Dynamic Composition of Cross-Organizational
Features in Distributed Software Systems

Stefan Walraven, Bert Lagaisse, Eddy Truyen, and Wouter Joosen

DistriNet, Dept. of Computer Science,
K.U.Leuven, Belgium
{stefan.walraven,bert.lagaisse, eddy.truyen,wouter. joosen}@cs.kuleuven.be

Abstract. Companies offering software services to external customer or-
ganizations must ensure that the non-functional requirements of all these
customer organizations are satisfied. However, in such a cross-organiza-
tional context where services are provided and consumed by different
organizations, the implementation of features, for example security, is
scattered across the services of the different organizations and cannot be
condensed into a single module that is applicable to multiple services.
In this paper we present an aspect-based coordination architecture for
dynamic composition of cross-organizational features in distributed soft-
ware systems such as systems of systems or service supply chains. The
underlying approach of this architecture is to specify the features at a
higher level that abstracts the internal mechanism of the organizations
involved. A coordination middleware dynamically integrates the appro-
priate features into the service composition, driven by metadata-based
user preferences.

Key words: Cross-organizational, Feature-oriented, Service engineer-
ing, Dynamic composition, AOSD

1 Introduction

A software service is used by several customer organizations simultaneously, pos-
sibly each of them with their own end users. Each customer organization may
have different — possibly conflicting — requirements with respect to the features
provided by the service. As non-functional requirements are often application-
specific and pervasive, a software service is required to allow on-demand inte-
gration of tailorable features. To fit those varying requirements recent trends
in service engineering aim to combine the benefits of feature-based and service-
based approaches [3,13,1,16]. This combination offers a modular and pluggable
solution that increases the reusability of services and supports on-demand cus-
tomization tailored to the user’s needs.

The building blocks for these customizations consist of modular features. A
feature is a distinctive mark, quality, or characteristic of a software system or
systems in a domain [11]. Features define both common facets of the domain
as well as differences between related systems in the domain. They make each
system in a domain different from others.



However, services are mostly used in a service composition consisting of ser-
vices from different organizations. In such a cross-organizational context, service
implementations are black boxes, implemented and deployed by different organi-
zations on possibly different service platforms, and only the interface descriptions
are publicly available [1]. In this cross-organizational and heterogeneous context,
a problem arises when a feature implementation cannot be contained within the
service provider, but crosscuts the service provider and service consumer (see
Fig. 1). Because such a logical but distributed feature cannot be condensed into
a single feature any more, on-demand service customization tailored to the user’s
preferences is hard to achieve in a cross-organizational context.

Cross-org

Service consumer /_\ Service provider

[ 1 [1

{preferences} . . .
Ep—— Consuner application Provi der application

End user
Service platformyY

buted &
geneous
tures

Service platform X

Fig. 1. Problem context of cross-organizational feature composition.

A typical example of a cross-organizational crosscutting feature is security in
distributed e-finance software, such as online stock trading systems. When imple-
menting an access control concern (authentication and authorization) in such an
application, security actions need to be performed for every interaction between
the distributed subsystems as presented in Fig. 2. In this cross-organizational
context it is difficult to defend that a single feature module encapsulates the im-
plementation of the internal security mechanisms of the organizations involved
as well as the global security policy governing how security must be addressed in
the overall interaction between different organizations. The latter security policy
belongs to a level of abstraction above the internal security mechanism, allowing
different implementations.

The problem of cross-organizational customization of services has not been
well addressed in the current state-of-the-art. On the one hand, existing coordi-
nation architectures for cross-organizational service provisioning (GlueQoS [29],
BCL [18], T-BPEL [26]) focus on dynamically establishing and monitoring agree-
ments for enacting service delivery, but fail to support the coordination and dy-
namic composition of system-wide software features. On the other hand, state-
of-the-art dynamic composition technologies such as dynamic aspect weaving
fail to offer the right mechanisms for expressing customizations at the right level
of abstraction.

This paper proposes an aspect-based coordination architecture for dynamic
composition of cross-organizational features in distributed software systems such



as systems of systems or service supply chains. The underlying approach of this
architecture is to provide support for cross-organizational service customization
by leveraging some of the principles of cross-org coordination architectures. First,
a high-level feature ontology is specified to agree about a technology-independent
feature model among the organizations within a specific contract domain or ser-
vice network. Second, service consumers are able to express a desired feature
configuration through the specification of a feature policy that is based on the
vocabulary of this ontology. Third, each organization has to map their part of the
feature ontology to a specific aspect-based implementation platform. The under-
lying coordination architecture is responsible for managing the feature ontology,
its organization-specific mapping to aspects and the deployment of user-specific
feature policies within various scopes such as per service binding, per session
and per message.

The remainder of this paper is structured as follows. In Sect. 2 we further
motivate and illustrate the importance of cross-organizational feature composi-
tion in distributed software systems. Section 3 shortly discusses related work. We
describe our aspect-based coordination architecture for dynamic composition of
cross-organizational features in Sect. 4 and evaluate the performance overhead
of our prototype in Sect. 5. Section 6 concludes the paper.

2 Problem Motivation and Illustration

We present an example in the e-finance domain to further motivate and illus-
trate the importance of cross-organizational feature composition in distributed
software systems (see Fig. 2). Banks offer their customers a stock trading ser-
vice to inspect, buy and store stock quotes. To be able to provide this service,
those banks cooperate with the stock market, which in turn cooperates with a
settlement company. Such a cross-organizational service composition allows each
participant to take up two roles: service consumer and service provider. For ex-
ample, the bank company is a server for the bank customers, but consumes the
QuotesOrderService of the stock market.

i QuotesPortalService 1

Bank Company 2 S. -
Authenticate
(Signature)

Fig. 2. Illustration of the stock trading service composition including the signature-
based authentication feature as a single module.



Since different clients have different needs, the service providers must en-
sure that the different and varying non-functional requirements are satisfied,
for example security, transaction support, load balancing, priority processing
and stepwise feedback. In our example the bank customers can obtain different
variants of the stock trading service composition by selecting features tailored
to their preferences. For instance, a bank can offer to their customers several
signature-based authentication options from which they can choose one, based
on the different algorithms (e.g. SHA1withDSA). In the same way the stock mar-
ket will negotiate with the different bank companies about the message carrier,
the used protocols or which trusted third party (TTP) will be used. The stock
trading service in Fig. 2 includes a signature-based authentication feature, ap-
plied on the connection between the stock market and the settlement company.
This feature affects both the service consumer, to sign the messages, and the
service provider, to perform the verification of the signatures. This clearly illus-
trates that a single feature module, consisting of client and server functionality,
can affect multiple services in a service composition.

However, each company in a cross-organizational service network has its own
IT administration and trust domain, and will not allow external parties to add or
update feature implementations. The services provided by the different partners
are black boxes, independently maintained by the company’s own administrators.
This black-box scenario hinders the feature modularization and composition in a
cross-organizational context [1]. Moreover, since the services are loosely-coupled,
the different parties can use different service platforms, programming languages
and feature composition techniques (e.g. Java and .NET platforms).

Therefore a feature cannot be condensed into a single module any more
and should be applied in a distributed and heterogeneous way. Cross-organiza-
tional features need to be split up into consumer- and provider-side parts that
respectively fulfill the service consumer and service provider responsibilities. A
uniform high-level representation of those features is necessary to be able to share
them in a cross-organizational and heterogeneous application domain or service
network. Further we need a coordination middleware to dynamically activate
the appropriate feature implementations throughout the service composition in
a consistent way.

3 Related Work

This paper will tackle the problem statement by combining and improving two
bodies of work. On the one hand, the body of work on cross-organizational
coordination architectures; on the other hand, dynamic software composition
technology in particular aspect-oriented middleware.

Cross-organizational coordination architectures. A core tenet of the body of
research on cross-organizational coordination architectures is a multi-layered ar-
chitecture distinguishing between policy and mechanism. In previous work we
have defined a reference model [28] for classifying the different approaches. In
general, a cross-org coordination architecture consists of an agreement language



for specifying agreements (either contract- or policy-based) and a coordination
middleware for establishing agreements and monitoring these for violations. An
agreement between a service consumer and provider specifies the rules of engage-
ment, that must be complied with by service consumer and service provider. For
example, agreements specify the flow of interactions and message types to be ex-
changed (BCL [18]), modal constraints (i.e. authorizations, obligations, prohibi-
tions, timings (Ponder [4])), QoS requirements (GlueQoS [29]), usage of protocols
and standards (T-BPEL [26]). Secondly, the underlying coordination middleware
supports establishing agreements between client and server dynamically, and to
enforce the agreements or detect violations against it. These architectures, how-
ever, are not designed for user-specific customization of shared service instances
and the consistent deployment of distributed and heterogeneous software fea-
tures throughout cross-organizational service compositions.

Aspect-oriented middleware. Aspect-oriented software development (AOSD) [6]
has been put forward as a possible solution to address the problem of crosscutting
(often non-functional) concerns. In addition, AOSD is often applied to enable
modularization and composition of features [17,15,14].

Aspect-oriented frameworks [21,9,24,12,23,22] have played a key role in the
modularization of middleware platforms: these have evolved from a monolithic
platform with a declarative configuration interface towards an architecture that
is able to plug application-specific or user-specific extensions on demand. Current
aspect-oriented frameworks also support dynamic aspect weaving in a reliable
and atomic manner [19,27]. These AO techniques make these platforms therefore
ready for deployment in usage contexts where a shared service instance can
be dynamically customized to customer-specific requirements by dynamically
weaving in desired features. In a cross-organizational context, however, current
AO technology fails to offer coordinating mechanisms for deploying multiple
aspect modules across multiple organizations and heterogeneous platforms.

4 Aspect-Based Architecture for Cross-Organizational
Composition

This section describes the aspect-based coordination architecture enabling dy-
namic composition of cross-organizational features. Figure 3 illustrates our ap-
proach underlying the architecture. Similarly to the research on cross-organi-
zational coordination architectures, our architecture assumes that a conceptual
model for cross-organizational features is agreed upon between all organizations
within a particular domain or a specific service network. This conceptual model
defines a feature ontology, a feature model [11] in fact, shared by all organi-
zations involved, for naming and defining the different features and their al-
ternative implementation strategies. Next, the feature ontology is mapped to
an aspect-based feature implementation within each organization which can use
an AO-technology of its choice. Subsequently, a service consumer can then ex-
press user-specific feature preferences when binding to a service provider. An
underlying coordination middleware will ensure that the appropriate feature im-



plementations are activated dynamically throughout the service composition in
a consistent manner at the right moment, driven by metadata.

P Agreement -~
< T >
Consumer Provider
Organization PLae - Organization
___________ Aspect-based Feature
(preferences}/1 ------- Implementation Mapping
If
4 1 eatures Consumer application Provider application

4
4

U
L Vv » Feature

request Implementations

<metadata>>
Feature

Implementations
by Provider

by Consumer

End user

4

. .
. Dynamic 1
Activation

Fig. 3. Overview of the approach.

We will now explain the architecture in more detail. First, the high-level,
technology-independent feature ontology is presented. Next, we describe the
aspect-based feature implementation mapping. Thereafter it is presented how
users can specify customization requirements through feature policies. Finally
we present the design of our coordination middleware. As a running example we
will use the example of dynamically composing security features such as authen-
tication and non-repudiation in the stock trading service composition.

4.1 High-level Feature Ontology

The conceptual model in our approach for specifying cross-organizational fea-
tures consists of a high-level feature ontology. This feature ontology should be
abstract and independent from the aspect-based implementation (the computa-
tional model) to enable that different organizations in the service network can
implement the same features differently depending on their choice of implemen-
tation platform and composition technology.

Within a particular domain, for example e-finance domain, a standard for
non-functional features (e.g. security) can be agreed upon. Figure 4 presents
an example of a feature ontology for security features based on existing stan-
dards [8,20,2]. Security protection breakdowns into authentication, authoriza-
tion, audit, availability, confidentiality, integrity and non-repudiation. We also
itemized some possible feature implementation strategies, based on the different
algorithms (e.g. SHA1withDSA for signature-based authentication).

A feature node within the ontology consists of a feature identifier, a unique
name for referring to that feature, and a high-level, technology-independent fea-
ture contract about the intended behavior of the feature and the roles that
different parties involved have to play. These roles are described by a name



Non-functional requirements:

Security ‘ ‘ Persistence ‘ Transactions

Protection

Assurance

‘ Access Control

‘ Accountability ‘

TripleDES MD5 SHAlwithDSA tsignalureBasedNR
AES SHA-1 SHA1withRSA

Availability

N

‘ Confidentiality ‘ Audit

Integrity ‘ ‘ Authorization ‘ Service Continuity ‘ ‘ Disaster Recovery

Fig. 4. Example of a feature ontology for the stock trading composition.

(e.g. Service Consumer) and a set of responsibilities that specify constraints on
behavior and interfaces. Furthermore, composition rules can be specified that
prescribe which features depend on other features and which features can’t be
executed during the same request due to feature interference.

For example, the SignatureBasedNR non-repudiation feature (see Fig. 4)
defines two roles: a service consumer who retrieves the customer account in-
formation, and a service provider responsible for securely logging the customer
account, the name and arguments of the request, and the cryptographic sig-
nature of the message. The service provider role requires a CustomerAccount
attribute, which will be provided by the service consumer role. There is also a
dependency rule necessary that prescribes that SignatureBasedNR requires the
SHA1withDSA authentication feature to provide a Signature attribute.

Currently we have not yet designed a concrete language for representing
feature contracts (We expect though that such feature contract language would
be based on existing feature modeling techniques for services such as Service
Diagrams [7].). We do offer a declarative specification language for representing
feature identifiers and roles from the ontology and their mapping to specific
feature implementations.

4.2 Aspect-Based Feature Implementation Mapping

The mapping between the high-level feature ontology and the aspect-based im-
plementations is specified on the level of the internal processes and data, hiding
the implementation details for external parties. By capturing the semantics of
the features in a high-level feature ontology, the different features can be im-
plemented independently by each of the service providers using their favorite
service platform and AO-composition technology. Hence, the different services
in the network may have their own optimized aspect-based implementations
of the different features, and the most appropriate feature implementation in
each service may depend on environmental circumstances. However, the feature
implementations have to satisfy certain constraints, enforced by the feature on-



tology. In addition, the implementation of the different features and the software
composition strategy are open for adaptation by each of the local administrators.

The use of AOSD [6] enables a clean separation of concerns, in which the
core functionality of a service is separated from any feature behavior. Therefore
features are implemented separately from each other as composite entities con-
taining a set of aspect-components, providing the behavior of the features (so
called advice). This advising behavior can be dynamically composed on all the
components of a service — at consumer-side and at provider-side. The aspect-
components of the features are composed by means of declarative specifications
in the form of AO-compositions: these specify on which elements of the service
platform the aspect-components must be applied.

Listing 1.1. Example of a feature implementation mapping.

featureImplMapping SHAlwithDSAImpl {
implements: SHAlwithDSA;
role: ServiceConsumer;
ao—composition {
id: SHA1lwithDSASigning;
pointcut {
kind: execution;
componenttype: *;
componentinstance: x;
interface: ITransport;
method: sendMessage;

advice {

comptype: SHAlwithDSASignature;
interface: ISignature;

method: sign;

13}

Each feature implementation mapping within a specific organization is de-
scribed by means of a declarative specification that specifies: (i) the feature
and role that is implemented and (ii) a set of AO-compositions to integrate the
feature into the internal processes and data of the organization. Such an AO-
composition specifies a pointcut and a set of advices to apply. Listing 1.1 presents
an example of a feature implementation mapping for the service consumer role of
the SHA1withDSA signature-based authentication feature. The AO-composition
specifies that this feature imposes on the transport layer of the service plat-
form (pointcut) to digitally sign the messages before sending by means of the
SHA1withDSASignature aspect-component (advice).

4.3 Expressing User-Specific Preferences Through Feature Policies

The feature ontology is accessible to the end users of the service application and
allows them to select the desired set of features. A service consumer selects a
set of features by instantiating a feature policy. A feature policy is a declarative
configuration that specifies per service binding which features are desired for that
particular binding (see Listing 1.2). A service binding simply identifies the URI
and interface of the service provider in question. When user-specific preferences
dictate that a particular feature must be applied, the feature implementations of




the consumer and provider side will be dynamically composed for every message
exchanged through that service binding.

Listing 1.2. Example of a feature policy.

servicebinding {

URI: http://www.stocktradingexample.be;
port: StockTradingServiceSoapEndpoint;

features: SHAlwithDSA, SignatureBasedNR;

}

4.4 Coordination Architecture

In order to process user requests in a consistent manner throughout the cross-
organizational service composition, coordination is needed between all partici-
pating services. To achieve this coordination, every request is tagged with extra
meta information, specifying the set of features corresponding to user-specific
preferences. This metadata propagates with the message flow initiated by that
user request. As such, knowledge about the desired combination of features trav-
els with the message flow. The coordination middleware also ensures that the
appropriate feature implementations are activated dynamically when required.

Selection

— <<component>> - —
Consumer Application PolicyManager @ Provider Application

<<component>>§ A <<component>
ServiceConsume L

<<component>> El A
! '— AO-component>>
request add metadata << :
a :k/// FeatureSelection request |
I
'
'
'
'
: :
Service Consumer Platform Consumer Activation ProviderActivation Service Provider Platform
<<component>> <<component>> E
<<AO-component>> ProviderF
C AO-F k 14 C ivati N Provider AO-Framework
la -
depjloy . |
\I/ 1
<<component>> feplo}
<<component>> @ <<AO-component>> ™
C ‘Featur i . :

R read metadata
Distribution Middleware Network connection D butio ddleware

— consumer request

aspect interception — - — request to deploy features
Fig. 5. The coordination middleware architecture.

Figure 5 presents our coordination middleware, built on top of an AO-
framework. The coordination middleware relies on this AO-framework to support
dynamic AO-composition. The runtime composition of cross-organizational fea-
tures throughout service compositions consists of two main phases: selection and
activation. These phases are represented in the architecture as modular pack-
ages: the Selection and ConsumerActivation package are part of the consumer
service platform; the ProviderActivation package is included into the provider
service platform. In the rest of this subsection we first explain the selection phase.
Then the general structure and operation of the activation phase are described.




Selection of Cross-Organizational Features. The machinery for the selection
phase of the coordination middleware consists of the FeatureSelection aspect
and the PolicyManager component. FeatureSelection is imposed onto the appli-
cation layer where it intercepts the requests to remote services that are subject
to a certain feature policy (cf. Listing 1.2). The PolicyManager processes the
feature policies and stores which features apply to each service binding. These
data structures are hash maps with constant access time. The FeatureSelection
aspect queries the PolicyManager to determine which features apply for a given
service binding, and annotates the intercepted messages with the feature identi-
fiers of the required features. It also keeps track of which service bindings have
already been customized: only for new service bindings the PolicyManager is
queried for required features.

Activation of Selected Cross-Organizational Features. After the necessary
cross-organizational features are selected, those features need to be activated.
The activation phase of the coordination middleware consists of the ConsumerAc-
tivation and ProviderActivation aspects and the ConsumerFeatureMapping
and ProviderFeatureMapping components. The feature mapping components
store a hash map of feature implementations and their associated AO-composi-
tions. This allows to query the appropriate feature implementation based on a
given feature identifier. ConsumerFeatureMapping and ProviderFeatureMapping
handle respectively the service consumer and service provider roles of the fea-
tures. The consumer-side ConsumerActivation aspect imposes on the consumer
service platform; at the server-side the ProviderActivation aspect intercepts all
incoming messages. These locations are the first joinpoints — thus the entry
points — in the call flow of the remote requests, at the consumer-side middleware
stack as well as the provider-side middleware stack.

ConsumerActivation intercepts all messages and checks them for metadata
with selected features. The selected features are compared with the features
currently applied on the particular service binding to see whether any changes
are necessary. If a change is necessary, ConsumerActivation queries the Con-
sumerFeatureMapping component for the descriptions of the AO-compositions
for the selected features and uses this information to compose the necessary
aspect-components. The activation aspect will then send a request to the AO-
framework to deploy those aspect-components.

The last step in the feature activation mechanism is notifying the provider-
side about the feature change. This way we ensure the features are applied
throughout the service composition in a consistent manner. Therefore the feature
updates are added as a piggyback to the message.

At the provider-side, the ProviderActivation aspect intercepts the incoming
requests and checks them for feature updates. If necessary, the new features
are activated. The activation at the provider-side is analogous to the consumer-
side. Concretely, ProviderActivation first inspects the currently activated cross-
org features of the service binding, then it applies the feature changes using
the feature implementation mappings retrieved from ProviderFeatureMapping.
Incoming requests are also verified to be compliant with the feature policies: the



messages are inspected for unsupported or missing features. These messages are
not accepted, and an exception message is returned.

Since the activation aspects check all requests, cross-organizational features
can easily be deployed within a per message scope. Therefore the FeatureSelec-
tion aspect will need to query the PolicyManager for all intercepted messages.
The activation aspects will ensure that features will be applied only once per
service binding.

5 Evaluating the Performance Overhead

The evaluation aims to measure the absolute and relative performance overhead
that our coordination architecture introduces on the overall responsiveness of
service applications. In particular we want to measure the overhead introduced
by the Selection and Activation components. Before we present the evaluation
of our architecture, we briefly discuss our prototype implementation.

As a proof of concept, a prototype of the coordination architecture has been
implemented as a framework using Java SE 6. It is built on top of our own aspect-
component framework which offers support for dynamic AO-composition. The
Java dynamic proxy technology is used to intercept invocations and call advices.
For all declarative specifications we used XML files.

The coordination architecture is developed as an extension to the service
platform, enabling the dynamic composition of cross-organizational features in
distributed applications. Since it is a modular and aspect-based extension, the
coordination middleware can be omitted or removed when needed.

Our current prototype relies on an aspect-component framework that also
supports weaving various middleware features in the distribution layer. We mea-
sured the roundtrip by comparing a version of our distribution layer where all
features are statically composed, against one where all features are dynami-
cally woven using our coordination architecture. In particular we focused on one
security feature for the distribution layer: the implementation of a signature-
based authentication feature (for signing and verifying method invocations) as
described in the running example of this paper.

We have used a round-trip latency benchmark as presented in [5] which
requires minimal processing time. This way the processing time influences the
results as minimal as possible and the results show clearly the worst-case runtime
overhead of the coordination architecture. As described in [5], the benchmark
application is composed of two JVM applications: a client and a server. The
client invokes a remote service which implements an empty ping method with
no arguments and a void return value. The benchmark scenario is configured as
follows. The remote service and the client run into two JVMs on different hosts !
in the same LAN. 100 benchmark series are executed sequentially. For all series,
20000 warmup operations are performed. Next, 20 steps of 5000 invocations are

! The benchmark tests were performed on systems with an Intel Core 2 Duo 3.00 GHz
processor and 4 GB memory, running Ubuntu 8.04 (hardy) and OpenJDK Runtime
Environment version 1.6.0.



measured. For each step an average execution time is logged. So 2000 average
measures (100 series * 20 steps) are obtained for each benchmarked distribution
layer, representing 10 million operations.

This benchmark application is extended with the signature-based authenti-
cation feature and executed on the two versions of our distribution layer: the
default version and the version extended with our coordination architecture. In
both cases the authentication feature will be deployed from the beginning.

The results of the round-trip latency benchmark test are presented in Fig. 6(a)
and indicate that the overhead introduced by our coordination middleware is
negligible. We can achieve these good results because the Selection aspect in
our coordination architecture keeps track of which service bindings have already
been customized. In addition the feature activation mechanism only notifies the
provider-side when there are updates. In the current benchmark setup where the
feature is deployed from the beginning, this will result in very few updates.

To measure the relative performance overhead of our coordination architec-
ture, we compared our prototype against standard middleware platforms: Java
RMI [25] and JBoss Remoting [10], using the default benchmark application
(without security features). Java RMI is a minimal distribution layer with al-
most no customization capabilities. JBoss Remoting is a distribution layer with a
standardized interface for pluggable transport and serialization layers. The three
middleware platforms all use Java serialization and TCP sockets, but differ in
their composition architecture: hard-coded (Java RMI), object-based framework
(JBoss Remoting), or aspect-component framework (our approach).
time / operation (in ms)

1200 mm ; # operations / s (more is better)
1428

10,00 4 JBoss Remoting |—|-|
1697
Coordination Architecture |—|

1753

Java RMI

- A T T T 7
Static Coordination 500 1000 1500 2000

Fig. 6. Subfigure (a) presents the average time (in ms) needed to execute a ping op-
eration in the two versions of the distribution layer, with the signature-based authen-
tication feature activated. Subfigure (b) shows the average number of minimal method
operations per second in the different distribution middlewares. The box plots at the
end of the bars represent respectively the minimum, average and maximum during the
different benchmarks.

The results of the second benchmark are used to calculate the average number
of operations per second (see Fig. 6(b)) in the different distribution middlewares.
These results show that Java RMI has the best performance (as expected), but
more importantly, our coordination architecture and distribution layer intro-
duce a relative overhead (in comparison to Java RMI) that is 6 factors smaller
than that of JBoss Remoting. These initial results indicate that the overhead
introduced by our coordination middleware is acceptable, especially in a cross-



organizational context where long-running and asynchronous interactions more
frequently occur than synchronous interactions with timing constraints.

6 Conclusion

Cross-organizational customization of services has not been well addressed in
the current state-of-the-art. In this paper we presented an aspect-based coor-
dination architecture for dynamic composition of cross-organizational features
in distributed software systems. A high-level feature ontology specifies for each
feature the responsibilities of service consumer and provider. Using this feature
ontology we are able to map feature identifiers to aspect-based feature imple-
mentations, allowing each organization to implement the features independently
using an AOP technology of its choice. The underlying coordination middleware
ensures that user-specific feature preferences are processed in a consistent man-
ner throughout the cross-organizational service composition. Our architecture
has been validated in a prototype. We have benchmarked this implementation
and it shows acceptable performance.

References

1. Apel, S., Kaestner, C., Lengauer, C.: Research Challenges in the Tension Between
Features and Services. In: SDSOA ’08: 2nd International Workshop on Systems
Development in SOA Environments. pp. 53-58. ACM (2008)

2. Beznosov, K.: Engineering Access Control for Distributed Enterprise Applications.
Ph.D. thesis, Florida International University, Miami, Florida, USA (July 2000)

3. Cohen, S., Krut, R. (eds.): Proceedings of the First Workshop on Service-Oriented
Architectures and Software Product Lines. Carnegie Mellon University - Software
Engineering Institute (May 2008)

4. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The Ponder Policy Specification
Language. In: POLICY ’01: International Workshop on Policies for Distributed
Systems and Networks. pp. 18-38. Springer (2001)

5. Demarey, C., Harbonnier, G., Rouvoy, R., Merle, P.: Benchmarking the Round-Trip
Latency of Various Java-Based Middleware Platforms. In: CPM ’04: The OOPSLA
2004 Component and Middleware Performance Workshop. pp. 7-24. Studio Infor-
matica, Vancouver, British Columbia, Canada (2004)

6. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Develop-
ment. Addison-Wesley, Boston (2004)

7. Harhurin, A., Hartmann, J.: Service-Oriented Commonality Analysis Across Exist-
ing Systems. In: SPLC ’08: 12th International Software Product Line Conference.
pp- 255-264 (2008)

8. International Organization for Standardization (ISO): Information Processing Sys-
tems - Open Systems Interconnection - Basic Reference Model - Part 2: Security
Architecture (ISO 7498-2:1989) (1989)

9. JBoss Community: JBoss AOP. http://www.jboss.org/jbossaop/

10. JBoss Community: JBoss Remoting. http://www.jboss.org/jbossremoting/

11. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: Feature-
Oriented Domain Analysis (FODA) Feasibility Study. Tech. Rep. 21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA (1990)



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Lagaisse, B., Joosen, W.: True and Transparent Distributed Composition of
Aspect-Components. In: Middleware ’06: 7th ACM/IFIP/USENIX International
Conference on Middleware. vol. 4290/2006, pp. 41-62. Springer (November 2006)
Lee, J., Muthig, D., Naab, M.: An Approach for Developing Service Oriented Prod-
uct Lines. In: SPLC ’08: 12th International Software Product Line Conference. pp.
275-284 (2008)

Lee, K., Kang, K.C., Kim, M., Park, S.: Combining Feature-Oriented Analysis and
Aspect-Oriented Programming for Product Line Asset Development. In: SPLC ’06:
10th International Software Product Line Conference. pp. 10-112 (2006)
Loughran, N.; Rashid, A.: Framed Aspects: Supporting Variability and Configura-
bility for AOP. In: Software Reuse: Methods, Techniques and Tools. pp. 127-140.
Springer (2004)

Medeiros, F.M., de Almeida, E.S., de Lemos Meira, S.R.: Towards an Approach
for Service-Oriented Product Line Architectures. In: Third Workshop on Service-
Oriented Architectures and Software Product Lines (SOAPL). pp. 151-164 (2009)
Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Pro-
gramming and Aspects. In: SIGSOFT ’04/FSE-12: ACM SIGSOFT International
Symposium on Foundations of Software Engineering. pp. 127-136. ACM (2004)
Milosevic, Z., Linington, P.F., Gibson, S., Kulkarni, S., Cole, J.: Inter-Organisation-
al Collaborations Supported by E-Contracts. In: Building the E-Service Society.
pp. 413-429. Springer (2004)

Nicoara, A., Alonso, G.: Dynamic AOP with PROSE. In: ASMEA ’05: Workshop
on Adaptive and Self-Managing Enterprise Applications. pp. 125-138 (2005)
OMG: CORBA Security Services Specification. http://www.omg.org/cgi-bin/
doc?formal/02-03-11.pdf (March 2002), Version 1.8

Pawlak, R., Seinturier, L., Duchien, L., Florin, G.: JAC: A flexible solution for
aspect-oriented programming in Java. In: REFLECTION ’01: 3rd International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns.
pp. 1-24. Springer-Verlag (2001)

Rouvoy, R., Eliassen, F., Beauvois, M.: Dynamic planning and weaving of depend-
ability concerns for self-adaptive ubiquitous services. In: SAC ’09: ACM symposium
on Applied Computing. pp. 1021-1028. ACM (2009)

Soldner, G., Schober, S., Schroder-Preikschat, W., Kapitza, R.: AOCI: Weaving
Components in a Distributed Environment. In: DOA ’08: Distributed Objects and
Applications. pp. 535-552. Springer (2008)

SpringSource: AOP with Spring. http://static.springsource.org/spring/
docs/3.0.x/spring-framework-reference/html/aop.html

Sun Microsystems: Java RMI. http://java.sun.com/javase/technologies/
core/basic/rmi/

Tai, S., Mikalsen, T., Wohlstadter, E., Desai, N., Rouvellou, I.: Transaction Poli-
cies for Service-Oriented Computing. Data & Knowledge Engineering 51(1), 59-79
(2004)

Truyen, E., Janssens, N., Sanen, F., Joosen, W.: Support for Distributed Adapta-
tions in Aspect-Oriented Middleware. In: AOSD ’08: 7th International Conference
on Aspect-Oriented Software Development. pp. 120-131. ACM (2008)

Truyen, E., Joosen, W.: A Reference Model for Cross-Organizational Coordina-
tion Architectures. 12th International Conference on Enterprise Distributed Object
Computing Workshops 0, 252-263 (2008)

Wohlstadter, E., Tai, S., Mikalsen, T., Rouvellou, I., Devanbu, P.: GlueQoS: Mid-
dleware to Sweeten Quality-of-Service Policy Interactions. In: ICSE ’04: 26th In-
ternational Conference on Software Engineering. pp. 189-199 (2004)



