the one
using the current, i.eym® — uld = Pax(UF*-Ug")/(p,+psim), whereu, uc™, and psi™m
are the current maximal raw utility @&, the current utility of the running variant af
and the sum of priorities of all applications accepted ptioa, respectively. Because
of Csig > pa andul® > ug"" > 1 — cgig (cf. Fig. 3), each individual decision of Serene
Greedy is at most b§sig/(1+c;é><psum) < Gsig below the optimum achievable in this situa-
tion. Multiple fidget applications are uncritical, too, laese with an increasing number

12 Ulrich Scholz and Stephan Mehlhase

utility
08l — Brute Force
-~~~ Greedy
0751 --- Sophisticated
y Greedy
0.7+ : Numbers on the edges indicate
the number of re-configured
1 1 1 applications
1 2 3 scene

Fig. 5: Behavior of the dierent adaptation mechanisms

of running applications their individual contributionsadease. The error term reflects
this correlation by an increasing denominator.

As demonstrated, Serene Greedy can reduce the fidgetinessadapting multi-
ple applications. Nevertheless, this problem cannot beeddby a reasoning technique
alone: A fidget system disturbs the user, but how much it doés subjective and also
depends on the applications. For one user, a perceivabigeltan be important while
another does not care. Likewise, a slight improvement lityutian make the dference
for one user but not for another. In the end, overcoming fidges will require co-
ordinating the applications as well as foresight by the biger and user involvement.

6.3 Application Termination

In a resource-scarce setting, the involuntary terminatfaapplications can be unavoid-
able. The same can result from maintaining the optimaltytiis such behavior will
likely annoy the user, it has to be minimized. Unfortunatéhe problem of keeping
a maximal number of applications running is a variant of thepsack problem and
thus NP-complete [6]. Brute Force, which is optimal in this respesialuates an ex-
ponential number of variant combinations. Greedy and ®e@eedy perform better;
consequently they are sub-optimal regarding utility aig shore applications.

In general, the problem of termination becomes more prontifeg systems which
run adaptation techniques that limit the searéfore in favor of performance: They
might miss variant sets that keep applications running aedefore terminate more
applications than necessary. Thus, performance and gilsligpto termination have
to be considered in combination when choosing an adaptatgmrithm.

At least, an adaptation mechanism should keep importaricagipns running, i.e.,
those with high weighted utility, and notify the user for siedat decides to stop. Serene
Greedy adheres to the first requirement by preferring higlilirig applications. Clearly,
the second one is a task for the middleware as a whole.

7 Related Work and Further Directions

According to the roadmap presented in [2], our work on namcfional éfects addresses

challenges for the engineering of self-adaptive systemsng which are understand-
ing the various aspects of self-adaptation, such as usdsrae® system properties, as
well as classifying the modeling dimensions availableeSerGreedy falls in the cate-
gory of dfects of adaptation: It prefers the optimality and operatilgrof applications

Co-ordinated Adaptation of Multiple Applications on Mobile Devices 13

with high utility over those with low. Its decisions are pigdble because high value

applications are likely to continue in case some applicatimust be stopped, it reduces
overhead by not adapting low value applications, and itdases resilience because
remaining operational is preferred over an insignificamtggenance gain.

Systems that take into account non-functional aspects atiapting usually aim at
more “high-level” aspects as the ones covered by this p&jieeng et al. [3] present a
language to describe non-functional objectives and in&dion about the system, which
allows an adaptation mechanism to take the described asipéataccount. Aura [5]
aims at selecting optimal providers for resources and atharacteristics (e.g., secu-
rity) to keep the user undistributed. Pladian et al. [8] myirhprove user experience
by anticipating future resource needs of multiple runnipgliationsand takes into ac-
count the overhead of adapting. Serene Greedy tries totlsipbverhead by deciding
to not adapt and not re-configure.

While these methods address important non-functional éspéadaptation, they
are nevertheless susceptible to the “low-level” onesedl&t the actual search (or non-
search) through the available set of variants. On small laagvices — and for future
demanding applications — we still consider these searaleckissues of high impor-
tance because the optimality of a decision can be easilyeigh&d by the &ort re-
quired to search for it.

Sykes et al. [10] regard the frequency of adaptation and eteted delay when
adapting single applications, thus improving on stallimgl aser distraction. Our ap-
proach considers the adaptation of multiple applicatitimss taking into account the
fidgetiness caused by adapting unimportant applications.

The remainder of this section presents directions in whielplan to extend Serene
Greedy. As explained in Sect. 6, its implementation as jptesien this paper does not
use resource change events, so it misses the chance to lysibleancreases in utility
on resource-constrained devices. We plan to remove thitation as follows: Define
an adaptation delay and, for each resource, a significantumatmbor each resource,
when reasoning about an application, record the need oftimal variant. If more
than this amount is available then disregard changes. Wigeron significant changes,
adapt after the given delay. With this strategy, resoureaghs are taken into account
but the undesired non-functionatects are limited.

A way to limit stalling by re-configuration is to stop and reds only those parts
of an application that dlier between the variants; ufiected parts can continue to run.
Imagine an application with a GUI and a business compontatidptation decides to
exchange the latter part but leaves the GUI unchanged tearstr might not notice the
change. Realizing this technique transparently requirespplication designer to pro-
vide information about which parts of an application can teed independently, new
reasoning techniques that penalize the perpetuation oponents, and administration
code that bffers communication between re-configured and unchangedawnis.

As mentioned before, the utility function can be kept (intpar memory, which
allows filtering variants beforehand and thus saves redatialg them again. Conse-
quently, the time to decide upon a good variant set can beegd©On the down side,
the memory used for storing this information is not avaiata the applications such

14 Ulrich Scholz and Stephan Mehlhase

that this approach might yield sub-optimal utility. We planexplore the use of more
structured utility functions, where the sanféeet can be reached with less memory.

8 Conclusions

The operation of multiple adaptive applications on smabipite devices requires han-
dling them in a co-ordinated way. Otherwise, non-functieaftects of the adaptation
process can obstruct and annoy the user. This paper impi@vasds this end in three
ways: (i) We discuss the problem of indirect dependenciga/den applications in
resource-constrained settings and identify resulting-faoctional aspects of adapta-
tion, in particular the problem of application terminatiand of fidgetiness, i.e., dis-
turbing adaptations of unimportant applications. (i) Wen analyze dierent events
that can cause the applications to adapt. This analysiwaltio classify running appli-
cations according to the consequences to the system and tdility of not adapting
them. Finally, (iii) we present Serene Greedy, an adaptatiethod based on the given
classification. We compare an implementation of this methitid two other adaptation
techniques for the MUSIC middleware. The results show tlaei®e Greedy reduces
stalling and fidgetiness of adapting multiple applicatiainéle providing improved per-
formance and a utility comparable to the Greedy reasonictyniique.

References

1. Gunnar Brataas, Svein Hallsteinsen, Romain Rouvoy, and Franls&tiasScalability of
decision models for dynamic product lines. Pnoceedings of the International Workshop
on Dynamic Software Product Line (DSPL D3gptember 2007.

2. Betty H.C. Cheng, Rogério de Lemos, Holger Giese, Paola Inveeard J& Magee et al.
Software engineering for self-adaptive systems: A research rmadmSoftware Engineer-
ing for Self-Adaptive SystemNCS 5525, pages 1-26. 2009.

3. Shang-Wen Cheng, David Garlan, and Bradley Schmerl. Archieetiased self-adaptation
in the presence of multiple objectives. IBSE Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAN2BP6.

4. Jacqueline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliasséhl #®d, and Eli Gjar-
ven. Using architecture models for runtime adaptabilBEE Software23(2):62—70, 2006.

5. Davic Garlan, Daniel P. Siewiorec, Asim Smailagic, and Peter Steenkiateject Aura:
Towards distraction-free pervasive computili§EE Pervasive Computin@1(2), 2002.

6. Richard M. Karp. Reducibility among combinatorial problems. In R. Méled J. Thatcher,
editors,Complexity of Computer Computatioqeges 85-103. Plenum Press, 1972.

7. Jetrey O. Kephart and Rajarshi Das. Achieving self-management via dtilitstions.|[EEE
Internet Computingl11(1):40-48, 2007.

8. Vahe Pladian, David Garlan, Mary Shaw, M. Satyanarayanan |@8r&thmerl, and Joao
Sousa. Leveraging resource prediction for anticipatory dynamicgumafiion. INSASQO’07
Conference on Self-Adaptive and Self-Organizing Sys2003 .

9. Romain Rouvoy, et al. MUSIC: Middleware support for self-adgqbain ubiquitous and
service-oriented environments. 8oftware Engineering for Self-Adaptive SystelidCS
5525, pages 164-182. 2009.

10. Daniel Sykes, William Heaven,fi&agee, and J&Kramer. Exploiting non-functional pref-
erences in architectural adaptation for self-managed syst&@%. Symposium on Applied
Computing, Track on Dependable and Adaptive Distributed Syst2oi$).

