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Abstract. Peer-to-peer applications are used in sharing User-Generated Content
(UGC) on the Internet and there is a significant need for UGC to be analysed for
credibility/quality. A number of schemes have been proposed for deriving cred-
ibility of content items by analysing users’ feedback, mostly using centralised
computations and/or semi-decentralised approaches. In this paper, wepropose
our P2P schema, ScoreTree, that decentralises a relatively complex credibility
management algorithm by aggregating distributed evaluations and delivering an
estimate of credibility for each interested content item. Our experiments show
that our schema compares favourably with existing decentralised approaches in-
cluding a gossip message based implementation of ScoreFinder, and a widely
adopted P2P application called Vuze.

1 Introduction

User-Generated Content(UGC) is an increasingly important information source on
the Internet. UGC applications process individual data streams from a large number of
Internet users and make this information available globally, e.g., Social Networking,
Collaborative Content Publishing, File Sharing, Virtual Worlds and other collaborative
activities. The value or utility of the information from these applications is dependent
to the information credibility – users need to be able to ascertain the credibility/quality
of the information in the UGC.

Because it is impossible to manually rank the credibility oflarge collections of
shared content items by any single party, a number of UGC applications allow the users
themselves to provide feedback, or toscore the content items that other users have
provided. Recent advances such as in [8] have been made towards more sophisticated
methods for aggregating the users’ feedback, e.g. by eliminating bias and other anoma-
lous (undesirable) user behavior that can be identified in a set of scores.

Decentralised orPeer-to-peer(P2P) approaches have been widely used in recent
years for sharing contents contributed and/or generated byusers. The long term contin-
uation of P2P content sharing applications raises the need for a decentralised credibil-
ity management schema. Addressing this need, we propose ourdecentralised schema,
ScoreTree, in this paper. Experimental results show that our method convergence fast,
and is more robust against churn and network conditions, in comparison to other current
proposals [8, 9, 1].
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2 Background and Related Work

2.1 Trust Management and Collaborative Filtering

The quality and authenticity of shared items may be inferredby Trust and Reputa-
tion Managementsystems, like P2PRep [2], which is designed for Gnutella-styled un-
structured peer-to-peer networks and collect reputation votes by flooding requests, and
EigenTrust [6], where a peer has number of trusted peers by manually rating or accumu-
lated interaction experiences, so that the goal of EigenTrust is to infer the global rank of
trustworthiness for each peer. The Trust/Reputation Management Model is for manag-
ing the trustworthiness of individuals rather than the quality of shared items, hence we
need to improve this model, such that items from the same usermay be discriminated
on their quality.

A very close field to our research isCollaborative Filtering[13, 11], for predicting
the score that a user may give to a new item by aggregating opinions from other users.
This objective is very similar to Web Link Analysis, nonetheless no globally agreed
rank for each node is maintained, instead different predictions are given to different
users according to their profiles. By combining the methods of Collaborative Filtering
and Trust Management, we have proposed our Annotator-Article Model.

2.2 The Annotator-Article Model

The Annotator-Article model is proposed in our earlier work[8] for credibility manage-
ment applications, where two types of entities are considered:Articlesthat are available
for annotation andAnnotatorswho annotate the articles, i.e., score them. The evaluation
towards an article could be nominal ranks or numeric scores.

We have proposed an iterative algorithm, calledScoreFinder, which is applied for
offsetting the bias from each annotator and adaptively selecting scores from credible
users. The pseudo-code of this algorithm is shown in Algorithm 1. The algorithm itera-
tively updates the expertise level and the bias level of eachuser, and then calculates the
weighted average of scores to each item using the recent expertise levels and the bias
levels.

The input parameters for this algorithm is score matrixS = (sij), a two-mode
proximity matrix that donates the scores that each useri gives to each articlej. The
scores inS are linearly normalised into the range between 0 and 1; a highersij denotes
a better rating. A discriminate function,δij , is also defined to determine if a score
exists between useri and articlej. The value ofδij equals to 1 if the score exist, and 0
otherwise. The output of this algorithm is vectorr = (rj), by eachrj , between 0 and
1, denotes the consensus evaluation to thej-th article. A higherrj indicates a better
evaluation of articlej.

The expertise levels and the bias-removed scores of users inevery iteration are the
intermediate results of the algorithm, denoted by vectore

τ and matrixSτ respectively,
whereτ denotes the current iteration number.

The value ofγ that is used to control the influence of expertise levels is a trained
constant, and the convergence criterion,ǫ, is the difference of the Sum of Squared Errors
(SSE) between the results in the two iterations. More details about selection ofτ are
available in [8].
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Algorithm 1 The Algorithm of Centralised ScoreFinder
schema

τ ← 0
r

τ ← AverageScores(S)
repeat

τ ← τ + 1
S

τ ← BiasRemoval(S, rτ−1)
e

τ ← ExpertnessEstimation(S
τ , rτ−1)

r
τ ←WeightedAverage(Sτ , eτ )

until SSE(rτ , rτ−1) < ǫ

r← r
τ

The formulas corresponding to procedures BiasRe-
moval, ExpertnessEstimation and WeightedAverage are
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3 Decentralised Credibility Management

3.1 Calculating Weighted Average in a Peer-to-Peer Network

A straightforward approach to calculate a weighted averagein a P2P network is to
nominate a peer, which is in charge of collecting source values from all other peers and
propagating the result. The peer is usually nominated by searching the unique identity
of the file using theDistributed Hash Tables(DHT), as the method that is used in the
credibility management component inVuze1. In an Internet scale application, a peer
that is in charge of managing credibility of very popular items needs to face a very
large number of peers sending and receiving the scores, and becomes a bottleneck of
the system. A comparison of message numbers between our schema and Vuze’s schema
is shown later in the experiment section.

Gossip messages are an efficient way to calculate weighted average without in-
troducing bottlenecks. As discussed in [7, 10], each peer initialises the local, temporary
result by its local source value, and continuously exchanges a portion of its local tempo-
rary results with each known neighbour. After a sufficient time period, temporary results
in all peers will converge to a consistent value, which is theaccurate average value of
all source values. There are two disadvantages of concern when using gossiping. First,
the loss of messages, e.g. due to packet loss, may lead to numerical inaccuracies and re-
quires additional messaging to overcome. Second, the convergence is highly dependent
on the network topology; a low connectivity network can takea long time to converge
because of the limited propagation speed between partitions of the network.

ThePrefix Hash Tree(PHT), proposed in [12], is an approach to build a tree struc-
ture on the peers, which are organised in a DHT, for hierarchically aggregating and
searching data that is distributed over the peers. A peer in structured network usually
has a unique identity, like its IP address, to be addressed. Assuming that the hash value
is represented by a string(a1, a2, a3, ..., al) wherel is the length of the string, a se-
quence can be built by selecting the firstk-th characters:Keyk = (a1, a2, ..., ak) for
all 0 ≤ k ≤ l. SinceKeyk−1 is a function ofKeyk, and all peers haveKey0 = “”,
a tree structure can be built on these keys involving all realpeers as leaf nodes, as the
example shown in Figure 1(a). We use termlogical nodeto call a tree node that corre-
sponds to such a key. Because there is a predictable and unique path between every pair
of nodes in a tree, each peer can expect the edge through whichdata from another given

1 Vuze is a widely used peer-to-peer file sharing application based on an open-source project.
The application can be downloaded fromhttp://www.vuze.org/. An extension com-
ponent [1] is provided for managing the quality of shared items by analysing scores given by
users.
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peer comes, and the maximum length of the paths is strictly limited to2l. The two dis-
advantages of the gossip-message approach can be overcome by exchanging data along
these paths, as we demonstrate in the next section. Therefore, we build our ScoreTree
schema by mapping logical nodes to real peers, as shown in Figure 1(b). A peer with
Keyk sends a message by the DHT toKeyk−1 for searching its parent peer.

There can be circles in such a tree because a logical node and its ancestors may be
mapped to the same peer, as the example shown in Figure 1(b). We use three rules to
remove circles in such a tree: (1) we use the hosted PHT node that is on the highest level
to represent a peer, (2) if a peer hosts multiple PHT nodes on the same level of the PHT,
the PHT node having the minimum key value is selected representative and (3) only the
edges between the PHT nodes as the representatives are kept,and other PHT edges are
disregarded. Figure 1(c) shows an example of selecting treeedges by applying these
three rules.

(a) An example of PHT among logical nodes (b) Using DHT to map logical nodes into
real peers

(c) From a node tree to a peer tree

Fig. 1. Building Prefix-Hash Trees

3.2 Tree-based Average Calculation

The key challenges for implementing ScoreFinder algorithmare to calculate the weighted
average of scores and to update the estimates of the bias levels and the expertise levels
in a P2P network. We depict the principle of our weighted average algorithm in Fig-
ure 2, where each peer in the P2P network is deemed to be a node in a tree. Despite the
size of the peer-to-peer network, a tree node can only see a handful of the neighbour
nodes – its parent node and its child nodes. Note that a peer who does not contributesk
andek can still join the tree structure by lettingsk = 0.

Our approach considers each edge from a peer to another peer as thedelegatefor
all nodes that are reached via that edge. Because of the uniqueness of the path between
each pair of nodes, there is no overlap between node sets thatare delegated by each
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Fig. 2. An example showing the process of calculating the weighted average valueon peerk by
exchanging data with its parent node and children nodes. Byσx,y andµx,y denote the weighted
sum values and the sum of weights sent from nodex to nodey. Article numberj is omitted from
sij andrj because only one shared item is considered in this example.
edge of peerk and each node in the tree (except peerk itself) must be delegated by
an edge of peerk. Furthermore, if all its edges have been the delegates of thenodes
behind them to peerk, these edges are also the delegates of nodes behind them to all
k’s neighbours. All peers like peerk periodically send to neighbours the sum ofσ and
µ from all the other edges as well as its local weight and weighted score:

σk,x =

∑

y 6=x

σy,k + eksk, µk,x =

∑

y 6=x

µy,k + ek, (1)

whereσk,x andµk,x denote the sum of weighted scores and the sum of weights that
are sent from peerk to peerx. Since peerk receives the weighted sum of all source
values and the sum of weights (exceptek andsk) from its neighbours, it can calculate
the above expressions and calculate the weighted average ofall source values in the
tree:

r =
σ

µ
=

eksk +
∑

x 6=k
σx,k

ek +
∑

x 6=k
µx,k

=

∑
x
exsx∑
x
ex

.

Note thatσ andµ are equally calculated on all peers, such that all peers reach the
samer in 2 × l steps; wherel denotes the depth of the tree. For reducing the load on
the only root node, a dedicated PHT is built for every articlebeing scored, and a peer
accordingly joins a number of trees, each for an article it has scored; article identity is
used to differentiate the map between keys and peers in treesfor different articles, i.e.,
Peerx = DHT (Articlei +Keyx).

Our PHT-guided approach overcomes the two disadvantages ofthe gossip-message
based approach: the tree structure provides convergence ina number of rounds equal to
a constant times the tree depth and lost messages can be inferred by each peer explic-
itly knowing which other peers it expects messages from. Forexample, if a message
carryingσk,x andµk,x is lost, nodex explicitly knows that data from the subtree that
is delegated by nodek is unavailable in this round of iteration, so it may useσk,x and
µk,x received in the last round or ask nodek to retransmit the message.

DHT schemes, like Pastry [15] and Bamboo [14], usually provide replication of data
items to peers, such that data is not lost from churn. Our ScoreTree schema packages
all the scores from a user into a single data item, and uses theDHT to store this data
package using the key of its owner; the data package is replicated by the DHT to a
number of peers. When the original peer goes off-line, one replica is activated to join
the computation on behalf of the peer left until it returns.
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4 Experiments

4.1 Baselines, Datasets and The Experimental Environment

We compared out ScoreTree schema with three schemes in experiments:

– the centralised ScoreFinder algorithm that is introducedin [8]
– the schema introduced in [9] that decentralises the ScoreFinder algorithm by ex-

changing gossip messages between randomly assigned neighbours
– the decentralised schema used in Vuze that store the raw scores at a peer that is

selected by DHT

The average scores are the baseline, and all new schemes should have a better accuracy
than the average scores. Because our ScoreTree schema, the first schema and the sec-
ond schema implement the same algorithm, they are expected to converge to the same
results.

We use the MovieLens data set [3] to test our schema. The moviedata set contains
10 million ratings for 10681 movies from 71567 volunteers; we randomly select a small
part of annotators and movies from the data set. In terms of “oracle” scores, we calculate
the arithmetic average score from all scores given for each movie as its true score. We
use theMean Squared Error(MSE) to evaluate the accuracy of all results from the
tested schemes, and show the improvement from the baseline in the charts below.

We built a simulator to emulate a P2P network with at most two thousand peers,
and run this simulator on a cluster computer consisting of 20nodes. This simulator was
configured to examine a number of situations, including different packet loss rates and
different peer availability schemes. Our schema was implemented in this simulator, as
well all other decentralised schemes we tested. A widely adopted DHT schema, Pastry,
was used to organise the computation that is rely on DHT.

4.2 Experimental Results

Figure 3(a) and 3(b) show the change of accuracy according tothe different scales of
the selected data set. ScoreTree achieved similar accuracyto ScoreFinder in all scales
of data sets, as well as the gossip-based approach. Because ScoreTree is a decentralised
version of ScoreFinder without any change to its hypothesesand operations, ScoreTree
is expected to achieve a similar accuracy to ScoreFinder.

A message may be lost in the direct route between any two peersand we simulate
random message loss using a constant error probability overall packets sent. Figure 3(c)
shows that the accuracy of ScoreTree is better than the gossip-message method when
less than 25% messages are lost because no information is lost along with the lost
messages; however when the proportion of lost messages exceeded 25%, the accuracy
of ScoreTree rapidly decreased because of the broken tree-structure.

Churn is simulated by turning off a random selection of peers, and the results are
shown in Figure 3(d). Our replication management significantly improved the robust-
ness of the ScoreTree schema. Without replication management, ScoreTree achieved a
better performance than the baseline when there are 80% peers on-line, but approx. 50%
of peers can achieve the same accuracy by hosting the replicas of the off-line peers.
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Fig. 3. Comparisons for: (a) number of annotators (number of articles held constant at 400),
(b) number of articles (number of annotators held constant at 400), (c) lost messages and (d)
proportion of on-line peers. Note that all Y-axes are logarithmically scaled.
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Fig. 4. Comparison of ScoreTree to the rating management module Vuze in termsof message
overhead.

We also compare the message overheads between the rating management module
of Vuze [1] and our ScoreTree schema in Figure 4, where numbers of all messages for
maintaining the DHT/PHT and for computation are recorded. It shows that Vuze always
has fewer total messages, but by introducing more peers intothe network, the maximum
number of messages sent from a Vuze peer increases more rapidly than in our schema.
Both Vuze and ScoreTree generate less average messages per peer when the scale of
the network increases, giving these two schemes good scalability.

5 Conclusions and Future work

A new decentralised schema, ScoreTree, is introduced in this paper addressing the prob-
lem of Credibility Management in p2p networks. The results of the experiments show
a better scalability of ScoreTree than the other schemes, aswell as a better robustness
against network conditions and churn of peers in most situations. Our schema creates
overheads for building the DHT between peers and for building the PHT on the DHT,
but maximum workload of a peer is better controlled by ScoreTree, and the convergence
speed is guaranteed. We note that there are schemes like [5] for building trees between
peers without underlying structures, and the depth and width of the tree are controllable.
This gives us a chance to reduce the cost for maintaining a tree structure. Integrity is
also an issue of concern for our schema when adopted in practical applications. Influ-
ence from every node is propagated to all nodes in a tree by ourschema; a malicious
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peer can arbitrarily change the final result by manipulatingσ andµ that it sends to the
neighbours. We note that PeerReview [4] may be useful in accounting for the behaviour
of every peer and identifying those peers that break the protocol.
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