
Modeling the Performance of Ring Based DHTs in the
Presence of Network Address Translators

John Ardelius1 and Boris Mejı́as2

1 Swedish Institute of Computer Science
john@sics.se

2 Université catholique de Louvain
boris.mejias@uclouvain.be

Abstract. Dealing with Network Address Translators (NATs) is a central prob-
lem in many peer-to-peer applications on the Internet today. However, most ana-
lytical models of overlay networks assume the underlying network to be a com-
plete graph, an assumption that might hold in evaluation environments such as
PlanetLab but turns out to be simplistic in practice. In this work we introduce
an analytical network model where a fraction of the communication links are un-
available due to NATs. We investigate how the topology induced by the model af-
fects the performance of ring based DHTs. We quantify two main performance is-
sues induced by NATs namely large lookup inconsistencies and increased break-
up probability, and suggest how theses issues can be addressed. The model is
evaluated using discrete based simulation for a wide range of parameters.

1 Introduction

Peer-to-peer systems are widely regarded as being more scalable and robust than sys-
tems with classical centralised client-server architecture. They provide no single point
of failure or obvious bottlenecks and since peers are given the responsibility to main-
tain and recover the system in case of departure or failure they are also in best case
self-stabilising.

However, many of these properties can only be guaranteed within certain strong
assumptions, such as moderate node churn, transitive communication links, accurate
failure detection and NAT transparency, among others. When these assumptions are not
met, system performance and behaviour might become unstable.

In this work we are investigating the behaviour of a peer-to-peer system when we
relax the assumption of a transitive underlying network. In general, a set of connections
are said to be non-transitive if the fact that a node A can talk to node B, and B can talk
to C does not imply that node A can talk to C. Non-transitivity directly influences a
system by introducing false suspicions in failure detectors since a node cannot a-priori
determine if a node has departed or is unable to communicate due to link failure.

In practice this study is motivated by the increasing presences of Network Address
Translators (NATs) on today’s Internet [1]. As many peer-to-peer protocols are designed
with open networks in mind, NAT-traversal techniques are becoming a common tool in
system design [13].

One of the most well studies peer-to-peer overlays, at least from a theoretic point of
view, is the distributed hash table (DHT) Chord [15]. Chord and other ring based DHTs
are especially sensitive to non-transitive networks since they rely on the fact that each
participating node needs to communicate with the node succeeding it on the ring in or-
der to perform maintenance. Even without considering NATs the authors of Chord [15],
Kademlia [10], and OpenDHT [12], experienced the problems of non-transitive con-
nectivity when running their networks on PlanetLab 3, where all participating peers
have public IP address. Several patches to these problems have been proposed [3] but
they only work with if the system has very small amount of non-transitive links, as in
PlanetLab, where every node has a public IP address.

In this work, we construct an analytic model of the ring-based DHT, Chord, running
on top of non-transitive network under node churn. Our aim is to quantify the impact a
non-transitive underlay network to the performance of the overlay application. We eval-
uate the systems working range and examine the underlying mechanisms that causes its
failure in terms of churn rate and presence of NATs. Our results indicate that it is possi-
ble to patch the Chord protocol to be robust and provide consistent lookups even in the
absence of NAT-traversal protocols. Our main contributions are:

– Introduction of a new inconsistency measure, Q, for ring based DHT’s. Using this
metric we can quantify the amount of potential lookup inconsistency for a given
parameter setting.

– Quantification of the load imbalance. We show that in the presence of NATs, nodes
with open IP addresses receive unproportional amounts of traffic and maintenance
work load.

– A novel investigation of an inherent limitation for the number of nodes that can join
the DHT ring. Since each node needs to be able to communicate with its successor
the available key range in which a node behind a NAT can join is limited.

– Evaluation of two modifications to the original Chord protocol, namely predecessor
list routing and the introduction of a recovery list containing only peers with open
IP addresses.

Throughout the paper we will use the words node and peer interchangeably. We
will also use the term NATed or expressions such as being behind a NAT for a node
behind a non-traversable NAT. It simply means that two nodes with this property are
unable to communicate directly. Section 2 discusses related work, which justifies our
design decisions for the evaluation model, which is discussed in Section 3. We present
our analysis on lookup-consistency and resilience in Sections 4 and 5 respectively. The
paper concludes by discussing some limitations on the behaviour of Chord and ring
based DHTs in general.

2 Related Work

Understanding how peer-to-peer systems behave on the Internet has received a lot of
attention in the recent years. The increase of NAT devices has posed a big challenge to

3 PlanetLab: An open platform for developing, deploying, and accessing planetary-scale ser-
vices. http://www.planet-lab.org

http://www.planet-lab.org

system developers as well as those designing and simulating overlay networks. Exist-
ing studies are mostly related to systems providing file-sharing, voice over IP, video-
streaming and video-on-demand. Such systems use overlay topologies different from
Chord-like ring, or at most they integrate the ring as one of the components to provide
a DHT. Therefore, they do not provide any insight regarding the influence of NAT on
ring-based DHTs.

A deep study of Coolstreaming [8], a large peer-to-peer system for video-streaming,
shows that at least 45% of their peers sit behind NAT devices. They are able to run the
system despite NATs by relying on permanent servers logging successful communica-
tion to NATed peers, to be reused in new communication. In general, their architecture
relies on servers out of the peer-to-peer network to keep the service running. A similar
system, PPLive, that in addition to streaming provides video-on-demand. Their mea-
surements on May 2008 [4] indicates 80% of peers behind NATs. The system also uses
servers as loggers for NAT-traversal techniques, and the use of DHT is only as a com-
ponent to help trackers with file distribution.

With respect to file-sharing, a study on the impact of NAT devices on BitTorrent [9]
shows that NATed peers get an unfair participation. They have to contribute more to the
system than what they get from it, mainly because they cannot connect to other peers
behind NATs. It is the opposite for peers with public IP addresses because they can con-
nect to many more nodes. It is shown that the more peers behind NATs, the more unfair
the system is. According to [5], another result related to BitTorrent is that NAT devices
are responsible for the poor performance of DHTs as “DNS” for torrents. Such conclu-
sion is shared by apt-p2p [2] where peers behind NATs are not allowed to join the DHT.
Apt-p2p is a real application for software distribution used by a small community within
Debian/Ubuntu users. It uses a Kademlia-based DHT to locate peers hosting software
packages [10]. Peers behind NATs, around 50% according to their measurements, can
download and upload software, but they are not part of the DHT, because they break it.
To appreciate the impact NAT devices are having on the Internet, apart from the more
system specific measurements referenced above, we refer to the more complete quan-
titative measurements done in [1]. Taking geography into account, it is shown that one
of the worst scenarios is France, where 93% of nodes are behind NATs. One of the best
cases is Italy, with 77%. Another important measurement indicates that 62% of nodes
have a time-out in communication of 2 minutes, which is too much for ring-based DHT
protocols. Being aware of several NAT-traversal techniques, the problem is still far from
being solved. We identify Nylon [6] as promising recent attempt to incorporate NATs in
the system design. Nylon uses a reactive hole punching protocol to create paths of relay
peers to set-up communication. In their work a combination of four kinds of NATs is
considered and they are being able to traverse all of them in simulations and run the
system with 90% of peers behind NATs. However, their approach does not consider a
complete set of NAT types. The NATCracker [13] makes a classification of 27 types of
NATs, where there is a certain amount of combinations which cannot be traversed, even
with the techniques of Nylon.

3 Evaluation Model

3.1 Chord model

Chord [15] is a called distributed hash table (DHT) which provides a key-value map-
pings and a distributed way to receive the value for a specific key, a lookup. The keys
belongs to the range [0 : 2K [(K = 20 in our case). Each participating node is re-
sponsible for a subset of this range and stores the values that those keys map to. It is
important that this responsibility is strictly divided among the participating peers to
avoid inconsistent lookups. In order to achieve this each node contains a pointer to the
node responsible for the range succeeding its own, its successor. Since the successor
might leave the system at any point a set of succeeding nodes are stored in a successor
list of some predefined length.

Lookups are performed by relying the message clockwise along the key range di-
rection. When the lookup reaches the node preceding the key it will return the identifier
of its successor as the owner of the key. In order to speed the process up some shortcuts
are created known as fingers. The influence of NATs to the fingers is limited and are
only discussed briefly in this work. Each nodes performs maintenance at asynchronous
regular intervals. During maintenance the node pings the nodes on its successor list and
removes those who have left the system. In order to update the list the node queries its
successor for its list and appends the successors id.

3.2 NAT model

In order to study the effect of NATs we construct a model that reflects the connectivity
quality of the network.

We consider two types of peer nodes: open peers and NATed peers. An open peer
is a node with public IP address, or sitting behind a traversable-NAT, meaning that it
can establish a direct link to any other node. A NATed peer is a node behind a NAT that
cannot be traversed from another NATed peer, or that it is so costly to traverse, that it is
not suitable for peer-to-peer protocols. Open peers can talk to NATed peers, but NATed
peers cannot talk with each other. In the model, when joining the system, each node has
a fixed probability p of being a NATed peer. The connectivity quality q of a network,
defined as the fraction of available links will then be:

q = 1− p2 = 1− c (1)

Where c is the fraction of unavailable links in the system. Proof of equation 1 is straight-
forward and can be found in appendix 4.

We assume, without loss of generality, that all non-available communication links
in the system are due to NATs. In practice we are well aware of the existence of several
more or less reliable NAT-traversal protocols. [13] provides a very good overview and
concludes that some NAT types, however, are still considered non-traversable (for in-
stance random port-dependent ones) and the time delays they introduce might in many
cases be unreasonable for structured overlay networks.

4 http://www.info.ucl.ac.be/˜bmc/apx-proof.pdf

http://www.info.ucl.ac.be/~bmc/apx-proof.pdf

3.3 Churn model

We use an analytic model of Chord similar to the one analysed in [7] to study the
influence of churn on the ring. Namely we model the Chord system as a M/M/∞ queue
containing N (212 in our case) nodes, with independent Poisson distributed join, leave
and stabilisation events with rates λj , λf and λs respectively. The fail event considers
both graceful leaves and abrupt failures and the stabilisation is done continuously by all
nodes in the system.

The amount of churn in the system is quantified by the average number of stabili-
sation rounds that a node issues in its lifetime r = λs

λf
. Low r means less stabilisation

and therefore higher churn. The effect of churn to Chord (studied in [7]) is mainly
that the entire successor lists becomes outdated quickly for large churn rates resulting
in degraded performance and inconsistent lookups. Under churn or in the presence of
NATs the chain of successor pointers may not form a perfect ring. In this paper we will
use the term core ring to denote the periodic chain of successor pointers inherent in the
Chord protocol. Due to NATs, some nodes are not part of the core ring and are said to
sit on a branch. Figure 1(a) depicts such configuration.

(a) (b)

Fig. 1. The creation of branches. Dotted lines indicates that the identifier of the peer is known but
unable to communicate due to an intercepting NATs. 1(a) Peers p and q cannot communication
which leaves peers p and r in a branch rooted at peer s. 1(b) In order to route messages to peers q
and r, s has to maintain pointers to both of them in its predecessor list since path s → r → q
is not available.

4 Lookup Consistency

One of the most important properties of any lookup mechanism is consistency. It is
however a well known fact [3,14] that lookup consistency in Chord is compromised
when the ring is not perfectly connected.

If two nodes queries the system for the same key they should receive identical values
but due to node churn a node’s pointers might become outdated or wrong before the
node had time to correct them in a stabilisation round. In any case where a peer wrongly
assigns its successor pointer to a node not succeeding it, a potential inconsistency is
created.

The configuration in Figure 1(a) can lead to a potential lookup inconsistency in
the range]q, r]. Upon lookup request for a key in that range, peer q will think r is
responsible for the key whereas peer p think peer s is.

These lookup inconsistencies due to incorrect successor pointers can be both due to
NATs (a node cannot communicate with its successor) or due to churn (a node is not
aware of its successor since it did not maintain the pointer).

A solution proposed by Chord’s authors in [3] is to forward the lookup request
to a candidate responsible node. The candidate will verify its local responsibility by
checking its predecessor pointer. If its predecessor its a better candidate, the lookup is
sent backwards until reaching the node truly responsible for the key.

In order to quantify how reliable the result of a lookup really is it is important
to estimate the amount of inconsistency in the system as function of churn and other
system parameters. Measuring lookup inconsistency has been considered in a related
but not equivalent way in [14].

We define the responsibility range, Q as the

Fig. 2. A lookup for a key owned by
s will not give inconsistent results due
to the fact that r is not a successor of
another node.

range of keys any node can be hold responsible
for. By the nature of the Chord lookup protocol
a node is responsible for a key if its preceding
peer says so. From a global perspective it is then
possible to ask each node who it thinks succeeds
it on the ring and sum up the distance between
them. However, as shown in Figure 2, the mere
fact that two nodes think they have the same suc-
cessor does not lead inconsistent lookups.

In order to have an inconsistent lookup two nodes need to think they are the imme-
diate predecessor of the key and have different successor pointers. In order to quantify
the amount of inconsistency in the system we then need to find, for each node the largest
separating distance between it and any node that has it as its successor. This value is
the maximum range the node can be held responsible for. The sum of each such range
divided by the number of keys in the system will indicate the deviation from the ideal
case where Q = 1. The procedure is outlined in listing 1.1.

Listing 1.1. Inconsistency calculation

for n in peers do
// First alive and reachable succeeding node
m = n.getSucc()
d = dist(n,m)
// Store the largest range
m.range = max(d,m.range)

end for

globalRange = sum(m.range)

The responsibility range is measured for various fractions of NATs as function of
churn and the results are plotted in Figure 3. We see that even for low churn rates the
responsibility range after introducing the NATs are greater than 1. This indicates that
on average more than one node think they are responsible for each key which causes a
lot of inconsistent lookups. Important to note is also that without NATs (c=0) the churn
induced inconsistency for low r is much higher than 1 .

 1

 10

 100

 0 20 40 60 80 100 120 140

re
sp

on
si

bi
lit

y
ra

ng
e

stabilisation rate, r

c=0.0
c=0.5

c=0.75
c=0.8

Fig. 3. Responsibility range as function of stabilisation rate for various values of c. Even for low
churn, NATs introduce a large amount of lookup inconsistencies as indicated by the range being
greater than 1

4.1 Predecessor list (PL) routing

The result indicates that merely assigning the responsibility to your successor does not
provide robust lookups in the presence of NATs or for high churn. Using local respon-
sibility instead of the successor pointer to answer lookup requests, and routing through
the predecessor will ensure that only the correct owner answers the query. Because
more peers become reachable, there are less lookup inconsistencies, and more peers
can use their local responsibility to share the load of the address space. Again, taking
the configuration in figure 1(a) as example, we can see that peer q is unreachable in
traditional Chord, and therefore, the range]p, q] is unavailable. By using the predeces-
sor pointer for routing, a lookup for key k can be successfully handled following path
p→ s→ r → q. However, by only keeping one predecessor pointer, lookups will still
be inconstant on configurations such as the one depicted in Figure 1(b).

To be able to route to any node in a branch, a peer needs to maintain a predeces-
sor list. This is not the equivalent backward of the successor list, which is used for
resilience. The predecessor list is used for routing, and it contains all nodes pointing to
a given peer as its successor. If peers would use the predecessor list in the depicted ex-
amples, the predecessor list of s in Figure 1(a) would be {p, r}. The list in Figure 1(b)
would be {p, q, r}. In a perfect ring, the predecessor list of each node contains only
the preceding node. This means that the size of the routing table is not affected when
the quality of the connectivity is very good. In the presence of NATs or churn, however,
it is necessary to keep a predecessor list in order to enable routing on node branches
. From a local perspective, a peer knows that it is the root of a branch if the size of
its predecessor list is greater that one. Such predecessor list (PL) routing is used for
instance in the relaxed-ring system [11] to handle non-transitive underlay networks.

In order to evaluate the performance of PL routing we define another responsibility
measure, the branch range, Qb. Since the PL routing protocol lets the root of a branch
decide who is responsible (or whom to relay the lookup to) it is important that the

root correctly knows the accumulated responsibility range of all nodes in its branch.
The only way a PL lookup can be inconsistent is if two distinct root nodes on the same
distance from the core ring think they should relay the lookup to one of its predecessors.
The problem is depicted in Figure 4.

The branch range is calculated in a similar

Fig. 4. Peer q misses its successor s. Peer
s routes lookup(k) to r because it does not
know q.

way as the previous predecessor range. Each
node, on the core ring, queries all its prede-
cessors except for the last one (the one furthest
away) for their range. The predecessors itera-
tively queries their predecessors and so forth
until the end of the branch is reached. Each
node then returns, among all the answers from
its predecessors, the end point furthest away
from the root. The root, in turn, compares the returned value with the key of its last
predecessor. If the returned key lies behind the last predecessor the range can give rise
to an inconsistent lookup. The procedure is outlined in listing 1.2.

Listing 1.2. Branch inconsistency calculation

// Peers in the core ring are first
// marked by cycle detection.
for n in corePeers do

n.range = 0;
for m in n.preds
// Don’t add pred from core ring
if(m!=n.preds.last)
n.range+=m.getBranchEnd(m.key)

end for
n.range+=n.preds.last

end for

function getBranchEnd(p)
for m in n.preds

p=min(p,m.getBranchEnd(m.key))
end for
return p

end function

globalBranchRange = sum(m.range)

The branch responsibility range, Qb, includes the former range, Q, found without
PL routing and adds any extra inconsistency caused by overlapping branches. Figure 5
shows the additional responsibility range induced overlapping branches. We see that the
responsibility ranges resulting from overlapping trees are orders of magnitude smaller
the ranges due to problems with successor based routing. Even in the worst case the
range does not exceed 1.5 which means that at least 50% of the lookups will be reliable
in worst case. Interesting also to note that the churn based inconsistency (c = 0) does
not exceed 0.2 in any case which means the lookups are reliable to at least 80%.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 20 40 60 80 100 120 140

br
an

ch
 re

sp
on

si
bi

lit
y

ra
ng

e

stabilisation rate, r

c=0.0
c=0.5

c=0.75
c=0.8

Fig. 5. Branch responsibility range as function of stabilisation rate. As the system breaks down
due to high churn the trees starts to overlap resulting in additional lookup inconsistencies.

4.2 Skewed key range

In Chord, it is mandatory for the joining peer to be able to communicate with its suc-
cessor in order to perform maintenance.

When joining the system a node is provided a successor on the ring by a boot-strap
service. If joining node is unable to communicate with the assigned successor due to a
NAT all that remains to do is for the node to re-join the system.

As more and more NATed peers join the network the fraction of potential successors
decrease creating a skewed key distribution range available for NAT nodes trying to join
the ring. This leaves joining peers behind a NAT to join only closer and closer to the
root.

As the fraction of NATed peers increase in the system additional join attempts are
need in order to find a key succeeded by an open peer. The number of re-join attempts
as function of c is shown in Figure 6(a) and the variance in Figure 6(b). Note that
both the average and the variance for the number of join attempts start to grow super
exponential at some critical c value ≈ 0.8 which indicates a behavioural transition
between functional and congested system state.

5 Resilience

5.1 Load balancing

Even for the c range where nodes can join in reasonable amount of time the open nodes
on the network will be successors for an increasing number of NATed peers. Being the
successor of a node implies relaying its lookups and sending it successor- and recovery
lists while stabilizing. Increasing the number of predecessors therefore increase the
workload of open peers.

In the case of predecessor list (PL) relays, open nodes as branch roots will be re-
sponsible to relay lookups not only to itself and its predecessors but to all nodes in its

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

re
-jo

in
 a

tte
m

pt
s/

jo
in

c

N=100
N=400

N=1600

(a)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

re
-jo

in
 a

tte
m

pt
s/

jo
in

c

N=100
N=400

N=1600

(b)

Fig. 6. Distribution of number of re-join attempts as function of c. 6(a) Average number of re-join
attempts before a node is able to join the ring for different values of c. Vertical lines indicate the
point where a some node in the system needs to re-try more than 10.000*N times. 6(b) Variance
of the number of re-join attempts.

branch. Figure 7(a) shows the distribution of the amount of predecessors per node and
Figure 7(b) shows the size distribution of existing branches.

For large c values we note that some nodes have almost 1% of the participating
nodes a predecessors and are the root in branches of size 0.2 ∗ N . When such a over-
loaded node fails a large re-arrangement is necessary at high cost.

5.2 Sparse successor lists

The size of the successor list, typically log(N), is the resilience factor of the network.
The ring is broken if for one node, all peers in its successor list are dead. In the pres-
ence of NATed peers the resilient factor is reduced to log(N) − n for nodes behind a
NAT, where n is the average number of NATed peers in the successor list. This is be-
cause NATed peers cannot use other NATed peers for failure recovery. The decrease in
resilience by the fraction of NATed nodes is possible to cope with for low fractions c.
Since there still is a high probability to find another alive peer which does not sit behind
a NAT the ring holds together. In fact the NATs can be considered as additional churn
and the effective churn rate becomes reff = r(1− c)

For larger values of c, however, the situation becomes intractable. The effective
churn rate quickly becomes very high and breaks the ring.

5.3 Recovery list

As we previously mentioned, the resilient factor of the network decreases to log(N)−
n. To remedy this a first idea to improve resilience is to filter out NATed peers from
the successor list. However, the successor list is propagated backwards, and therefore,
the predecessor might need some of the peers filtered out by its successor in order to
maintain consistent key ranges.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70

fra
ct

io
n

of
 n

od
es

number of predecessors

c=0
c=0.25

c=0.5
c=0.75
c=0.85

(a)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400 450 500

fra
ct

io
n

of
 b

ra
nc

he
s

length or branch

c=0.0
c=0.25

c=0.5
c=0.75
c=0.85

(b)

Fig. 7. The load on the open peers increases with c as they receive more predecessors and acts as
relay nodes for the branches. The system contains 212 nodes. 7(a) Fraction of nodes with a given
number of predecessors. For large values of c the number for the open peers become orders of
magnitude higher than on the NATed peers. 7(b) Size of branches in the system for various values
of c. For low values trees are rare and they have small size. As the fraction of NATs grow the
length of branches grow too.

We propose to use a second list looking ahead in the ring, denoted the recovery
list. The idea is that the successor list is used for propagation of accurate information
about peer order and the recovery list is used for failure recovery, and it only contains
peers that all nodes can communicate with, that is, open peers. The recovery list is
initially constructed by filtering out NATed peers from the successor list. If the size
after filtering is less than log(N), the peer requests the successor list of the last peer
on the list in order to keep on constructing the recovery list. Ideally, both lists would
be of size log(N). Both lists are propagated backwards as the preceding nodes perform
maintenance. Figure 8 shows the construction of the recovery list at a NATed peer.

Because both lists are propagated back-

Fig. 8. Two lists looking ahead: the succes-
sor and the recovery list.

wards, we have observed that even for open
peers is best to filter out NATed peers from
their recovery lists even when they can es-
tablish connection to them. The reason is that
if an open peer keeps references on its re-
covery list, those values will be propagated
backward to a NATed peer who will not be
able to use them for recovery, reducing its resilient factor, incrementing its cost of re-
building a valid recovery list, and therefore, decreasing performance of the whole ring.
If no NATed peers are used in any recovery list, the ring is able to survive a much higher
degree of churn in comparison to rings only using the successor list for failure recovery.

The recovery lists are populated in a reactive manner until it finds a complete set
of open peers or can only communicate with peers with overlapping set of recovery
nodes. The number of messages sent during stabilisation of the recovery list is shown in
Figure 9(a). For large stabilisation rates and high c values more messages are generated
as the nodes need to make more queries in order to fill its recovery list.

 10

 15

 20

 25

 30

 35

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ba
ck

up
 m

es
sa

ge
s

se
nd

 /
no

de

c

r=25
r=30
r=50

r=100

(a)

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

lis
t l

en
gh

t

stabilisation rate, r

c=0
c=0.5

c=0.75
c=0.85

(b)

Fig. 9. 9(a) Average number of backup messages sent on each stabilisation round by a node for
different values of c as function of stabilisation rate. 9(b) Size of the recovery list for various c
values as function of stabilisation rate. Before break-up there is a rapid decrease in number of
available pointers.

Figure 9 shows how the average size of the recovery list varies with both churn r
and fraction of NATs c. In the absence of NATs (c = 0) the recovery list maintains
about the same size over the whole r-range. In the presence of NATs on the other hand,
the size of the list abruptly decreases to only a fraction of its maximum. The reason
for this effect is that for high enough churn large branches tends to grow. Large part
of the ring are transferred to branches and while new nodes join they grow while the
core ring shrinks. The small size of the recovery list reflects the fact that there are only
a few open peers left on the core ring for high c and churn. Since the updates are done
backwards and most open peers are situated in a branches nodes outside of the branch
will not receive any information about their existence. The system can still function in
this large branch state but becomes very sensitive to failures of open peers on the core
ring.

6 Working range limits

Summarizing, we can categories the system behavior in the following ranges of the
parameter c:

0 ≤ c < 0.05. In this range the influence of NATs is minor and can be seen as an
effective increased churn rate. If a NATed node find itself behind another NATed
node it can simply re-join the system without to much relative overhead.

0.05 ≤ c < 0.5. In the intermediate range the open peers are still in majority. Letting
NATed nodes re-join when they obtain a NATed successor will however cause a
lot of overhead and high churn. This implies that successor stabilisation between
NATed peers need to use an open relay node. Multiple predecessor pointers are
needed in order to avoid lookup inconsistencies and peers will experience a slightly
higher workload.

0.5 ≤ c < 0.8. When the majority of the nodes are behind NATs the main problem
becomes the inability to re-join for NATed peers. In effect, the open peers in the
network will have relatively small responsibility ranges but will in turn relay the
majority of all requests to NATed peers. The number of reachable nodes in the
NATed nodes successor lists decrease rapidly with churn. A separate recovery list
with only open peers is needed in addition to avoid system breakdown.

0.8 ≤ c < 1. In the high range the only viable solution is to let only open peers partic-
ipate and have the NATed nodes directly connected to the open peers as clients. The
open peers can then split workload and manage resources among its clients but are
solely responsible for the key range between it and the first preceding open peer.

To make the system function for even higher churn rates and NAT ratio, our conclu-
sion is that one should only let open peers join the network and then attach the NATed
peers evenly to them as clients. Since NATed peers do more harm than good, if there
are to many of them we see no other option than to leave them out. Since the open peers
get most (or all) of the work load, in any case it is better to spread it evenly.

7 Conclusions

In this work we have studied a model of Network Address Translators (NATs) and
how they impact the performance of ring based DHT’s, namely Chord. We examine
the performance gains of using predecessor based routing and introducing a recovery
list with open peers. We show that adding theses elements to Chord makes the system
run and function in highly dynamic and NAT constrained networks. We quantify how
the necessary adjustments needed to perform reliable lookups vary with the fraction of
nodes behind non-traversable NATs.

We also note that having NATed nodes per se does not dramatically increase the
probability of system failure due to break-up of the ring, as long as nodes behind non-
traversable NATs can use some communication relay. The main reason why the ring
eventually fails due to large churn is that the branches becomes larger than the length
of the successor- and recovery list. Information about new peers in the ring cannot then
reach nodes at the end of the branch who’s pointers will quickly become deprecated.
At the same time, as branches grow large, new nodes will have a high probability of
joining a branch instead of the actual ring which will worsen the situation further in a
feedback that eventually breaks the system.

Our conclusion is that it is indeed possible to adjust Chord, and related ring based
DHT protocols, to function in the presence of NATs without the need for traversal
techniques. It further shows that it is possible to construct robust overlay applications
without the assumption of an open underlying network.

8 Acknowledgements

The authors would like to thank Jim Dowling for valuable comments and discussion.
The project is supported by SICS Center for Networked Systems (CNS) and the Eu-
ropean Community’s Seventh Framework Programme (FP7/2007-2013) under Grant
agreement n 214898. The Mancoosi Project.

References

1. D’Acunto, L., Pouwelse, J., Sips, H.: A measurement of NAT and firewall characteristics in
peer-to-peer systems. In: Theo Gevers, Herbert Bos, L.W. (ed.) Proc. 15-th ASCI Confer-
ence. pp. 1–5. Advanced School for Computing and Imaging (ASCI), P.O. Box 5031, 2600
GA Delft, The Netherlands (June 2009)

2. Dale, C., Liu, J.: apt-p2p: A peer-to-peer distribution system for software package releases
and updates. In: IEEE INFOCOM. Rio de Janeiro, Brazil (April 2009)

3. Freedman, M.J., Lakshminarayanan, K., Rhea, S., Stoica, I.: Non-transitive connectivity and
DHTs. In: WORLDS’05: Proceedings of the 2nd conference on Real, Large Distributed Sys-
tems. pp. 55–60. USENIX Association, Berkeley, CA, USA (2005)

4. Huang, Y., Fu, T.Z., Chiu, D.M., Lui, J.C., Huang, C.: Challenges, design and analysis of a
large-scale p2p-vod system. SIGCOMM Comput. Commun. Rev. 38(4), 375–388 (2008)

5. Jimenez, R., Osmani, F., Knutsson, B.: Connectivity properties of mainline BitTorrent DHT
nodes. In: Peer-to-Peer Computing, 2009. P2P ’09. IEEE Ninth International Conference on.
pp. 262–270 (2009), http://dx.doi.org/10.1109/P2P.2009.5284530

6. Kermarrec, A.M., Pace, A., Quema, V., Schiavoni, V.: NAT-resilient gossip peer sampling.
Distributed Computing Systems, International Conference on 0, 360–367 (2009)

7. Krishnamurthy, S., El-Ansary, S., Aurell, E.A., Haridi, S.: An analytical study of a structured
overlay in the presence of dynamic membership. IEEE/ACM Transactions on Networking
16, 814–825 (2008)

8. Li, B., Qu, Y., Keung, Y., Xie, S., Lin, C., Liu, J., Zhang, X.: Inside the New Coolstreaming:
Principles, Measurements and Performance Implications. In: INFOCOM 2008. The 27th
Conference on Computer Communications. IEEE (2008)

9. Liu, Y., Pan, J.: The impact of NAT on BitTorrent-like p2p systems. In: Peer-to-Peer
Computing, 2009. P2P ’09. IEEE Ninth International Conference on. pp. 242–251 (2009),
http://dx.doi.org/10.1109/P2P.2009.5284521

10. Maymounkov, P., Mazieres, D.: Kademlia: A peer-to-peer information system based on the
xor metric (2002)

11. Mejı́as, B., Van Roy, P.: The relaxed-ring: a fault-tolerant topology for structured overlay
networks. Parallel Processing Letters 18(3), 411–432 (2008)

12. Rhea, S., Godfrey, B., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica, I., Yu,
H.: OpenDHT: A public DHT service and its uses (2005), citeseer.ist.psu.edu/
rhea05opendht.html

13. Roverso, R., El-Ansary, S., Haridi, S.: NATCracker: NAT combinations matter. Computer
Communications and Networks, International Conference on 0, 1–7 (2009)

14. Shafaat, T.M., Moser, M., Schütt, T., Reinefeld, A., Ghodsi, A., Haridi, S.: Key-based consis-
tency and availability in structured overlay networks. In: Proceedings of the 3rd International
ICST Conference on Scalable Information Systems (Infoscale’08). ACM (jun 2008)

15. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-
peer lookup service for internet applications. In: Proceedings of the 2001 ACM SIGCOMM
Conference. pp. 149–160 (2001)

http://dx.doi.org/10.1109/P2P.2009.5284530
http://dx.doi.org/10.1109/P2P.2009.5284521
citeseer.ist.psu.edu/rhea05opendht.html
citeseer.ist.psu.edu/rhea05opendht.html

	Modeling the Performance of Ring Based DHTs in the Presence of Network Address Translators

