
Beddernet: Application-Level Platform-Agnostic

MANETs

Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

rasmus.gohs@gmail.com, sigurdur.rafn@gmail.com,

arne.glenstrup@gmail.com

This paper introduces Beddernet, a platform-agnostic mobile ad-hoc network

framework. The Beddernet architecture is designed to work with different

networking protocols - the version detailed here supports Bluetooth ad-hoc

networks or scatternets.

Although considerable work has gone into researching and designing

scatternets, no standard has been agreed upon and no scatternet protocol can be

found in Bluetooth specifications. Beddernet fills this gap and can become a

useful tool both for research and real-world applications. The standard is open

and free to use, and is detailed in a separate Beddernet Specification Document.

Beddernet middleware has been tested on Java and Android devices with good

results. The reference design of Beddernet is based on the Android Operating

System and is available under an open source license.

Keywords: MANET, peer-to-peer, mesh, networking, DSDV, Android,

multicast, Bluetooth, mobile.

1 Introduction

Mobile devices like handheld gaming devices and mobile phones are becoming quite

accommodating; the latest mobile phones have several connectivity features and

powerful application processors. These devices rely mostly on some infrastructure

such as a WLAN or a mobile phone network to communicate with each other and the

world. This isn’t always feasible or desired. One solution to this is to have the devices

themselves interconnect and create mobile ad-hoc networks, MANETs. Such

networks can enable devices to share data and resource sharing for e.g. collaborative

work, file sharing and gaming without any infrastructure or central control.

MANETs do require some processing power and ideally an advanced operating

system to run on. As powerful mobile devices with sophisticated operating systems

not hampered by these problems are now commonplace, MANETs can have an

important place in the world by augmenting infrastructure in places where it is weak,

2 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

expensive or non-existent. For this to be possible, devices need a standard to connect

and communicate.

This paper proposes a solution to this problem in Beddernet, an advanced

application level MANET protocol with self-organising and self-healing capabilities.

The typical usage scenario would be MANETs consisting of 2 to 20 devices.

The next chapter discusses some work related to this project. Chapter 3 and 4

briefly introduces the technologies and concepts Beddernet relies on. Chapter 5

details the design of Beddernet, its protocols and structure. Several experiments were

performed to test Beddernet’s performance and functionality. Those experiments are

discussed in Chapter 6, Evaluation. Conclusions and perspectives for the project’s

future are then discussed in the final chapter.

2 Related work

In an ad-hoc network, individual nodes cooperate to create and maintain the network

and to route data. A scatternet is such a network where the nodes use low power

Bluetooth communication for connections.

BEDnet, the predecessor of Beddernet, is a real-world scatternet application based

on the Java Platform, Micro Edition (JME). Due to some limits of Bluetooth on JME,

BEDnet eschews complicated Scatternet Formation Algorithms and has devices

connect to each other in a simple mesh creating algorithm.

BEDnet showed good results, formed scatternets reliably, routed data accurately,

and proved useful in applications such as turn-based gaming and text messaging, and

moderately successful in media sharing applications [1]. Performance was below the

theoretical maximum transfer speeds of Bluetooth, but it was believed this could be

managed using better hardware and possibly some optimisations in code. The

Beddernet project builds on the success of BEDnet and addresses its shortcomings.

Although Bluetooth is the only widely spread protocol that supports device-to-

device connections, little work seems to have been done designing Bluetooth

scatternet standards or software for mobile devices. Scattercom [2] is written for the

Symbian OS and is based on a proactive routing protocol, but does not offer APIs for

third party applications. A project by Ibraheem [3] is implemented in JME and uses a

reactive routing protocol. The project seems to target transferring a 4kb file in a

maximum of 10 seconds on a two hop scatternet, so it does not seem to be intended to

support applications such as interactive real time gaming and media streaming.

Finally, Donegan et al. [4] present another JME project, originally designed to

facilitate parallel computations over Bluetooth scatternets. Although claimed to be

general enough for further deployments, it has not been codified as such.

3 Technologies

Bluetooth communication, scatternet formation/routing, and Android OS, the basic

technologies the Beddernet prototype builds upon, are described in the following.

Beddernet: Application-Level Platform-Agnostic MANETs 3

3.1 Bluetooth

Bluetooth is a wireless standard for low powered, short range data exchange. It is

implemented in e.g. computers, mobile phones, and video game consoles [5].

Bluetooth devices are uniquely identified by their address and are arranged in star

networks called piconets [6], each consisting of up to 8 active devices, one of which is

designated as master. Devices in a piconet communicate using a shared medium. The

master assigns specific time intervals, time slots, to each connected device to transmit

data to or from the master, cf. Fig. 1. More than 7 devices can be registered with the

master but are then put into park mode [6], where they are considered a part of the

piconet but are not assigned time slots. Parking and un-parking of devices has a

negative impact on performance [7]. For a device to be able to join a piconet it needs

to identify the address and clock of the piconet master [7]. This is done in two phases

by the master; inquiry for discovering new devices and paging for establishing a

connection.

Each phase consists of two modes; listening (scanning) and transmitting. For two

devices to exchange address and clock information they must be in opposite modes.

In the first phase, inquiry, the master discovers the slave address and clock. Next,

in the paging phase, the master sends its address and clock to the slave and the

devices are connected. To avoid interference, devices hop to a different radio

frequency at each time slot. Each piconet uses a specific hopping pattern identified

by the master's address and clock. When both identities and clocks have been

interchanged, the frequency hopping sequence can be synchronized and data

exchange can begin. The device initially in inquiry transmitting mode becomes the

master of the connection.

Fi

Fig. 1 Bluetooth switching

4 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

RFCOMM.

Being the only connection protocol available in both Java and Android, the

RFCOMM Bluetooth protocol is used by Beddernet (Fig. 2). This stream-oriented

protocol relies on the automatic retransmission and in-order sequencing provided by

the lower base-band layer for reliability in transmissions between connected devices.

3.2 Scatternet Formation

Thanks to frequency hopping, several piconets can overlap geographically without

interference. A node in one piconet can join another, thereby connecting them. It is

possible to connect several piconets using this method, the resulting network is known

as a Bluetooth scatternet, cf. Fig. 3. The fundamental problem of forming a self-

organizing scatternet of Bluetooth devices is non-trivial and is an active area of

research [7]. Ensuring connectivity requires nodes to agree on a scatternet formation

algorithm (SFA), specifying how they interconnect. Several different algorithms have

been proposed with different characteristics [7].

A general problem with implementing many of the algorithms is that they make

assumptions that impede usage in platform agnostic standards. Some e.g. assume all

devices are in range of each other, or that devices have access to such information as

the link management in the Bluetooth stack, location of devices or battery levels [1].

Fig. 3 Scatternet - three piconets form a scatternet via bridge

nodes (blue)

Fig. 2 Bluetooth radio stack

Beddernet: Application-Level Platform-Agnostic MANETs 5

3.3 Routing

MANETs such as Bluetooth scatternets are more volatile than normal computer

networks; devices can appear spontaneously, move around, and then disappear again.

In the face of such network churn, special routing protocols have been designed,

broadly speaking in two classes: proactive and reactive. Proactive protocols attempt

to maintain a recent list of all nodes and/or routes on a network by regularly

exchanging routing information updates. Reactive protocols like Ad hoc On-Demand

Distance Vector (AODV) find routes on demand, usually by flooding request packets.

Simulations suggest that AODV is better suited than e.g. the proactive Destination-

Sequenced Distance Vector (DSDV) algorithm for highly volatile ad-hoc networks

[8], but actual experiments have shown that in some cases the route lookup takes an

inexpediently long time, outlasting even the actual Bluetooth transmission time [9].

AODV also requires more processing per packet than DSDV [1]. These properties

were factored in when designing Beddernet.

4 Mobile programming frameworks

Beddernet is designed to be simple and platform agnostic. A reference

implementation has been created on the Android mobile platform [12]. Applications

on Android can run as background services and can communicate with other

applications on a device making it very suitable for a Beddernet reference

implementation.

5 Framework design

Beddernet adheres to a 3 layer architecture having a data-link, a routing, and an

application layer. All communication between Beddernet devices, both for

maintaining the scatternet and for transmitting data, is via discrete Beddernet

messages. The first byte (or bytes in special cases) of each message is a control byte.

It denotes what type of message follows. Different message types are used for

maintaining routing information, carry data etc.

The following sections describe the function of each layer.

5.1 Datalink Layer

The Datalink layer contains the functionality that concerns the actual connection

medium, Bluetooth in the case of Beddernet. This layer holds all connections to

neighbour devices and sends and receives Beddernet messages from the routing layer.

Scatternet Formation.

A reliable scatternet framework must make sure connected scatternets are created, but

also maintain the scatternet as nodes appear, move around and disappear. Beddernet

6 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

attempts to accomplish this with a two-phased algorithm that first creates a mesh

based scatternet and then enters an active maintenance phase.

The Beddernet framework is designed to be a general framework and does not

assume information like battery status or location is available. Therefore the simple

but functional mesh algorithm described below is used.

Phase 1 - Mesh creation

As a node starts Beddernet, it tries to establish a connection with other devices in

range. It randomly alternates between listening and transmitting modes until a

connection can be established. This random factor prevents devices from being

constantly in the same mode and ensures that a device eventually connects with other

devices if they are in range. When connection has been established, knowledge of

other devices is exchanged, thereby quickly establishing a fully connected scatternet.

Phase 2 – Maintenance

A Beddernet device that connects to another device stops scanning as frequently

and enters a maintenance phase. In this phase it spends most of the time being

discoverable, allowing for incoming connections, but only performing device

discoveries intermittently. As device discovery is generally a power intensive

procedure that interrupts communication [13], it should be done as rarely as possible.

To achieve this, Beddernet uses a dynamic maintenance algorithm that slows

scanning frequency linearly with the number of connected Bluetooth neighbours.

The time T between devices discoveries is thus regulated by the following formula:

 {
()

} . (1)

where N is the number of connected neighbours, T0 is some constant time interval and

X is a random number between 0 and 1. The maintenance protocol runs continuously,

regularly scanning for new devices. This enables two or more established scatternets

to merge automatically. (cf. Fig. 3).

5.2 Routing Layer

As discussed earlier, reactive protocols tend to scale better than proactive ones. As a

Beddernet usage scenario was presumed to be typically 2-20 devices, this was not

seen to justify the added complexity of such reactive protocols. Therefore, Beddernet

uses DSDV. This also makes the implementation of advanced features such as

multicasting [10] and service discovery simpler than if using AODV [11].

Multicast.

Multicasting can save bandwidth and increase throughput in some scenarios (Fig. 4)

and is included in the Beddernet protocol [15], using a stateless explicit multicast

algorithm because of its simplicity and efficiency [10]. The special Beddernet

multicast message header can contain multiple Bluetooth addresses. The number of

Beddernet: Application-Level Platform-Agnostic MANETs 7

addresses is indicated by a control byte that precedes the address list, supporting up to

255 destination addresses within a single multicast message. The protocol could be

extended to support reverse multicast, by having each intermediary device aggregate

replies before returning them towards the multicast source but this is not a part of the

specification.

Fig. 4 Unicast vs. multicast file transfers

5.3 Application Layer

Beddernet is designed to work with several concurrent applications running on

different platforms and devices without interference. The following discusses briefly

how this is done in Beddernet.

Unique Application Identifier.

Applications in Beddernet are given a 64-bit Unique Application Identifier (UAI). It

is obtained by hashing the application’s human readable name into a 64-bit sequence.

This identifier is then used to route messages to the correct application on the

destination device making it possible to run several applications concurrently.

Although this method does not guarantee collision-free application routing, it makes

the risk of collisions very improbable [16]. It two applications do get the same UAI,

application designers can modify the name they provide to Beddernet. Information

about active applications on a device is propagated proactively in Beddernet,

embedded in the DSDV routing messages, cf. Table 1 and Table 2. This proactive

approach entails an overhead of 8 bytes per control message.

Table 1. Route Broadcast Message

Type Senders

address

Recipients

address

Is route down? Number of

RTE

Routing Table

Entries

1 byte 6 bytes 6 bytes 1 boolean 1 int 1-* RTE

8 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

Table 2. Routing Table Entry (RTE)

Type Destination Address Number of

Hops

Sequence

Number

Number of

UAIH

UIAH

1 byte 6 bytes 1 int 1 int 1 byte 1-255 longs

6 Evaluation

To test the practical performance of Beddernet a series of tests were run on the

Android reference implementation and on a JavaSE implementation, created for this

purpose. Tests on the JavaSE version were carried out on several homogeneous and

stationary Windows XP SP3 workstations with identical unbranded and generic class

2, version 2.0 + EDR Bluetooth hardware.

Fig.5 Default test setup

6.1 Performance

To measure performance and explore the cost of routing a message through

intermediary nodes, bandwidth and latency was measured in a linear scatternet where

up to six devices were connected in a chain; making up a scatternet of five piconets.

(cf. Fig. 6) RTT and average throughput was measured between the first and last

devices. The last device in the chain was then disconnected, performance measured

again, etc. until only two devices were left.

Fig.6 Multi-hop bandwidth and latency test

Beddernet: Application-Level Platform-Agnostic MANETs 9

6.2 Latency

As expected, latency increases linearly with the number of hops in a route (cf. Fig. 7)

although some tests showed that congestion can be a factor in overloaded scatternets.

Fig. 7 Multihop RTT

This effect shows clearly that latency dependant applications are strongly affected by

the number of hops between devices.

6.3 Bandwidth

Bandwidth between two connected devices is around 600ms under the default lab

conditions (cf. Fig. 8) while a two hop file transfer is half as fast. This is expected, as

the total bandwidth available has to be split in two; the intermediary node reads from

one device and then writes to the next.

Fig. 8 Multihop bandwidth

As another hop is added into the route, sending data through two intermediaries,

bandwidth suffers another drop in speed, 44% from the last bandwidth measurement.

This drop seems high as the bandwidth available between device 3 and 4 is logically

10 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

similar as between device 1 and 3. Additional penalties are then incurred as more

hops are added, although much smaller.

Table 3. Multi-hop test results

Hops 1 (base) 2 3 4 5

Bandwidth 697 kbit/s 279 kbit/s 156 kbit/s 127 kbit/s 113 kbit/s

RTT 35 ms 101 ms 153 ms 225 ms 297 ms

Percentage of base

bandwidth
100% 40% 22% 18% 16%

Percentage of RTT base 100% 288% 437% 643% 848%

One possible reason for this performance drop may be that the increase in the

number of piconets leads to some inefficiencies in exchanging data between the

piconets.

To test this, an experiment was carried out. Two different 3-hop scatternets were

created (cf. Fig. 9), one containing 3 piconets, the other with only 2. Bandwidth was

13% higher in the 2 piconet setup, suggesting that some bandwidth is lost when nodes

hop between piconets.

Fig. 9 Different three hop scatternet configurations

6.4 Message size

The design of Beddernet allows for arbitrarily sized messages, some experiments

were carried out to assess if some set maximum/minimum size in the specifications

would be advisable.

Larger message sizes were shown to increase transmission speed in a simple

bandwidth test with different message sizes. Profiling shows [14] that Beddernet has

negligible overhead in CPU usage and overhead is a small percentage of total data

sent, so most of the gains of using larger message sizes were presumed to be due to

the costs of initiating RFCOMM transfers [14].

Although large message sizes improve bandwidth, very large messages sent across

a scatternet were speculated to cause problems for latency dependent applications

Beddernet: Application-Level Platform-Agnostic MANETs 11

because of possible congestive effects. A test designed to explore this showed that

large messages can completely occupy a connection for several seconds leading to a

negative impact on latency for competing transmissions [14]. A message size of 5000

bytes gave a good balance between responsiveness and bandwidth in tests and has

been designated as the maximum and default message size in Beddernet.

6.5 Topology

Previous performance tests focused on the number of hops in a linear scatternet. To

explore what effect topology may have, another test was conducted. Bidirectional

bandwidth was measured between two devices. Then, another device was added to the

piconet and the test repeated between the original two devices (Fig. 10). This resulted

in a 32% drop in throughput. Adding more devices lead to additional performance

drops.

Fig. 10 Piconet bandwidth test, multiple slaves vs. multiple masters

The results from this experiment seem to indicate that the master device divides the

available total bandwidth equally between all connected devices rather than assigning

active devices more slots.

Conversely, changing the setup so that a single slave was connected to multiple

masters lead to only a slight decrease in performance compared to the previous, single

piconet test. This almost constant throughput is speculated to be because of a node's

ability to go into sniff mode. In sniff mode a device can be absent from one piconet

for a longer period of time while being engaged in another without losing connectivity

[6].

It would seem that devices only use the sniff mode to negotiate between different

piconets and not to increase bandwidth within a piconet. If this effect is common in

Bluetooth hardware implementations, it may have a considerable effect on the

performance of SFAs in real-world settings. Designing a SFA that leverages this

factor and takes other experimental results into account could show some real

improvements over older designs. The algorithm would minimise hops while

preventing masters from having many slaves. The topology produced could e.g.

resemble an inverted Bluestar [17].

Scatternet proposals with a very high number of masters could raise questions of

interference issues though, due to the larger number of piconets. Calculations from

12 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

[18] indicate that this is not a critical concern as e.g. R = 4 concurrent piconets would

only experience an interference related drop of I = 4% in a simplified worst case

scenario, ignoring error correction etc., using the formula:

 (

)

 (2)

At this point, tests have shown that both routing through intermediary nodes and

having extra nodes in a piconet causes considerable performance drops, cf. Table 3.

To give a better picture on scatternet performance in real-world usage, a new test was

designed, combining these two factors.

A new 3 hop scatternet was set up and bandwidth measured. Then, 2 inactive nodes

were added to the scatternet, connecting to the two intermediary nodes as shown on

Fig. 11. Bandwidth was measured again, revealing a 39% drop in throughput.

Fig. 11 Multiple hops with extra nodes, the two inactive nodes added are white.

These results are somewhat surprising. The devices are already performing far

under their available bandwidth capacity but still incur bandwidth penalties as devices

are added, even if these new devices are inactive.

Table 4. Multiple hops with extra nodes

Hops 2 3 4 5

Simple chain 303 kbit/s 198 kbit/s 165 kbit/s 151 kbit/s

With two inactive

nodes
198 kbit/s 142 kbit/s 119 kbit/s 107 kbit/s

Beddernet: Application-Level Platform-Agnostic MANETs 13

6.6 Multicast Performance

The multicast feature of Beddernet was tested by setting up a scatternet as on Fig. 4.

Transfer using multicast were 53% faster than using unicast. This isn’t surprising as

each message only needs to be sent through three individual connections and not five

as with unicast. This experiment shows the promise of using multicast in scatternets

for applications such as streaming media to multiple nodes.

7 Conclusion and Future Work

Despite the possible utility of mobile ad-hoc networking, such networks are not yet a

standard feature of mobile devices. The Beddernet project was started to provide a

free and open standard to enable multi-platform scatternets, both for research and

real-world projects.

Implementations of the simple Beddernet protocol have been shown to work on

different platforms with good results. Performance has been tested and although

highly dependent on scatternet topology, shown to be sufficient to enable different

useful applications. Performance is only expected to improve as mobile processors

and Bluetooth adapters become faster. The Beddernet project is considered to have

reached its technological goal. The real success of Beddernet, however, depends on its

usefulness to research and in real world deployments. To encourage adoption and

development the source code is open source and can be downloaded from the project

home page [19].

As experiments indicate that setting up RFCOMM connections is costly,

implementing L2CAP protocol might reveal some performance gains, but as of this

writing, the Android SDK has no supports for L2CAP.

Beddernet currently supports the DSDV routing algorithm, but the loosely coupled

design allows for easy implementation of different routing algorithms. B.A.T.M.A.N

has been identified as a promising routing protocol [21] and it would be interesting if

a larger real world comparison would be made, not only measuring overhead and

bandwidth, but also the practical use of such an algorithm for features such as service

discovery and multicasting.

Lastly, Beddernet’s usefulness could be increased by adding more transmission

protocols e.g. Wi-Fi to the datalink layer. The standard, (802.11a/b/g/n) is very widely

deployed and is getting more common in mobile devices, providing long

communication range and high transfer speeds [20].

8 Bibliography

1. Michael Nielsen, Arne John Glenstrup, Frederik Skytte and Arnar Guðnason, "Real-

world Bluetooth MANET Java Middleware". Technical report TR-2009-120, IT-

University of Copenhagen , 2008.

2. Scattercom, http://sourceforge.net/projects/scattercom/
3. Ibraheem, "Development of Routing Algorithm Based on Bluetooth Technology".

Thesis, University of Technology, Iraq, December 2006.

14 Rasmus Sidorovs Gohs, Sigurður Rafn Gunnarsson, Arne John Glenstrup

4. B. Donegan, D. Doolan, S. Tabirca, "Mobile Message Passing using a Scatternet

Framework", International Journal of Communications & Control 3(1), 2008.

5. Bluetooth. Wikipedia, http://en.wikipedia.org/wiki/Bluetooth
6. Bluetooth specifications: Core Specification v2.0 + EDR, Bluetooth SIG, 1994.
7. Roger M. Whitaker, Leigh Hodge and Imrich Chlamtac, "Bluetooth scatternet

formation: A survey", Ad Hoc Networks 3, 2005.
8. Azzedine Boukerche, "Performance Evaluation of Routing Protocols for Ad Hoc

Wireless Networks", Mobile Networks and Applications 9(4), 2004.
9. Michael Nielsen, Arne John Glenstrup, Frederik Skytte and Arnar Guðnason,

“Bluetooth Enabled Device ad-hoc NETwork”, 2009
10. Lushend Ji, M. Scott Corson, "Explicit Multicasting for Mobile Ad Hoc Networks",

Mobile Networks and Applications 8(5), 2003

11. J.C. Haartsen, S. Mattisson "Bluetooth–a new lowpower radio interference providing

short-range connectivity", Proceedings of the IEEE 88, 2000
12. Android guide, http://developer.android.com/guide/basics/what-is-android.html
13. Android documentation: Bluetooth,

http://developer.android.com/guide/topics/wireless/Bluetooth.html
14. R. Gohs, S.R. Gunnarsson "Bluetooth Scatternet Framework For Mobile Devices

(Beddernet) ", IT - University of Copenhagen, 2010

15. R. Gohs, S.R. Gunnarsson "Beddernet Protocol Specifications 0.1 ", IT - University

of Copenhagen, 2010
16. Birthday problem, http://en.wikipedia.org/wiki/Birthday_problem
17. Dubhashi et. a, "Blue pleiades, a new solution for device discovery and

scatternetformation in multi-hop Bluetooth networks", Kluwer Academic

Publishers , 8 May 2006
18. J.C. Haartsen, S. Mattisson "Bluetooth––a new lowpower radio interference

providing short-range connectivity", Proceedings of the IEEE 88(10), 2000

19. The Beddernet project homepage, http://code.google.com/p/beddernet/
20. Wi-Fi Alliance: Wi-FI Direct, http://www.wi-fi.org/Wi-Fi_Direct.php
21. S. Annese, C. Casetti, C. Chiasserini, P. Cipollone, A. Ghittino, M. Reineri

"Assessing Mobility Support in Mesh Networks", WiNTECH’09, September 21,
2009

