CassMail: A Scalable, Highly-Available, and
Rapidly-Prototyped E-Mail Service

Lazaros Koromilas and Kostas Magoutis

Institute of Computer Science (ICS)
Foundation for Research and Technology Hellas (FORTH)
Heraklion, GR-70013, Greece
{koromil ,magoutis}@ics.forth.gr

Abstract. In this paper we present the design and implementation of a
scalable e-mail service over the Cassandra eventually-consistent storage
system. Our system provides a working implementation of the SMTP
and POP3 protocols and our evaluation shows that the system exhibits
scalable performance, high availability, and is easily manageable under
write-intensive e-mail workloads. The design and implementation of our
system is centered around a synthesis of interoperable components for
rapid prototyping and deployment. Besides offering a proof of concept
of such an approach to prototyping distributed applications, we further
make two key contributions in this paper: First, we provide a detailed
evaluation of the configuration and tuning of the underlying storage en-
gine necessary to achieve scalable application performance. Second, we
show that the availability of scalable storage systems such as Cassandra
simplifies the design and implementation of higher-level scalable services,
especially when compared to the effort expended in projects with simi-
lar goals in the past (e.g., Porcupine). We believe that the existence of
infrastructural services such as Cassandra brings us closer to the vision
of a universal toolbox for rapidly prototyping arbitrary scalable services.

1 Introduction

The large-scale adoption of the Internet as a means of personal communication,
societal interaction, and a successful venue for conducting business has raised the
need for applications and services that can support Internet-scale communities
of users. Cloud computing [1] has recently offered the infrastructural support
necessary for small, medium and large enterprises alike to deploy such services.
However both application developers and Cloud computing providers are in need
of the infrastructural services and platforms that can support the scalability re-
quirements of distributed applications. Compounded with the need for scalability
is the need for rapid prototyping. Today’s planet-scale social networks such as
Facebook, and application marketplaces such as AppleStore have brought appli-
cations (and the “garage innovator” behind them [5]) closer to large communities
of users. This trend has fueled a race among developers to bring new ideas to
market as soon as possible without sacrificing scalability and availability along

the way. The combination of the above needs (scalability and rapid prototyp-
ing of application-specific designs) was certainly a challenging undertaking a
decade ago. As the core theme of this paper indicates however, recent advances
in scalable infrastructure services have improved on the state of the art.

In this paper we substantiate the above observations by focusing on a spe-
cific case study: scalable e-mail services. E-mail is an important application
offered as an Internet-accessible service by companies such as Google (Gmail),
Yahoo (Yahoo! Mail), and Microsoft (Hotmail) among others. Constructing a
scalable, highly-available e-mail service has in the past been performed in a va-
riety of ways, by either statically partitioning users and their data in specific
machines [3] using a general-purpose distributed file system as an underlying
scalable store [6,14] or by specifically designing and constructing an entire system
from first principles for the targeted application [12]. Whereas the first approach
results in simpler systems, experience shows that it suffers from scalability issues
specifically in the areas of load balancing (due to static partitioning) and avail-
ability (due to strong consistency built into general purpose file systems). The
latter approach has in the past been shown to address the above issues, however
at the cost of significant system engineering to support (i) fine-grain, balanced
data partitioning and (ii) a weaker consistency model that matches the seman-
tics of e-mail protocols. The system presented in this paper combines for the
first time the best of both approaches: A synthesis of interoperable components
resulting in a simpler system, capitalizing on standardized support for (i) and
(ii) above.

A key motivation for this paper is the observation that in recent years there
has been significant interest in developing, and in many cases open-sourcing,
scalable infrastructural services. This activity has culminated into systems that
offer storage/file and data APIs with strong [2,6,13] as well as weak [8,9,15]
consistency semantics. A prime example of the latter class of storage systems
that is used in this paper is Apache Cassandra [9], a scalable, highly-available,
eventually-consistent key-value store originally developed by Facebook [9]. The
existence of Cassandra prompted us to revisit the question of how would one
design and build a scalable e-mail service over an eventually-consistent replicated
storage system today. More specifically, we considered the following questions:

1. Does Cassandra significantly reduce the development effort compared to the
effort expended in a project with similar goals in the past [12]7

2. Does the resulting system exhibit the scalability and availability expected of
a robust scalable e-mail service?

More generally, our work puts novel infrastructural services such as Cas-
sandra into context with past efforts to explore the feasibility and utility of
providing high-level abstractions or data structures as the fundamental stor-
age infrastructure. The Boxwood project [10] and the scalable distributed data
structure (SDDS) approach of Gribble et al. [7] are two examples of such efforts.
We believe that a key missing piece in past proposals are primitives that explore

the space of data consistency semantics. This paper shows that Cassandra is
such a missing piece that brings us closer to the vision of a toolbox of universal
abstractions to support arbitrary scalable application development.

Our contributions in this paper are:

— The design and implementation of a fully functioning scalable, highly-available
e-mail service based on synthesis of interoperable components (extensible
high-level development interfaces, Cassandra storage system).

— Demonstration of the speed of prototyping that such a software engineering
approach allows. Specifically, it took us a few tens of lines of Python code to
implement a working prototype compared to the 41,000 lines of C++ code
it took for a system with similar design principles a decade ago [12].

— Evaluation of the configuration and tuning of the underlying storage engine
for the targeted application, exhibiting the scalabilibity, availability, and
manageability properties of our rapidly-prototyped system.

The rest of the paper is organised as follows. We refer to related work in
Section 2. In Section 3 we describe the system architecture and in Section 4 we
provide the details of our implementation. In Section 5 we describe the evaluation
of our system. In Section 6 we discuss possible optimizations and finally, in
Section 7 we conclude.

2 Related work

The penetration of e-mail in our way of daily life is such that it is nowadays a
mandatory offering by all Internet-scale service providers to their subscribers [4].
Large-scale e-mail services have in the past been implemented in a number of
ways. Early distributed e-mail services partitioned e-mail state across a number
of storage nodes but did so in a static partitioning scheme using distributed
file systems [3]. Such a scheme is hard to manage (in particular, it is hard to
rebalance e-mail to storage node in case of failure, or to correct an initially un-
balanced partitioning). Cluster-based e-mail services [16] attempted to achieve
scalability and availability via database failover schemes with limited success.
Finally, application-specific designs [12] achieved better scalability via the use
of hash-based partitioning of user e-mail to storage nodes, optimistic replica-
tion [15], and dynamic membership algorithms. Such approaches however were
complicated and thus were met with little practical success in term of real-world
deployment and use.

CassMail shares the basic premise behind systems such as Porcupine [12],
namely that the semantics of e-mail protocols are naturally relaxed and users
are used to e-mail being occasionally delayed, reordered, reappearing after being
deleted, or even lost. Thus it is based on a storage system (Cassandra [9]) utiliz-
ing optimistic replication to achieve scalability and high availability. Cassandra is

an eventually-consistent storage system, meaning that replicas can temporarily
diverge (and clients allowed to see inconsistent intermediate state) but guaran-
teed to eventually converge. Based on a general-purpose eventually-consistent
key-value store rather than its own implementation, CassMail leverages a robust
and tested scalable software component and at the same time radically simplifies
the overall architecture focusing on the core logic of the application.

The idea of using foundational storage abstractions to support application-
specific services is not new. Boxwood [10] explored the idea in which high-level
abstractions can facilitate the creation of scalable and fault-tolerant applications.
Boxwood proposed a set of components (replicated logical devices, a chunk data
store, and a scalable B-tree, along with a set of infrastructure services such as
global state management, lock service, and a transactional service) as a com-
prehensive toolbox for distributed system design. At a smaller scale, scalable
distributed data structures [7] proposed a key-value hash table as another foun-
dational abstraction for the support of scalable applications. A common theme in
the above proposals was the assumption of strong consistency semantics (single-
copy serializability [11]), which in some cases limit system availability and may
be constraining applications, especially when their semantics do not strictly re-
quire it. Components such as Cassandra extend and enrich the above proposals.

3 Design

We will first give a brief overview of the Cassandra data model and the schema
that we designed for CassMail. Cassandra’s basic data unit is the column, or
block as we will refer to it next. A block consists of a key and a value. Sequences
of blocks (an arbitrary number) collectively form a row. Blocks in a row can
be ordered in a user-specified manner depending on key type (for example in
timestamp order). Each row is identified by a separate key. A row is individually
placed on a Cassandra storage node based on a consistent hashing scheme [9]
described later in this section. Rows are grouped into column families, which
are entities akin to relational database tables. Column families are grouped into
keyspaces.

Figure 1 displays the schema in which Cassandra stores user and mailbox
information. There are two tables, Mailboxes and Users, within a keyspace called
Mail. Users is used to validate a user (the origin or destination of an e-mail
message) and to find the names of his mailboxes. Each row in Users is keyed by
user name. The blocks stored in a row have as their keys the names of the user’s
mailboxes. Concatenating a username with a mailbox name forms a natural key
to a row in the Mailboxes table. The row contains blocks that hold the actual
e-mail messages in that user’s mailbox. The key for each block is a time-based
universally unique identifier (UUID) stamped by the SMTP daemon when the
message arrives and is stored. The value of a block is the e-mail message itself.
We chose not to fragment a user’s mailbox across multiple rows (as for example
Porcupine does [12]) for two reasons: First, we believe that spreading the load of
retrieving a mailbox to several nodes can be achieved by reading different block

ranges from different replicas of the row rather than different fragments of the
mailbox. Second, we want to avoid hard-to-adjust magic constants (such as the
soft limit used by Porcupine [12]) to restrict the mailbox spreading too far across
storage nodes.

Mail

— :Mailboxes

"pete:inbox" Htimeuuid ‘ emailmsg0 ‘ timeuuid ‘ emailmsg1 ‘

"pete:outbox” Htimeuuid ‘ emailmsg0 ‘ timeuuid ‘ emailmsg1 ‘

"anne:inbox" Htimeuuid ‘ emailmsg0 ‘ timeuuid ‘ emailmsg1 ‘

"anne:outbox"‘ ‘ timeuuid ‘ emailmsg0 ‘ timeuuid ‘ emailmsg1 ‘

"anne:project"‘ ‘ timeuuid ‘ emailmsg0 ‘ timeuuid ‘ emailmsg1 ‘

— :Users
‘ "pete” H "inbox" ‘ ‘ "outbox" ‘ ‘

["anne” |["inbox" [["outbox"| ["project'| |-

Fig. 1. The Cassandra schema designed for CassMail.

Cassandra runs on a cluster of n storage nodes as shown in Figure 2. Each
node maps to a specific position on the ring through a hash function. Similarly,
each row maps to a position on the ring by hashing its key using the same hash
function. Each node is in charge of storing all rows whose keys hash between this
node’s position and the position of the previous node on the ring. Cassandra
members communicate with each other to exchange membership and liveness
information through RPC calls. They also communicate when looking for the
node in charge of the client’s requested data. In our design each Cassandra
node is also running an SMTP and a POP3 server. In this fashion, the cluster
consists of functionally identical nodes that can perform any and all functions.
This symmetrical configuration underlies the system’s scalability and availability
properties.

An example of e-mail delivery and retrieval is depicted in Figure 2. In this
example anne connects® through her mail-submission agent (MSA) to the SMTP
server on node 1 to send an e-mail message to pete. The SMTP server inspects
the message and saves it to pete’s inbox and anne’s outbox on Cassandra. Now
suppose that pete wants to check his messages by accessing node 2. He connects

! Normally an e-mail goes through the submission, relaying, and delivery steps. With-
out loss of generality in this discussion we omit relaying and think of the users
connecting directly to a system node to submit and then deliver the message.

Fig. 2. System design

to the POP3 server on node 2 with his mail-retrieval agent (MRA) which first re-
ceives the number of e-mails (equal to the number of columns in the pete:mailbox
row) then asks for message headers, and finally retrieves a number of e-mail mes-
sages. POP3 fetches pete’s mailbox from Cassandra in fixed-size batches. Each
batch would normally go to a different replica for the row to ensure that the
read load is balanced across the Cassandra cluster. Eventually pete receives the
new message from anne.

4 Implementation

In this section we describe our implementations of the SMTP and POP3 servers
and the configuration and tuning of the Cassandra system to support our write-
intensive e-mail workloads. The set of commands implemented by the SMTP and
POP3 servers is shown in Table 1. This is the minimum set that enables Mail User
Agents (MUAS) to properly receive and send e-mail. We initially implemented
the SMTP and POP3 servers in Ruby using the generic GServer class?. We found
that Gserver handles many low-level management tasks, allowing the developer
to focus on the specifics of the SMTP and POP3 protocols. Additionally, the
Ruby client for Cassandra® provides a clean, high-level interface that is easy to
work with. However, our preliminary experiments showed that the underlying
implementation of Gserver was not robust enough to successfully pass our stress
tests. Given this early experience we decided to switch to using Python’s smtpd
module and the pycassa® client library for Cassandra which proved to be a

2 http://www.ruby-doc.org/stdlib/libdoc/gserver/rdoc/
3 https://github.com/fauna/cassandra
4 https://github.com/pycassa/pycassa

http://www.ruby-doc.org/stdlib/libdoc/gserver/rdoc/
https://github.com/fauna/cassandra
https://github.com/pycassa/pycassa

IServer[Supported commands ‘

SMTP HELO MAIL RCPT DATA RSET NOOP QUIT
POP3|USER PASS STAT LIST UIDL TOP RETR DELE RSET NOOP QUIT

Table 1. Protocol commands supported by SMTP and POP3 servers.

more robust and performant implementation. Our working implementation of
the SMTP and POPS3 servers consists of a few tens of lines of code that is easy
to reason about and extend.

In addition to implementing the POP3 protocol, we extended the implemen-
tation to support multiple mailboxes per user (a feature not directly supported
by POP3). We achieved this by appending a delimiter to the username, followed
by the specific mailbox name, as for example in POPUSER="anne | outbox". Upon
receiving such a name the POP3 server extracts the username and mailbox (us-
ing inbox as the default) and uses it to interact with Cassandra.

SMTP and POPS3 servers access Cassandra through the Thrift® interface.
Thrift transparently handles Cassandra node availability issues such as failing
over to another Cassandra node when the current one appears to have failed. In
our implementation we collocate SMTP, POP3, and Cassandra servers on each
system node (thus exposing Thrift on the localhost interface). This was a design
choice we took to arrive at a homogeneous system in which any node can perform
any task. However it would be a trivial modification to enable SMTP/POP3
servers to access Cassandra over the network thus decoupling them into two
separate tiers.

Properly configuring Cassandra is key for tuning the system towards specific
workloads and environments. Our schema described in Section 3 can be embodied
within a very concise description that comprises the name of the keyspace, the
column families included, and the information of how to sort the blocks inside
them, as shown in the following configuration excerpt:

keyspaces:
- name: Mail
replication_factor: 3
column_families:
- name: Mailbozxes
compare_with: TimeUUIDType
- name: Users
compare_with: BytesType

Another configuration decision is how to partition the logical ring between
Cassandra nodes. Our experience with automatic/random node placement on
the ring is that it can lead to hot-spots. We thus opted for precomputing initial
tokens for our nodes ensuring that each node gets roughly equal key ranges. We

® http://incubator.apache.org/thrift/

http://incubator.apache.org/thrift/

used Cassandra’s RandomPartitionerS to achieve balanced distibution of row
keys on the ring by hashing them using the MD-5 hash function.

In case of a node failure, surviving nodes detect the failed node and exclude
them from their membership list. Cassandra does not automatically repartition
the ring to the surviving nodes. This is something that requires manual interven-
tion with the execution of shell commands by an operator. However the system
(depending on settings described below) can be available while operating under
failure as our evaluation in Section 5 shows.

Two other key Cassandra parameters are the degree of replication (or replica-
tion factor) for row data and the level of consistency chosen for reads and writes.
Describing the full set of options offered by Cassandra is outside the scope of this
paper (see [8,9] for a complete discussion). We will however describe the options
we exercised during our evaluation to highlight the key tradeoffs involved. In
terms of consistency levels, we used the following conditions for acknowledging
a write:

ONE Write must be stored at the memory table and commit log of at least one
replica.
ALL Write must be stored at the memory tables and commit logs of all replicas.

Our implementation uses Cassandra’ version 0.7.0 running on Java 1.6.0_22.
We used Ruby version 1.9.2 and Python version 2.6.6.

5 Evaluation

In this section we report on our experimental results. Our experimental setup
consists of a 10-node cluster of dual-CPU AMD 244 Opteron servers with 2GB
DRAM running Linux 2.6.18 and connected through a 1Gbps Ethernet switch
using Jumbo (9000-byte) frames. Each node was provisioned with a dedicated
logical volume comprising four 80GB SATA disks in a RAID-0 configuration. We
used the xfs filesystem on this volume on all nodes. The benchmark used in this
study was Postal®, a widely-used benchmark for SMTP servers. Postal operates
by repeatedly and randomly selecting and e-mailing a user (USER@example . com)
from a population of users. We created a realistic population of users by using
the usernames from our departmental mail server (about 700 users). The Postal
client is a multithreaded process that connects to a specific SMTP server. In our
experiments we configured Cassandra with different replication factors (1, 2, 3)
and consistency-levels (ONE and ALL described in Section 4). We used message
sizes drawn uniformly at random from a range of sizes. We experimented with
two ranges:

— 200KB—2MB (typical of large attachments)
— 50KB-500KB (typical of small attachments)

5 http://wiki.apache.org/cassandra/StorageConfiguration
" http://cassandra.apache.org/
8 http://doc.coker.com.au/projects/postal/

http://wiki.apache.org/cassandra/StorageConfiguration
http://cassandra.apache.org/
http://doc.coker.com.au/projects/postal/

These ranges are chosen to reflect the increase in average e-mail size compared to
arelated study performed a decade ago [12] due to widespread use of attachments
in everyday communications.

Each experiment consists of an e-mail-sending session blasting the CassMail
cluster to saturation for about ten minutes. Our measurements are per-minute
Postal reports of the sum of e-mail data sent during the previous minute (that is
e-mail payload, excluding other control/header information). In order to avoid
taking into account any bootstrapping overhead we only consider the last five
minutes in our measurements. In all of our graphs we report aggregate average
throughput and standard deviation (as error bars) of our measurements. Each
node ran an instance of the SMTP server (Python code) and an instance of the
Cassandra server (Java code), with each server consuming one of the two CPUs.
In all cases performance is limited by the servers’ CPUs. There was also swap-
ping and garbage collection activity taking place during runs. We consider such
activities unavoidable (especially when running software in high-level, scripted,
and garbage collected languages such as Python and Java) and legitimate part
of a node’s load. We used two dedicated client machines with similar specifica-
tions to our servers to drive all experiments. The client machines hosted Postal
processes in a setup that balanced load-generation work across the two machines.

60000

repll I rep2 I repl3
50000 r

40000

i
30000 r :
i
20000 r :
10000 r I I :
0
1 2 4 8

Number of nodes

Throughtput (KB/s)

Fig. 3. Throughput for different replication factors.

Our first experiment measures the aggregate write throughput over increas-
ing cluster sizes for messages in the range 200KB-2MB. Our results are depicted
in Figure 3. Lighter bars correspond to higher replication factors (1-3). The con-
sistency level is set to ONE in all cases. Increasing cluster size results into higher
aggregate throughput across all replication factors. The performance increase is
smaller going from 1 to 2 nodes due to the introduction of Cassandra server-to-
server traffic to forward keys to the proper coordinator (since the e-mail clients

are unaware of the mapping between user mailboxes and Cassandra nodes). In-
creasing the replication factor results into decreased throughput by about 5-10%
for each extra replica at all cluster sizes due to the additional traffic necessary to
update replicas. We expect this drop to be steeper for stricter consistency levels
such as ALL. Note that a replication factor of 2 and 3 does not make sense for
cluster sizes of 1 and 2 respectively, explaining the missing bars in Figure 3.

60000
repl2 one repl3 one
repl2 all repl3 al
50000 r 1
)
ug 40000 r :
5
2 30000 r 1
=
g’ z
= 20000 - = 1
|_
10000 | :
0
2 4 8

Number of nodes

Fig. 4. Throughput for different consistency levels.

Figure 4 depicts the impact of the consistency level in aggregate write through-
put with increasing cluster sizes (2-8) and replication factors (2-3). The key
observation is that stronger consistency requirements (ALL instead of ONE) de-
grade performance in all cases. The degradation is more pronounced at larger
cluster sizes and is about 35% in the case of 2 replicas (dropping from 50MB/s
to 30MB/s) and about 45-50% in the case of 3 replicas. A key factor respon-
sible for this degradation is the large imbalances in nodes’ performance due to
background tasks such as Java garbage collection or swapping activity. These
imbalances are largely masked at consistency level ONE but exposed to the
clients at consistency level ALL. This observation highlights a key advantage
of eventually-consistent storage systems compared to strongly-consistent ones
under write-intensive workloads. Previous work [7] has pointed out the adverse
impact of garbage collection activity in strongly-consistent storage systems writ-
ten in Java, namely stalling write operations when one out of a group of replicas
freezes while undergoing some background activity. Eventually-consistent sys-
tems can hide that stall time by allowing operations to progress at the speed of
the fastest replica.

We next focus on the impact of message size on aggregate throughput. Fig-
ure 5 depicts system performance with increasing cluster size at consistency
level ONE and replication factor 1. We observe a performance drop when mov-

60000

200kB-2MB [l 50KB-500KB
50000 |- .
40000 | ;
30000 |- .
20000 | ;
10000 | . ;
0
1 2 4 8

Number of nodes

Throughtput (KB/s)

Fig. 5. Throughput for different message size ranges.

ing from larger (200KB—2MB) to smaller (50KB-500KB) e-mail messages, which
is about constant in absolute value (=5MB/s) but decreases in relative terms
with increasing cluster size. This drop is caused by the higher impact of per-
operation overheads (connection setup/teardown, header information generated
and processed for each e-mail message, etc.).

We next explore the availability of CassMail service when experiencing a node
failure under replication factor 2 at different consistency levels (ONE, ALL). Fig-
ure 6 depicts aggregate per-minute throughput before (0'-3’) and after (4'-10")
failure for consistency level ONE (squares) and ALL (dots). For this experiment
we used an 8-node CassMail cluster in which all nodes run Cassandra servers
and only four out of them also run SMTP servers. At minute 3 we inject a crash
failure on one of the Cassandra-only nodes. In the case of relaxed consistency
(ONE, squares) the node failure has no apparent effect on performance since
the surviving replica takes the update (and thus all writes completing success-
fully without delay) while failover mechanisms (such as hinted handoff [8, 9])
are initiated in the background. In the case of consistency-level ALL (dots) we
observe a measurable degradation of about 25% in the following minute and
immediate recovery of service after that. This happens because some writes can-
not get acknowledgments from the failed node and thus temporarily block until
the failover mechanism has been activated. In all cases, CassMail can rely on
Cassandra to gracefully handle the node failure with minimal or no availability
loss, and without operator intervention.

Comparing CassMail experimentally to systems with equivalent functional-
ity is hard since to the best of our knowledge no such systems are available in
open source. The closest alternative —lacking several of CassMail’s properties—
would be a system relying on static partitioning of users over conventional SMTP
servers. For the purpose of comparing to such a system we configured its build-

40000

rebIZ one ©
35000 | repl2all o ,
O
o 30000 - a] oo v 1
o a g . =
X 25000 e —
-) [] []
[]

3 20000 | * e o
Ny
S .
3 15000 | 1
=
F 10000 1

5000 r 1

O 1 1 1 1 1 1 1 1 1 1

o 1 2 3 4 5 6 7 8 9
Minutes

Fig. 6. Throughput over time before and after the occurrence of a failure event.

ing block (an SMTP server based on Postfix 2.7.1) and used it as a reference
point for comparing CassMail’s single-node performance with a mature tighly-
configured software system. We did not focus on larger-scale experiments since
with static partitioning, client awareness of data location, and no replication
one can trivially achieve linear scalability up to the limits of the network. We
used the Postal benchmark configured as described earlier and created a mailbox
file for each user in the server’s file system. Our results show that the Postfix-
based server achieves average write throughput of 40MB/s and 25MB/s with
large (200KB-2MB) and small (50KB-500KB) messages respectively, limited by
CPU in both cases. This contrasts to CassMail’s single-node write performance
of 15MB/s and 10MB/s for large and small messages respectively. The perfor-
mance difference can be attributed to implementation characteristics: CassMail
is written in high-level programming languages and libraries (Python, Java) and
combines e-mail protocol processing with significant storage system processing at
each server node. Postfix on the other hand, is a mature performance-optimized
software system written in C using a lightweight storage stack. We believe that
CassMail’s scalability properties can make up for the impact in single-node per-
formance.

6 Discussion and future work

We are exploring deployment of CassMail in a Cloud infrastructure [1,5] of-
fering virtual machines (VMs) and local or remotely-mounted storage volumes.
In a straightforward deployment scheme each Cassandra server maps to a VM
and each disk to (possibly RAID setups of) local or remotely-mounted storage
volumes. Assumptions about failure independence require VMs and storage vol-
umes to not share any single point of failure (such as a physical server). Current

Cloud providers hide this level of information from the user raising a challenge to
effective deployment. Our experimental results suggest the use of VMs with con-
siderable CPU (number of cores) and physical memory allocations. In addition,
the higher performance, reliability, and predictability of local storage makes it a
better alternative to remotely-mounted storage for storing Cassandra data.
Our system has proven to be quite robust under intensive experiments but is
currently lacking some features that are needed for real-world deployment. First,
it does not deal with user authentication or data encryption of the messages being
transferred. Also, the SMTP server currently receives e-mail but does not relay
messages to other mailservers. We believe that these features are straightforward
additions to our prototype and we plan to implement them in the near future.

7 Conclusions

Eventually-consistent storage systems have been shown to be key enablers of
scalable, highly available, and manageable application services that do not re-
quire strict consistency semantics. In particular, Porcupine [12] demonstrated a
scalable e-mail service that was based on an eventually-consistent storage sys-
tem built from scratch. A drawback of such an approach is the complexity and
long development effort it requires (Porcupine consists of 14 major components
written in C++ with a total of about 41,000 lines of code [12]). The emer-
gence of general-purpose scalable storage services that offer APIs with eventual-
consistency semantics such as Cassandra raise the opportunity of realizing ap-
plication services similar to Porcupine at a lower development cost.

In this paper we describe the results of a project to build an SMTP/POP
service over Cassandra and show that such a service can be simple (consisting
of a few tens of lines of Python code focused on the application logic) and
thus rapidly implemented. We also show that the implementation exhibits good
scalability properties: its throughput increases from 15MB/s to 55MB/s when
the cluster size grows from 1 to 8 nodes and a crash failure of a single node
results in minimal to no availability lapse, depending on the level of consistency.
These properties also indicate an easy-to-manage system (no need for human
intervention in mapping users to storage nodes or for restoring availability at the
time of failure), which is a critical characteristic of a system meant to operate
at a large scale.

A cost for the simplicity of our design is the additional overhead (evidenced by
high CPU usage of Python SMTP /POP server and Java Cassandra client /servers)
as well as the background activity inherent in scripted and garbage-collected pro-
gramming environments. However, the combination of technology trends point-
ing to more cycles in future multi-core CPUs (which can to some extent ab-
sorb higher overheads of high-level language runtimes) and the strength of the
eventually-consistent storage model in hiding the effect of slow replicas in write
performance, paint a positive conclusion: We believe that the synthesis of inter-
operable (application and storage) components is a viable path to rapidly pro-
totyping robust scalable systems. In this context, storage systems with general-

purpose APIs that explore alternative consistency semantics are important foun-
dational abstractions for building scalable applications.

8

Acknowledgments

We thankfully acknowledge the support of the European ICT-FP7 program
through the SCALEWORKS (MC IEF 237677) and CUMULONIMBO (STREP
257993) projects.

References

1.

2.

10.

11.

12.

13.

14.

15.
16.

M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud Computing.
Technical Report UCB/EECS-2009-28, UC, Berkeley, Feb 2009.

F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, and R.E. Gruber. Bigtable: A Distributed Storage System for Struc-
tured Data. ACM Transactions on Computer Systems (TOCS), 26(2):1-26, 2008.
N. Christenson, T. Bosserman, and D. Beckemeyer. A Highly Scalable Electronic
Mail Service using Open Systems. In Proc. of the USENIX Symposium on Internet
Technologies and Systems, Monterey, CA, 1997.

N. Ducheneaut and V. Bellotti. E-mail as habitat: an exploration of embedded
personal information management. ACM interactions, 8(5):30-38, 2001.

J. Elson and J. Howell. Handling Flash Crowds from your Garage. In USENIX
2008 Annual Technical Conference, Boston, MA, 2008.

S. Ghemawat, H. Gobioff, and S.T. Leung. The Google File System. ACM SIGOPS
Operating Systems Review, 37(5):29-43, 2003.

S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable, Distributed Data
Structures for Internet Service Construction. In Proc. of 4th Conference on Oper-
ating System Design & Implementation, San Diego, CA, 2000.

D. Hastorun et al. Dynamo: Amazon’s Highly Available Key-Value Store. In Proc.
of Symposium on Operating Systems Principles, Stevenson, WA, 2007.

A. Lakshman and P. Malik. Cassandra: a Decentralized Structured Storage System.
ACM SIGOPS Operating Systems Review, 44(2):35-40, 2010.

J. McCormick, N. Murphy, M. Najork, C.A. Thekkath, and L. Zhou. Boxwood:
Abstractions as the Foundation for Storage Infrastructure. In Proc. of Conference
on Operating Systems Design € Implementation, San Francisco, CA, 2004.

C. H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26:631-653, October 1979.

Y. Saito, B.N. Bershad, and H.M. Levy. Manageability, Availability, and Perfor-
mance in Porcupine: A Highly Scalable, Cluster-based Mail Service. ACM Trans-
actions on Computer Systems (TOCS), 18(3):298, 2000.

K. Shvachko et al. The Hadoop Distributed File System. In Proc. of IEEE Conf.
on Mass Storage Systems and Technologies, Lake Tahoe, NV, 2010.

C. Thekkath, T. Mann, and E. Lee. Frangipani: a Scalable Distributed File System.
In Proc. of the 16th ACM Symposium on Operating Systems Principles, Saint Malo,
France, 1997.

W. Vogels. Eventually Consistent. ACM Queue Magazine, December 2008.

W. Vogels, D. Dumitriu, A. Agrawal, T. Chia, and K. Guo. Scalability of the
Microsoft Cluster Service. In Proc. of 2nd USENIX Windows NT Symposium,
Seattle, WA, 1998.

	CassMail: A Scalable, Highly-Available, and Rapidly-Prototyped E-Mail Service

