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Abstract. To address the requirements of scalability it has become a
common practice to deploy large scale services over infrastructures of
non-dedicated servers, multiplexing instances of multiple services at a
fine grained level. This tendency has recently been popularized thanks to
the utilization of virtualization technologies. As these infrastructures be-
come more complex, large, heterogeneous ad distributed, a manual allo-
cation of resources becomes unfeasible and some form of self-management
is required. However, traditional closed loop control mechanisms seems
unsuitable for this platforms.

The main contribution of this paper is the proposal of an Elastic Utility
Driven Overlay Network (eUDON) for dynamically scaling the number
of instances of a service to ensure a target QoS objective in highly dy-
namic large-scale infrastructures of non-dedicated servers. This overlay
combines an application provided utility function to express the service’s
QoS, with an epidemic protocol for state information dissemination, and
simple local decisions on each instance to adapt to changes in the exe-
cution conditions. These elements give the overlay robustness, flexibility,
scalability and a low overhead.

We show, by means of simulation experiments, that the proposed mech-
anisms can adapt to a diverse range of situations like flash crowds and
massive failures, while maintaining the QoS objectives of the service.
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1 Introduction

Modern large scale service-oriented applications frequently address unexpected
situations that demand a rapid adaptation of the allocated resources, like flash
crowds –that require a quick allocation of additional resources– or massive hard-
ware failures –that require the re-allocation of failed resources. At the same
time, applications are expected to maintain certain QoS objectives in terms of
attributes like response time and execution cost [14].

To address these requirements, it has become a common practice to deploy
services over large scale non-dedicated infrastructures – e.g. shared clusters –
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on which servers are dynamically provisioned/decommissioned to services in re-
sponse to workload variations. In comparison, in a traditional enterprise infras-
tructure the scale up process takes a long time and requires manual intervention,
and therefore over-provisioning services to handle such situations is the common
practice.

Chandra et al. [7] demonstrated that fine-grained multiplexing at short time-
scales – in the order of seconds to a few minutes – combined with fractional server
allocation leads to substantial multiplexing gains over coarse-grained realloca-
tions. To accomplish this fine grained multiplexing, it is necessary to count with
mechanisms to allocate/deallocate servers efficiently and then be able to manage
those servers in a very dynamic environment with a high turn-over of servers.

As these infrastructures become more complex, large, distributed and het-
erogeneous, some sort of self-adaptive [18] (also known as autonomic [12]) capa-
bilities are needed to stabilize its performance within acceptable limits despite
variations in the load and resources, recover from failures, and optimize them
according to business objectives.

However, as noted in [15] traditional closed loop self-adaptation approaches
are of limited applicability in the scenarios described above, as they made a
set of restrictive assumptions: a) The entire state of the application and the
resources are known/visible to the management component b) the adaptation
ordered by the management component is carried out in full and in a synchro-
nized way, and c) the management component gets full feedback of the results of
changes made on the entire system. In contrast, in a large scale, wide-area sys-
tem getting a global system knowledge is infeasible and coordinating adaptation
actions is costly. Additionally, each server may belong to different management
domains – different sites in an organization, external providers – with different
optimization objectives. Two additional problems arise for the self-management
of non-dedicated servers: the complexity of eliciting a model to predict the effect
of the adaptation decisions and drive the adaptation process, and the need for
an isolation mechanism to prevent servers to interfere with each other’s perfor-
mance.

The main contribution of this paper is the proposal of an Elastic Utility
Driven Overlay Network (eUDON) for dynamically scaling the number of service
instances used to support a service, ensuring a target QoS objective in highly
dynamic large scale shared infrastructures.

Based on UDON [5], eUDON combines a) an application provided utility
function to express the service’s QoS in a compact way; b) an epidemic protocol
for scalable, resilient and low overhead state information dissemination; c) a
model-less adaptive admission policy on each service instance to ensure a QoS
objective; and d) mechanisms for the elastic assignment of instances to adapt
to fluctuations in the load and recover from failures. All these mechanisms act
autonomously on each instance based on local information, making the systems
highly scalable and resilient.



We show by means of simulations experiments how eUDON adapts to diverse
conditions like peaks in the workload and massive failures, maintaining its QoS
and using efficiently the available resources.

The rest of the paper is organized as follows. Section 2 presents the gen-
eral model for eUDON and describes in detail the two main mechanism used
to achieve elasticity. Section 3 describes the simulation based experimental eval-
uation that explores its behavior under diverse scenarios. Section 4 presents
relevant work in the field to put the proposed work into context. Finally, section
5 presents the conclusions and outlines the future work.

2 eUDON: an Elastic Utility Driven Overlay Network

The model for eUDON which is shown in Fig 1.

Fig. 1: Elastic service overlay model.

Requests coming from users are processed through a set of entry-points,
which correspond to segments of users with similar QoS requirements, and must
be routed to service instances that offer an adequate QoS. Requests are evenly
distributed over the multiple entry points for the same user segment using tra-
ditional DNS or L4 level load balancing techniques [4]. It is important to notice
that in our work we concentrate in the web application layer and assume that
the data access, including consistency requirements, are handle by a separated
data layer as proposed in modern highly scalable web architectures [13].



Each service has a utility function that maps the attributes and execution
state of a service instance (e.g. response time, available resources, trustworthi-
ness, reliability, execution cost) to a scalar value that represents the QoS it pro-
vides. Utility functions allows a compact representation of the QoS requirements
for services and facilitate the comparison of the QoS that different instances pro-
vide, even if they run on very heterogeneous nodes [11]. The QoS required by
a request is defined as the minimum acceptable utility that a service instance
must provide to process it. The QoS offered by an instance may vary over time
due to, for example, fluctuations on the load or the available resources 1 of the
non-dedicated server it runs on.

There is large pool of servers available for diverse services. At any given
time, on a subset of those servers there are instances activated to process re-
quests for a service. The active instances are organized in a Service Search
Overlay, whose objective is to facilitate finding an instance offering adequate
QoS. Among the active instances, a subset capable of processing the current
workload is promoted – as described later in section 2.2 – to join the Service
Routing Overlay. This overlay is used by the entry points to route requests
preserving QoS and achieving load balancing. Instances which are underutilized,
are demoted and leave the routing overlay but remain in the search overlay.
Eventually, instances can be deactivated from the search overlay.

The number of active instances in the search overlay depends on the expected
service demand and the level of replication required to ensure resilience to fail-
ures as well as to handle short time increases in the demand. To estimate this
number approaches like those proposed in [17] [9] can be applied. In eUDON,
this problem is part of our ongoing research and diverse options are being ex-
plored. In the rest of this paper we assume the number of active instances is fixed
even when the proposed approach can accommodate variations in this number.
The main problem we address is how to maintain to a minimum the number of
instances in the routing overlay to keep the number of hops needed to process
requests low while still offering an adequate QoS.

It is important to notice that in shared clusters, the active instances which
are not promoted for processing requests add little overhead to the cluster. In
a cloud scenario, it makes sense to have instances activated for some time even
if idle, because of the activation overhead and because computing resources are
paid by hours – and therefore a 15 minutes activation cost the same than a full
hour activation.

The routing and search overlays use a push style epidemic algorithm to main-
tain their topologies, find new (activated, promoted) instances, remove unavail-
able (failed, demoted, deactivated) instances, and spread the current state of
instances. Periodically each instance selects a subset of its neighbors (the ex-
change set) and sends a message with its local view (the neighbor set) and its
own current state. When a instance receives this message, merges it with its cur-
rent neighbor set and selects the subset with the more recently updated entries

1 For example, modern virtualization technologies make feasible to change resource
assignments to execution environments on the fly.



as the new neighbor set. In this way, each instance keeps a local view with the
most up date information among all the information received from neighbors.

Next sections describe in detail the two main elements of the model outlined
before that provides the attributes of self-adaptiveness and elasticity to eUDON.

2.1 Routing

The objective of the routing mechanism is to deliver each request to a service
instance that satisfies its QoS requirements, with high probability and the min-
imal amount of routing hops. In eUDON Requests are routed using the unicast
algorithm shown in Fig. 2a. On the reception of a request, the routing algorithm
uses an admission function to determine if the instance can accept the request
for processing. If the request is not accepted, then a ranking function is used
to rank the neighbors and select the most promising one as the next hop in the
routing process.

eUDON uses an adaptive admission function – inspired by the one proposed
in the Quorum system [2] – summarized in Fig. 2b. The utility of the service
instance is periodically monitored and compared with a target QoS objective
and the size of the admission window is increased or decreased as needed to
correct deviations. The only assumption made by this process is that the utility
is non-increasing with respect of the load. That is, that increasing/decreasing the
load lowers/rises the utility, given that the rest of the utility related attributes
remains equal. One significant advantage of this adaptive admission function
is that it does not require any model to estimate the future performance of the
service. Moreover, it works even when the resources allocated to a service cannot
be reserved and therefore the available capacity fluctuates.

(a) Routing process (b) Adaptive admission.

Fig. 2: Adaptive routing.

Every overlay uses a different ranking function. The routing overlay uses a
round-robin ranking which has been shown to offer an acceptable performance
in this context – see [6] for details. When a request is routed beyond a predefined



number of hops, it is routed using the search overlay, looking for an active (but
not promoted) instance capable of serving it. This search uses a greedy ranking
based on the (last known) utility of the nodes which was shown in [5] to be
highly effective in a wide range of conditions and scenarios.

2.2 Promotion and demotion

The decision to join/leave the routing overlay is taken by each instance au-
tonomously based both on its local information, like the rate of request being
processed or the server’s utilization, and aggregate non-local (potentially global)
information like the total workload of the system or the average service rate of
other instances.

eDUON uses a probabilistic adaptation mechanism implemented by two rules
based on the service rate (the number of service requests processed by time
interval). An instance promotes itself if its service rate is close to the average of
the system and demotes itself if it is offering a service rate below the 25 percentile
of all instances. These rules where chosen for their simplicity and because they
could be easily traceable to the system’s status, more than for their optimality.
However, they exhibit a very acceptable behavior as shown in the experimental
results. The probabilistic nature of the rules leads to a progressive adaptation
preventing that many instances take simultaneously the same decision, over-
reacting to a situation and leading to oscillations in the system.

An estimate of the global service rate can be obtained by an epidemic ag-
gregation process embedded into the overlay maintenance algorithms [10] [8].
In the simulation described in section 3.1, each instance gets an estimated of
these values perturbed by an error factor to simulate the estimation error of the
distributed aggregation algorithms.

The probability for promotion/demoting an instance is given by:

P (Sε) =
1

1 + ekSε
, (1)

Where Sε = (S̄ − S)/S̄ is the deviation of the node’s service rate S from
the target service rate S̄, and k is a parameter that adjust the sensitivity of
probability to the service rate. When calculating the probability for demoting,
k > 0 and for promoting k < 0. Fig. 3 shows this probability for various values
of k, and and S̄ = 50 for promotions and S̄ = 20 for demotions.

As the promotion and demotion rules behaves independently of each other,
we have added an additional condition to prevent an instance to be continuously
promoted/demoted without having the change to stabilize: instances will not run
these rules again for the 3 cycles following a promotion/demotion. This number
was empirically obtained by testing multiple options and found to work well in
different situations.
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Fig. 3: Promotion/Demotion probability function for diverse values of k.

3 Experimental Evaluation

In this section we describe the simulation model and the metrics used for the
evaluation, and summarize the results of different experiments developed to an-
alyze how the system adapts to different scenarios.

The results presented correspond, unless the contrary is explicitly indicated,
to the average over 10 simulation runs. Each run simulates 200 seconds (300 for
the peak load scenario).

3.1 Simulation model

We implemented a discrete event simulator for the detailed simulation of the
processing of requests allowing us to capture very detailed measurements of the
system’s behavior. Table 1 summarizes the more relevant simulation parameters.

Overlay. We have simulated an idealized network that mimics a large cluster,
on which nodes can communicate with a uniform delay. The base experimental
setup was 128 overlay nodes, with a 8 entry points and the 120 service instances
(a 1:15 ratio). There is an ongoing work – with promising preliminary results for
up to 2048 nodes– to experiment with several thousand instances. However, as
the instances work exclusively with local information, we expect that the results
will hold for larger scales, as was previously shown in [5].

All Service instances are initially members of the search overlay, but only a
fraction initially join the routing overlay according to a join probability param-
eter. The adaptation process dynamically adjust this fraction accordingly to the
conditions (e.g. load).

Each instance maintains a neighbor set of 32 nodes and contacts 2 of them
periodically to exchange information. These values correspond, to the optimal
trade off between information freshness and communication costs as discussed
in [5].



Table 1: Simulation parameters.
Parameter Values Description

Servers 128, ... 2048 Number of instances
Entries ratio 1:15 Ratio of entry points, with respect of

the number of instances
Neighbor set 32 Number of neighbors maintained per

node in the overlay
Update cycle 1 Frequency of information dissemina-

tion (in seconds)
Exchange set 2 Number of neighbors contacted per

node on each update cycle
Adaptation cycle 3 Frequency of the adaptation process (in

seconds)
Join probability .60 Probability of an service instances to

join the routing overlay at initialization
Load Maximum .5 Maximum fraction of a server capacity

used by background load
Load variability 0.10 Maximum variation of background load

per second
QoS 0.7 Target utility for requests
K -3 (promotion) Adaptation probability adjust constant

3 (demotion)
S̄ 50 (promotion) Target service rate for promo-

tion/demotion
20 (demotion)

Service Instances. Each service instance dispatches requests using a processor
sharing discipline. This model fits well for web servers like Apache, a well-known
and widely used multi-threaded web server, and is amenable to analytical evalu-
ation using a M/G/1/k ∗PS queuing system [3]. This facilitates the comparison
of simulation results with analytical estimates. For instance, the maximum ar-
rival rate that can be processed by the system maintaining a target response
time – as explained below – was estimated using this model.

Arrivals. The service requests arrive following a Poisson distribution and are
evenly distributed among the entry points. The arrival rate is calculated using the
analytical model for service instances considering the average background load
of servers to ensure that the allocation of the workload is feasible, but demands
all the available capacity. Therefore, the maximum theoretical allocated demand
is of 1.0 and the expected utilization is around 0.95. All requests generated in
the tests have the same expected QoS.

Utility Function. In our experiments we use a utility function that relates the
utility to the deviation of the response time RT from a target maximum response
time RT0:



U(RT ) =

[
RT0 −RT

RT0

]α
(2)

As shown in Fig. 4 the coefficient α controls how quickly the utility decreases
as the response time approaches the maximum. This function was selected be-
cause it can easily be related to metrics obtained from both the analytical and
simulation models, making it straightforward to predict and measure the impact
of the adaptation decisions in the resulting utility. The evaluation of more com-
plex utility functions is subject of future work. However, it is important to stress
that the adaptation process considers only the utility function and makes no ex-
plicit reference to the underlying response time. This allows us to generalize the
results to other utility functions given that they satisfy the basic assumption of
being non-increasing with the load of the system, as discussed in section 2.1.
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Fig. 4: Utility Function.

Background Workload One important aspect in our experiments is the evaluation
of the impact of background load in non-dedicated servers, which impacts the
utility that an instance can provide. This load (defined as a faction of the node’s
computing power) is modeled as a random variable whose value varies along the
time following a random walk with certain Variability. This model is consistent
with the observed behavior of the load on shared servers [16, 20].

3.2 Metrics

In the evaluation of the proposed mechanisms we have considered the following
metrics, which are related to its main objectives of efficiently delivering requests
to an appropriate node to maintain an adequate QoS:

Allocated Demand: measures the fraction of the demand that is actually allo-
cated to a server, before being dropped due to the expiration of its TTL (set to
8 hops in our experiments). This metric measures how effective is the systems
in allocating requests.



QoS Ratio: is the ratio between the target QoS expected by a service request
and the actual QoS received. A ratio below 1.0 means target was not met, while a
ratio over 1.0 means the target was exceeded (which is not necessarily desirable,
as it may indicate the server is underutilized).

Utilization: Measures the percentage of the node capacity being used, consid-
ering both the background load and the load produced by the service requests.
This metric is relevant as measures how efficiently resources are used.

Routing hops: measures the number of hops (or retries) needed to allocate a
request to a server with an adequate utility. It measures how efficient is the
mechanism in allocating requests.

In the graphics of experimental results in section 3.3 the percentiles 25, 50
and 75 of the QoS Ratio, Utilization and Routing Hops are presented to show
the variability of these metrics. Percentiles 25 and 75 are drawn as a filled curve
and percentile 50 as a continuous line.

3.3 Results

In this section we describe the different experiments we made to test the behavior
of the system under diverse conditions and usage scenarios.

Base scenario. In the base scenario, a steady workload is submitted to the system
that demands all the available capacity to achieve the QoS objective.
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Fig. 5: Behavior for base scenario.

Fig. 5a shows how the utility driven adaptation occurs for an instance. As
the background load fluctuates so does the capacity of the instance – following
the adaptive admission described in section 2.1 – to compensate the change in
the available CPU and maintain the QoS ratio close to 1.0. With respect of the



overall behavior of the system, as shown in Fig. 5b it quickly converges to a utility
ratio of 1.0, with a small variability. The adaptation process also achieves a high
level of system efficiency, with a total utilization of system capacity around 0.9.
Additionally, 90% of the maximum theoretical workload is allocated – this figure
is maintained in all scenarios – and a 75% of request needs at most 3 hops to be
allocated (graphics for these results not shown for brevity). These results show
that the system is effective in achieving the QoS goals, efficient in the utilization
of resources and imposes a low overhead in terms of the number of hops needed
for allocation.

Peak load scenario. In this scenario, the system is initially submitted to a steady
workload that demands 70% of the the available capacity, but at time 100s, an
additional load is injected. As can be seen in Fig. 6, the systems quickly reacts to
the load by promoting more instances. The overall utilization of the system also
is increased - the percentile 25 of the Utilization rises significantly – but the QoS
Ratio is maintained during this adaptation process. At time 200s, the additional
load is removed and the systems returns to the previous state, demoting the
instances not longer needed.
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Fig. 6: Behavior for peak load scenario.

Failure scenario. In this scenario, the system is submitted to a steady workload
that demands a fraction of its capacity. At time 100s, 20% of the promoted
instances fail – a correlated failure as expected in clusters. Fig. 7 shows how
the system reacts, incorporating more instances until the system stabilizes. As
can be seen, the utility ratio is maintained along this process – except for a
short period just after the failure – as requests are routed to nodes in the search
overlay; as a consequence, routing hops increase until all the required nodes are
promoted to the routing overlay.
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4 Related Work

The elasticity in the allocation of resources to web applications has attracted
significant attention from different perspectives.

In [9] the dynamic placing of the instances of multiple applications on a set of
server machines is formulated as a two dimensional packaging problem and sev-
eral heuristics are proposed to optimize the solution by minimizing the number
of placement changes while maximizing the balancing of the load across nodes.
However solving this problem has a high computational complexity, severely
limiting its scalability.

VioCluster [17] uses both machine and network virtualization techniques
which allow a domain in a shared cluster to dynamically grow/shrink based
on resource demand by negotiating the borrowing/lending of virtual machines
with other domains. This approach has, however, a significant overhead for both
the negotiation process and the need to create and start machines.

In [19] a utility related performance metric is used by a request scheduler
to order the processing of requests from multiple services classes, so that the
resulting aggregate utility is maximized. The main drawback of the proposed
schema is its dependency of a cluster level centralized load balancing, making it
unpractical to the scales of our systems of interest. Also, it requires the on-line
elicitation of the resource consumption profile for each service –using application
supplied metrics– to adjust the resource allocation, while our approach uses a
model-less adaptation.

Closer to out work, in [1] nodes are self-organized and sliced according to
an application defined metric and the group that represents the ”top” slice are
selected to form the application’s overlay. Its main drawback is that as the
nodes’ attributes may change continuously the slicing must also be continu-
ously updated, and operation that require the execution of protocols that run
over ”epochs” of several update cycles in the order of several seconds. This re-



quirements make this approach unsuitable to the scenarios of interest. In our
approach, we integrate this process of updating the set of active nodes into
the routing process, making it more responsive to changes. Besides, there’s no
empirical evidence of the actual performance of the proposed model.

5 Conclusions

We have presented eUDON an overlay for dynamically scaling services on large
scale infrastructures of non-dedicated servers. The evaluation of the different
scenarios shows the ability of eUDON to adapt to changing conditions using
only local information and local decisions, while maintaining the QoS objectives
and a high utilization level. More importantly, the system is highly scalable and
resilient to failures, two characteristics that are critical for systems based on
commodity hardware clusters.

A salient feature of eUDON is its model-less adaptation approach, which
can be used in scenarios where there is not a model to predict the QoS of a
service, or applying such a model is not feasible due to the dynamism of the
environment. Moreover, the adaptation does not require any isolation between
competing services.

One additional advantage of the proposed model is that it unifies different
events, like service failure, saturation or demotion under a single set of simple
adaptation mechanism, simplifying the system design.

The results presented are part of a work in progress and there are still diverse
aspects to develop. As already mentioned, the continuous adaptation of the
number of active instances (the activation/deactivation mechanism) is still an
open issue which is being actively researched. We envision using a mechanism
similar to the one used for promotion/demotion but triggered at the servers to
decide which services to activate/deactivate.

Additionally, we use only instantaneous measurements of an instance’s utility
for the various adaptation decisions and in particular, for the admission accep-
tance window. As a result, even when the average utility ration is around 1.0
and shows little variability, no guarantees of the type ”95% of request will have
a certain QoS” are currently possible. We are exploring the utilization of a form
of summarization of the recent history to offers such guarantees.
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