
Replica Placement in Peer-Assisted Clouds: an

Economic Approach

Ahmed Ali-Eldin and Sameh El-Ansary

Center of Informatics science, Nile University
ahmed.alieldin@nileu.edu.eg,sansary@nileuniversity.edu.eg

Abstract. We introduce NileStore, a replica placement algorithm based
on an economical model for use in Peer-assisted cloud storage. The algo-
rithm uses storage and bandwidth resources of peers to offload the cloud
provider’s resources. We formulate the placement problem as a linear
task assignment problem where the aim is to minimize time needed for
file replicas to reach a certain desired threshold. Using simulation, We
reduce the probability of a file being served from the provider’s servers
by more than 97.5% under realistic network conditions.

Keywords: Peer to peer computing; cloud storage

1 Introduction

Cloud storage systems are online storage systems where data is stored on groups
of virtual servers rather than dedicated servers. The storage provider assigns
resources for a user according to the current requirements of the customer.
Cost of bandwidth is the strongest challenge facing cloud storage [1]. One of the
answers to this challenge is to build a peer-assisted cloud where Peers’ resources
are used to offload the storage servers. The provider distributes replicas of the
data through the network to reduce the cost of operation, provide fault tolerance
and provide a reliable service at reduced costs.

Providing guarantees on the availability and durability in a system depend-
ing on volatile peers is hard. Availability is the ability of a peer in the network
to retrieve a data object at any time. Durability of a data object represents the
time the object is not permanently lost. A P2P storage system gives probabilistic
guarantees on the durability of 97% of the data [2]. In a peer-assisted approach,
data will always be stored on the servers of the storage service provider so there
will also be guarantees on availability. In this paper we focus on the problem
of replica placement in peer-assisted cloud storage. Replica placement addresses
the problem of where to place the replicas created by the system to maintain
highest levels of durability and availability of the data stored. The main con-
tributions in this work are: 1- We introduce an economical formulation for the
replica placement problem.2- We introduce Nilestore, a Peer-assisted cloud stor-
age network protocol that offloads the service provider’s servers. We show that
using Nilestore can results in at least 75% improvement over using a random
placement algorithm.

2 Replica Placement in Peer-Assisted Clouds: an Economic Approach

2 Related work

In [3], a peer-assisted cloud storage system deployed in china is introduced.
The authors describe the system design and show some measurements. Our
work can be considered as an extension to their system as FS2you uses random
placement for the replicas. Toka et al.[1], prove that using this peer-assisted
clouds can provide a performance comparable to that of a centralized cloud at a
fraction of the cost. For placement, they cluster peers depending on their online
behavior. Our system takes into account the contributed storage, bandwidth and
the scarcity of the data when doing data placement and aims at offloading the
servers of the service provider.

Oceanstore [2] and Farsite [4] are examples of P2P storage systems. In [5],
the authors prove that when redundancy, data scale, and dynamics are all high,
the needed cross-system bandwidth is unreasonable. A similar conclusion was
presented in [4]. These results makes peer-assisted cloud storage systems a more
attractive approach as the storage nodes in the cloud are less dynamic compared
to the P2P nodes.

3 Replica placement and Economics

The problem of replica placement in the context of peer-assisted cloud storage
can be defined as follows: Given a group of peers in a cloud storage network where
each peer have some data for replication, free storage and unused bandwidth.
Make r replicas of the data of each peer using the contributed space of the
other peers in a way that increase the amount of data retrieved from the peers
compared to that retrieved from the servers.

The economic problem is the problem involving the allocation of scarce re-
sources among different alternatives or competing ends [6]. Replica placement is
similar to the economic problem as there are scarce resources (bandwidth and
storage) that can be allocated between the different peers-different alternatives.
Replica management economies are systems where the peer acquires real or vir-
tual money for hosting replicas of others. The machines will use this money to
buy storage space for its own replicas [7]. We consider the problem of replica
placement in peer-assisted storage clouds as an economical problem. We try to
solve it using a mixture of two types of auctioning; first-price sealed-bid auc-
tioning and double auctioning [8]. In first-price sealed-bid auction, each buyer
submits one bid for a resource with no knowledge of the bids of the other buy-
ers. The highest bidder wins and gets the resource for the price he specified in
his bid. In a double auction, bidders submits their bids while sellers submit the
items (resources) each will sell at anytime during the trading period. If at any
time any of the bids is matching with any of the sold items (quantity of sold
resources), the trade is executed immediately.

In our Nilestore, we consider three main players; the cloud provider as the
auctioneer and peers who play a dual role; sellers who contribute resources to get
money and use it for buying backup as bidders. All peers send a sealed bid to the

Replica Placement in Peer-Assisted Clouds: an Economic Approach 3

cloud provider containing the amount of contributed resources and the amount
of needed resources. If fairness is to be imposed, a peer is not allowed to send
a bid in which the amount of resources he contributes is less than the amount
of resources he buys. A peer can place a bid where his contributed resources
are more than the amount of resources he plans to buy in order to be sure that
he has a higher bid than the others. The provider receiving this bid during a
trading period will match the different bidders with the different sellers in a way
that maximizes the utility.

4 Players design

In Nilestore, the allocation server holds an auction every τ time units. The
peers send sealed bids specifying data blocks to be uploaded including any data
blocks hosted, amount of storage to be contributed to the system, peer’s upload
bandwidth, peer’s download bandwidth, a list of hashes of the data objects and
the amount of contributed resources. A data block is replicated r times to provide
higher availability. The list of hashes identify the replica count available from
each data object. Deduplication is achieved using the replica count of each data
object. After τ time units, the server does not accept more bids for the current
trading period. Any late bids are stored for the evaluation during the next round
of bids.
The server converts the replica placement problem to a task assignment problem
[9]. We calculate the profit of allocating the resources of a seller peer to every
available buyer.

4.1 The profit function

The profit function between a buyer peer pi and a seller peer pj consists of three
multiplied terms. The three terms are:

1. The Feasibility of storage Sij: is responsible for capturing the feasibility

of storing the data of pi of size |B̂i| on the free space Fj on pj where B̂i

is the list of blocks that the buyer wants to replicate and |B̂i| is its size.
When coupling two peers based on the storage, we want to reduce the frag-
mentation thus we try to keep the blocks owned by a peer spatially on the
same machines. This allows a peer to contact a minimal number of peers
to retrieve all the data he owned. The system should look for best fit allo-
cation between the peers. In a system where fairness is important, A peer
contributes at least r times the size of data he initially wants to replicate.
If the peer chooses to increase his storage contribution, he will host more
blocks and eventually get a higher utility. The feasibility of storage is thus
calculated as follows:

Sij =
min(|B̂i|, Fj)

max(|B̂i|, Fj)
(1)

4 Replica Placement in Peer-Assisted Clouds: an Economic Approach

2. The Feasibility of transfer Tij: This term adds the bandwidth consider-
ation to the utility calculations. We to couple peers such that their band-
widths is maximally utilized to reduce the transfer time . Fairness is imposed
by enforcing a ratio between the upload bandwidth of pi and the download
bandwidth of a peer. The term is:

Tij =
min(ui, dj)

max(ui, dj)
(2)

3. The average scarcity of the blocks of a buyer Hun(pi) : This term
represents the scarcity of the data block of a peer pi. we define the scarcity
of a peer to be the average number of replications that its blocks need. That
is,

Hun(pi) =

∑
∀bik∈B̂i

r − R(bik)

|B̂i|
(3)

where B̂i is the set of blocks owned by pi that needs replication, bik is a
single block on pi and R(bik) is the number of replicas available for block bik

in the network.

These three terms are multiplied to form the local profit and are fed into an
assignment engine which tries to find a suboptimal allocation policy that maxi-
mizes the profit for the system while satisfying the needs of every buyer. The goal
is to reduce consumption of the bandwidth of all different peers while reducing
the load on the storage servers. We started experimenting using the Hungarian
algorithm [9] which proved not suitable because of its complexity O(n4). We
designed a greedy suboptimal task assignment engine that has lower complexity
of O(n log n) where n is the number of peers.

4.2 Solving the task assignment problem

The algorithm shuffles the list of workers randomly. The first worker on the top
of the list is picked and all of the jobs that he can perform are sorted according
to decreasing profit. The job with the highest profit is assigned to the selected
worker and the job’s name is added to a list containing the names of all the
assigned jobs. Second worker on the list is then picked, the jobs he can do
are sorted and is assigned to the non-assigned job with highest profit. This is
repeated for every worker in the workers list such that no job is assigned to two
workers.

5 Simulation and results

We built a discrete event simulator that simulates peer-assisted cloud storage
networks. We used a group of P2P workload studies to come to a workload
model. Peer bandwidths were obtained from [10]. We generate for each peer a
number of unique objects. The contributed free storage for a peer is set randomly

Replica Placement in Peer-Assisted Clouds: an Economic Approach 5

 0

 0.05

 0.1

 0.15

 0.2

 1 2 3 4 5 6 7 8

ra
tio

 o
f f

ile
s f

et
ch

ed
 fr

om
 th

e
sto

ra
ge

 se
rv

er
s

τ

Nilestore Random Placement

(a) Effect of changing the trading pe-
riod on the performance on Nilestore
versus random placement

 0

 0.05

 0.1

 0.15

 0.2

 3 4 5 6 7 8

ra
tio

 o
f f

ile
s f

et
ch

ed
 fr

om
 th

e
sto

ra
ge

 se
rv

er
s

r

Nilestore Random Placement

(b) The effect of increasing the num-
ber of replicas on performance

Fig. 1. Nilestore performance

between r and 2r times the size of his data . We used [11]and [12] to quantify
the peer Join/Leave rates.

We conducted experiments to evaluate Nilestore versus random placement.
To the best of our knowledge, random placement is the only approach for replica
placement used in the peer-assisted storage literature. In random placement, a
peer replicates his data on a peer chosen randomly from the peers available
in the network. Figure 1(a) shows the ratio of data blocks unavailable after
20000 bidding rounds with trading periods varying between one minute and eight
minutes. The figure shows that using Nilestore improves the system performance
by 70 to 90%. If τ is small, many of the peers will not be able to send their
bids and the assignment algorithm will have less options. If τ is chosen to be
very large, Nilestore will react to failures slowly risking the loss of the objects
that need replication. It can be seen from the figure that choosing τ = 5 reduces
contact with the servers by almost 95%. Figure 1(b) shows the effect of increasing
the threshold r for the number of replicas made for each data block in the system.
Our simulation results conform with the previous results [12] on the number
of replicas needed. Figure 2 shows that 8 seconds are needed for making the
allocation when there are 1000 peers in the system.

6 Conclusion and Future work

In this work, we introduced Nilestore, a Peer-assisted cloud storage protocol that
offloads the resources of the cloud storage servers using the unused resources of
the peers subscribed to the storage service. A single copy of each data object is
stored on the storage servers to ensure durability and availability and duplicates
are distributed across the network. Peers always try to retrieve data from the
network before contacting the servers. In the future we plan to distribute the

6 Replica Placement in Peer-Assisted Clouds: an Economic Approach

 0

 2

 4

 6

 8

 10

 12

 14

 0 5000 10000 15000 20000 25000 30000

Ti
m

e
re

qu
ire

d
fo

r a
ss

ign
m

en
t

Time in minutes

Time for computation round

(a) Time required for the replica
placement computation using Nile-
store for 1000 peers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 5000 10000 15000 20000 25000 30000

Ti
m

e
re

qu
ire

d
fo

r a
ss

ign
m

en
t in

 se
co

nd
s

Time in minutes

Time for computation round

(b) Time required for the replica
placement computation using ran-
dom placement for 1000 peers

Fig. 2. The time of allocation in Nilestore and using a random placement approach

allocation process and to deploy the system in real-life and consider the trust
levels of the peers.

References

1. L. Toka, M. Dell’Amico, and P. Michiardi, “Online Data Backup: A Peer-Assisted
Approach,” in Peer-to-Peer Computing (P2P), 2010 IEEE Tenth International
Conference on. IEEE, 2010, pp. 1–10.

2. J. Kubiatowicz, “Extracting guarantees from chaos,” Communications of the ACM,
vol. 46, no. 2, pp. 33–38, 2003.

3. Y. Sun, F. Liu, B. Li, B. Li, and X. Zhang, “Fs2you: Peer-assisted semi-persistent
online storage at a large scale,” in INFOCOM 2009, IEEE. IEEE, 2009, pp.
873–881.

4. W. Bolosky, J. Douceur, and J. Howell, “The farsite project: a retrospective,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 2, pp. 17–26, 2007.

5. C. Blake and R. Rodrigues, “High availability, scalable storage, dynamic peer net-
works: Pick two,” in Proceedings of the 9th conference on Hot Topics in Operating
Systems-Volume 9. USENIX Association, 2003, p. 1.

6. J. Buchanan, “What should economists do?” Southern Economic Journal, vol. 30,
no. 3, pp. 213–222, 1964.

7. D. Geels and J. Kubiatowicz, “Replica management should be a game,” in In Proc.
of the 10th European SIGOPS Workshop. ACM, 2002.

8. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, “Economic models for re-
source management and scheduling in grid computing,” Concurrency and compu-
tation: practice and experience, vol. 14, no. 13-15, pp. 1507–1542, 2002.

9. R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems. Philadelphia,
PA, USA: Society for Industrial and Applied Mathematics, 2009.

10. D. K. Correa, “Assessing Broadband in America: OECD and ITIF Broadband
Rankings,” SSRN eLibrary, 2007.

11. M. Steiner, T. En-Najjary, and E. W. Biersack, “Analyzing peer behavior in kad,”
Institut Eurecom, October 2007, Tech. Rep.

12. B.-G. Chun, F. Dabek, A. Haeberlen, E. Sit, H. Weatherspoon, M. F. Kaashoek,
J. Kubiatowicz, and R. Morris, “Efficient replica maintenance for distributed stor-
age systems,” in NSDI’06: Proceedings of the 3rd conference on Networked Systems
Design & Implementation. Berkeley, CA, USA: USENIX Association, 2006, pp.
4–4.

