
The Role of Ontologies in Enabling Dynamic

Interoperability

Vatsala Nundloll, Paul Grace, Gordon S. Blair

School of Computing and Communications, Lancaster University, UK

{nundloll, gracep, gordon}@comp.lancs.ac.uk

Abstract. Advances in the middleware paradigm has enabled applications to be

integrated together thus enabling more reliable distributed systems. Although

every middleware tries to solve interoperability issues among a given set of

applications, nonetheless there still remains interoperability challenges across

various middlewares. Interoperability enables diverse systems to work in

accordance and extend the scope of services that are provided by individual

systems. During an interoperability process, it is imperative to interpret the

information exchanged in a correct and accurate manner in order to maintain

coherence of data. Hence, the aim of this paper is to tackle this issue of

semantic interoperability through an experimental approach using the domain

of vehicular ad-hoc networked systems.

Keywords: Interoperability, Ontology, Vehicular Ad-Hoc Networks.

1. Introduction

Middleware technologies have proven a successful solution in ensuring

interoperability within distributed systems. However, due to the heterogeneity of

applications and environments, a number of different middleware systems have

emerged. Due to conflicting standards, communication styles and heterogeneous

protocols are unable to interoperate with one another. Solutions to this problem of

middleware heterogeneity include bridging [14, 15, 16] and interoperability

frameworks [17, 19, 20]. However, these are insufficient where interoperability is

required ‘on-the-fly’, i.e., where two heterogeneous systems spontaneously encounter

one another at runtime, there is a need to automatically learn the middleware solutions

employed and then generate a dynamic bridge between the two systems.

CONNECT1 is a software framework that dynamically generates these middleware

mediators and hence provides emergent middleware solutions, which can encounter

different networked systems dynamically, enable them to connect together,

understand one another and be able to exchange data. Here, a fundamental

requirement is the ability to discover and understand the meaning and behaviour of

middleware technologies and standards in order to learn and generate the required

software. This entails matching or comparison between different middleware in order

1 http://www.connect-forever.eu

to identify how they are different, and based upon this synthesize an appropriate

adaptive mapping mechanism to underpin the interoperability solution. To achieve

such understanding, we advocate the novel use of ontologies that crosscut middleware

solutions; this allows us to obtain semantic knowledge of the middleware in order to

allow two different systems to effectively be able to interoperate with each other.

In this paper, we present a dynamic interoperability framework that leverages

ontologies in order to provide the following two important capabilities:

 Classifying Protocols. This involves discovering and defining the type of

messaging protocols from each system.

 Matching Protocols. We can observe where the fields of two messages are the

same and different to provide the information required to build a bridge.

We use a case-study based evaluation that shows we can understand and match

communication protocols from Vehicular Ad-hoc Networks (VANETS) domain.

The paper is structured as follows: Section 2 briefly presents a background on

ontologies. Section 3 explains the dynamic framework, and Section 4 details the case

study. Section 5 then presents an experiment that validates and evaluates the case

study results. Finally, Section 6 discusses related work and then Section 7 concludes

the paper and briefly outlines our future work.

2. Background on Ontologies

An ontology is a formal descriptive notation given to concepts that constitute a

particular domain. It is a simple but powerful notion used to classify concepts of a

domain in the form of a superclass-subclass model and also to define the relationships

that exist among these different objects. In addition to making domain assumptions

explicit, ontologies also permit reuse and analysis of this domain knowledge.

Enabling the classified information regarding a domain to be shared as a common

vocabulary across people and applications, ontologies consequently pave the way

towards building a supportive infrastructure for information exchange and discovery.

Any kind of domain can be modelled using ontologies, ranging from concrete such

as defining a type of bread, to abstract such as defining an organization. Fig. 1 elicits

the components that make up an ontology. The Primitive Concepts, for instance,

denote the different constituents of a domain. On the other hand, the Defined

Concepts set the criteria to determine whether an object is a member of a certain

class. The Axioms define the restrictions that are laid on the domain, for example, a

particular object O cannot have more than x number of subordinates. These assets can

define a domain by structuring its different constituents and defining the relationships

that exist among them. Furthermore, the ontologies can also classify this information

in order to infer additional meaning to the domain. This is possible through the use of

reasoners such as Hermit [1], RacerPro [2] and Fact++ [3].

As an example, referring to the food ontology presented in [23], let us suppose we

need to classify the foods into categories such as Healthy Foods and Non-Healthy

Foods. Through the means of defined concepts these two classes can thus be created

and stored in the ontology. Moreover, through the usage of relations, as explained in

Fig. 1, the different foods can be defined in terms of their amount of fat, food energy,

cholesterol, weight and saturated fat. Then, through the use of a reasoner, these

various classes of food can be classified as either Healthy Foods or Non-Healthy

Foods. The power of the reasoner is that it infers all meanings and facts based upon

the semantic meaning provided by the ontology about the concepts of a domain.

Fig. 1. Ontology Concepts

The OWL language (Ontology Web Language) is the language designed by the W3C

in order to build ontologies and is mainly devised for Semantic Web applications. The

language formulates the domain information in terms of instances of OWL classes

and enables the use of axioms to interpret and manipulate this information.

The software mostly employed to develop ontologies is Protégé, a free, open-

source ontology editor [4]. Active development is being carried out to improve the

software and its two latest versions are Protégé Version 3.x and Version 4.x. P3.x is

shown to be in more stable state to use inference rules within the ontology and hence

supports the SWRL rule language and SQWRL query language. SWRL stands for

Semantic Web Rule Language and can add more expressivity to the OWL language

through the creation of rules. These rules are expressed in terms of OWL concepts

(classes, properties, instances). A rule-engine bridge mechanism is provided to embed

a rule engine into the Protégé-OWL in order to execute the SWRL rules. One such

bridge is the Jess rule engine which can be embedded in P3.x to execute rules and add

more expressivity to the OWL language. In addition, the SWRL language has been

extended to a query language called SQWRL (Semantic Query Web Rule Language)

in order to enable extraction of information from the ontology. The SQWRL library is

packaged with SQL-like built-ins that are used within the SWRL rules in order to

execute SQL-like queries to pull out required information. The library further

provides new sets of operators classified as Core and Collection operators, which

enable basic as well as advanced operations such as select, counting, difference and

data aggregation to execute in the rules. An example eliciting the use of a SQWRL

query is given below, where a query retrieves all Breads having a price less than £2

from a given ontology:

On the other hand, P4.x supports the latest version of OWL language (OWL 2.0)

and is tailored to handle large and complex ontologies. It can produce very expressive

ontologies, but it yet cannot provide full support for the creation and execution of

inference rules through SWRL and SQWRL. Since the features of P3.x suit more the

requirements of our experiment in view of performing queries against our vehicular

ontology and enabling matching of different concepts, we have resorted to the usage

of Protégé Version 3.4.4 for the purpose of our experiment.

3. Framework for Dynamic Interoperability

Our framework for dynamic interoperability provides mechanisms to achieve

emergent middleware (Fig. 2); in this the crosscutting role of ontologies is depicted as

central to achieving the objectives. The framework offers three phases of behaviour:

 In the first phase, which regards the discovery and learning phase, the ontology

is used to give a semantic meaning to the different concepts that are involved in a

system. Based on Fig. 1, a system can be defined using the primary and defined

concepts together with the axioms available from the ontology. Learning this

system involves classifying these defined concepts within the ontology through

the use of a reasoner, hence identifying related concepts.

 The second phase, which involves enabling matching between any two systems,

is achieved through use of semantic rules defined within an ontology. These rules

compare the definition of any two concepts classified by the ontology and

generate the difference that emanates from the given definitions. This step is

crucial as it also shows the degree of similarity/difference that exists between two

systems, thus determining the possibility of mapping from one system to another.

 The third step involves the dynamic synthesis of a mapping mechanism in order

to enable a system A to operate as another system B. The ontology is helpful here

to list the missing requirements in A for it to perform as B and vice versa. Once

this information is available, the mapping determines how to provide A with the

adequate and absent requirements so that it can adapt itself to perform as B.

The role of ontologies spans all the phases required to enable interoperability. We

hence advocate and emphasize the importance of using ontologies to define the role or

behaviour of a system; these define the types of protocols being deployed by the

system and can help bridge the gap between any two different systems trying to

interoperate with each other.

Bread(?b) ^ hasPrice(?b, ?p) ^ swrlb:lessThan(?p, 2) � sqwrl:select(?b, ?p)

Fig 2. Dynamic Interoperability Framework

4. Case Study on Vehicular Ontology

To enable interoperability between any two systems means dealing with the low-level

message exchange between them. Since different systems deal with different message

formats, it is imperative to interpret these message formats in a way so that a solution

can be devised regarding message exchange between them. The case study that we

present in this section is based on the framework explained in section 3 and aims at

tackling the interoperability problem at the level of message formats. The main

hindrance in exchanging data packets stems from the difference in the packet formats

themselves. In this respect, our case study is based on the role played by ontologies in

facilitating some level of dynamic semantic interoperability among different packet

formats. It shows how we can use ontologies to interpret and enable some level of

comparison between message formats from different protocols.

Motivation of the application of Ontologies to VANETs. We chose VANETs as

a case-study for our framework, because it is a domain of protocols with

heterogeneity of message formats and routing strategies as shown in Fig. 3. Each

particular VANET can only interpret the packet formats it has defined for itself.

Hence, if we intend to make two different VANETs interoperate with each other, we

need a way to be able to interpret the format of incoming packets to a VANET

system. To enable this, we define a vehicular ontology to create a vocabulary of the

various routing strategies defining their set of requirements. The main idea is to use

this ontology to classify unknown incoming packets under the appropriate routing

scheme and deduce how to enable the packet to interoperate with the current VANET.

Fig 3. Routing Strategies in VANETs

In Fig. 4 we show the application of our interopeability framework to VANETs. An

important element is the Domain-Component based Model for VANETs; this is a

dynamic middleware for sending, receiving and routing VANET packets—each

distinct component serves one specific function within a VANET protocol. This is

leveraged to create the emergent middleware between two VANET protocols. We

now in turn describe the phases of the interoperability framework.

Fig. 4 Applying the dynamic interoperability framework to VANETs

Phase 1, Discover & Learn: Defining the VANET domain in the ontology. The first

step is to define the VANET domain within the ontology, which is part of the first

phase regarding discovery and learning. This ontology contains all of the meanings of

the different routing strategies applicable to VANETs, together with the definition of

known packet formats. As can be seen in Fig. 5, which shows part of the vehicular

ontology, existing packet formats are defined and stored within the ontology. In this

case, they are stored as subclasses of a class called NamedPackets. For instance, one

of these is BBRPacket which is a protocol performing Broadcast and is derived from

the protocol BBR [5]. Referring to Fig. 4, let us assume that our VANET system sends

packets P1, suppose a broadcast-based packet, the format of which is already defined

by the ontology. Upon receiving packet P2 with a new unknown format, suppose a

trajectory-based packet, the system enables this new format to be defined and stored

within the ontology repository.

Fig. 5 The VANET Ontology

Phase 1, Discover & Learn: Identifying a VANET protocol. The presence of a

reasoner engine embedded within the ontology tool enables to infer the meaning of a

packet. As a result, the packet is classified under the most appropriate routing

strategy. This classification is an important step as it helps to establish a ground for

comparison between packets belonging to different routing categories. Part of the

inferred ontology is shown in Fig. 6, where the class BBRPacket has been properly

classified as an IdentifiedPacket and also as an MFRBroadcastPacket. The

requirements for MFRBroadcastPacket are the fields CommonNeighbourNo and

NeighbourList. These fields form part of the format of a BBRPacket and hence the

reasoner is able to classify the latter as being of type MFRBroadcast packet (Most

Forwarding Broadcast). On the other hand, the class IdentifiedPacket denotes that the

incoming packets contain fields that are known. It is possible that an incoming packet

does not correspond to any of the routing strategies defined within the ontology, yet

contains fields that have been already defined by the ontology. In this case, the packet

is an IdentifiedPacket and this classification is enough to show that information can

be extracted from the packet using SQWRL mechanisms (as shown later in the

section).

Phase 2, Match: Dynamic Bridging between P1 and P2. Once the classification

process is done, the packet P2 (Fig. 4) can be compared to the existing packet P1

through an intuitive mechanism which makes use of SWRL rules and SQWRL query

rules within the ontology itself. These rules enable to deduce the difference that lies

between the packet formats P1 and P2. For instance, let us assume P1 to be a BBR

packet [5] (designed for performing Broadcast-based routing) and P2 to be a

Broadcomm [7] packet (designed for performing cluster-based routing). At this stage,

both packets P1 and P2 have already been classified under the appropriate routing

scheme by the ontology. As can be seen in Fig. 7, which details out the packet format

of both BBR (P1) and Broadcomm (P2), there is no direct mapping possible.

Fig 6. Inferred Vehicular Ontology

Fig. 7. Mapping BBR and Broadcomm packet formats

Phase 2, Match: Role of SQWRL. In order to enable some kind of comparison

between them, a rule-based mechanism needs to be deployed within the ontology in

order to provide the adequate reasoning to enable matching. We need to make use of

SQWRL like queries to retrieve the required information from the ontology. The

following SQWRL rule formulates a comparison between BBR and Broadcomm in

order to find out which fields are different between them:

The SQWRL query states that if b is a BBR packet and has fields represented by f,

create a set of all these fields called bag. On the other hand, if p is a Broadcomm

packet and has fields denoted by pf, create a set of such fields called bagt. Then find

the difference between these two bags and in such a case, select those fields that have

been found to be in Broadcomm packet p but not in BBR packet b. The result of this

query is the set of fields missing from BBR for it to function as a Broadcomm packet.

As shown in Fig. 7, the fields lacking in BBR are: LocationCoordinates, TargetRoute

and ClusterHead and this information is retrieved via the SQWRL query.

 The OWL language enhanced with the use of SWRL and SQWRL results in

creating an expressive vehicular ontology, which determines the nature of a packet

given the field descriptions. Furthermore, it enables a comparison of any two

particular packets and thus provides the difference between them in terms of the fields

that are missing. Once the matching of the packets has been achieved, this leads to the

next step, which is to perform the mapping between these two packets.

Phase 3, Synthesize Mapping: Mapping P2 onto P1. Once the difference in the

two packet formats P1 and P2 have been provided via the ontology, this final step

entails engineering an adaptive mapping mechanism to enable P1 to function as P2.

For example, if we need to enable BBR to function as Broadcomm, the step will

determine how to provide the missing fields in the BBR packet, which are Location

Coordinates, Cluster Head and Target Route. These are among the set of fields

required for Broadcomm to perform cluster-based routing and are lacking from BBR.

To detail how to enable this mapping mechanism is not within the scope of this paper

as it is included in part of our future work regarding the interoperability process.

5. Dynamic Interoperability Experiments

5.1 Methodology

The case study above explains how interoperability can be tackled between two

specific VANETs, which are cluster-based (Broadcomm) and broadcast-based (BBR).

In order to validate this case study, we have conducted an experiment to enable the

same interoperability procedures (i.e. discovery/learning and matching) to execute at

run-time. The experiment consists of tackling interoperability between other systems

and our VANET system at run time through the use of our vehicular ontology. In

order to enable the experiment at run time, we have made use of java-based programs

and Protege-owl API [10] in order to manipulate the ontology at run time. The version

of the Protege ontology tool that we have used is Protege3.4.4 [4] which provides full

support to apply SWRL rules and SQWRL-based queries.

In order to interpret incoming packets, we read those incoming packets and extract

their field labels from their format at run time. These field labels are then stored in a

text file. Another java program loads and manipulates the vehicular ontology at run

time. The field names, stored in the text file, are then fed as input to the ontology

which creates a new packet based on these values. We have used the reasoner Pellet

[11] in order to classify the packets defined within the ontology. If the new packet

contains fields which are identified by the ontology, then it is classified under a class

called IdentifiedPacket, as shown in Fig. 8. Otherwise, the packet is ranked under

UnIdentifiedPacket. Moreover, if the packet corresponds to the requirements of a

given routing scheme, the reasoner classifies the packet under the appropriate routing

class. However, if the packet partly corresponds to these requirements, it is classified

as partially fulfilling the role of that routing scheme by the reasoner. Part of the

resulting inferred version of the ontology is displayed in Fig. 6.

We carried out test runs with different packet formats and these are displayed in

Table 1. For each new incoming packet, the java program creates a new packet class

in the ontology at runtime, displayed in the ObjectName column in Table 1. All the

new packet objects are initially created as subclasses of the class UnNamedPackets,

pictured in Fig. 8. The reasoner then classifies them as identified or non-identified

packets and also ranks them under the appropriate routing scheme.

Table 1. Test Cases

Fig. 8. Inferred Vehicular Ontology with the generated Test cases

5.2 Experiment Results

Fig. 8 portrays the resulting ontology after the generation and classification of these

test cases by the reasoner at run time. The first test run, UnIdentifiedPacketRecv0,

consists of only the fields CommonNeighbourNo and DestinationIP, whereby

CommonNeighbourNo is among the set of fields required for performing the

MFRBroadcast routing. Therefore, the reasoner classifies the packet

UnIdentifiedPacketRecv0 under the class PartialMFRBroadcast, which implies that

this packet can partially provide requirements for performing MFRBroadcast routing.

It is also classified as an IdentifiedPacket since it contains known fields. In the second

test case, UnIdentifiedPacketRecv1, the fields Longitude, Latitude and TargetRoute

are required for performing a Position-based routing. On the other hand, TargetRoute

is also required among other set of fields to perform a Cluster-based routing.

Therefore, the packet UnIdentifiedPacketRecv1 is classified under

ClusterBasedPacket which, in turn, is a subclass of PositionBasedPacket and is also

ranked as an IdentifiedPacket. In test case 3, although the packet,

UnIdentifiedPacketRecv2, contains known fields such as BroadcastMeter, Distance

and DestinationIP, the packet is not classified under any routing strategy since these

fields are not defined as critical in the running of any routing strategy. However,

because the packet has been identified as containing existing fields, it has been

categorized under the IdentifiedPacket class. In addition to containing the same fields

as in test case 1, the fourth test case, UnIdentifiedPacketRecv3, also contains 2

unknown fields. Consequently, it is classified both under PartialMFRBroadcast and

UnIdentifiedPacket. Finally, the fifth test case, UnIdentifiedPacketRecv4, contains all

unknown fields and hence, is classified as UnIdentifiedPacket.

5.3 Evaluation

When using BBR, which requires fields such as CommonNeighbourNo,

NeighbourList, and DestinationIP address to perform broadcast-based routing, then

test case 0 will require NeighbourList to operate as BBR and the system will then be

able to route the packet. The matching mechanism through the use of SQWRL queries

as explained earlier indicates that the latter field is required to enable the existing

VANET to route the packet. The mapping mechanism will eventually determine how

to enable test case 0 to function as BBR. On the other hand, if test case 0 is compared

against Broadcomm, there are more missing fields since Broadcomm requires more

fields to operate. Furthermore, if we take test case 3, although a few of the fields have

been identified to enable this packet to be partially classified under MFRBroadcast

routing scheme, the lack of information about the unidentified fields acts as a

hindrance to properly identify the format. We may need additional mechanisms to

interpret the fields that are unknown, which we consider as part of our future work.

In this experiment, we have tried to deal with the problem of interoperability in the

domain of VANETs and have been able to show that this problem can be tackled to a

certain degree. The results of this experiment demonstrate that the use of ontology

combined with SWRL and SQWRL can help perform a matching between any two

packets. This forms the basis of comparing any two concepts, which is the starting

point for handling interoperability between them. If we try to expand this idea in a

much broader context where different networked systems are trying to interoperate

with one another, we would need to create an ontology for every such system in order

to capture the meaning of the concepts present within the domain. Thus, the

deployment of ontologies creates yet another challenge which is the differences

arising among the different ontologies of a same general domain, making their

manipulation even more complex and difficult.

 To deal with such different application ontologies, a new type of ontology is

surfacing called the Reference ontology [24], which aims at providing links between

heterogeneous ontologies. However, the authors in paper [24] argue that if ontologies

expand a particular reference ontology in a coherent way, then matching their

different concepts can be made easier. Providing an initial matching between distinct

ontologies of a general domain through a reference ontology is indispensable. If we

are moving towards the inception of an emergent middleware to tackle dynamic

interoperability, then the reference ontology can provide a benchmark to compare

related ontologies and hence facilitate matching the different concepts through the

application of SWRL and SQWRL-like rules.

6. Related Work

Universal interoperability is a long-standing objective of distributed systems research.

The traditional approach to resolve interoperability problems is to agree on a standard,

i.e., everyone uses the same protocols and interface description languages;

CORBA[12], DCOM[13], and Web Services are good examples of this approach. For

situations where systems can agree to a common standard, the approaches are highly

effective. However, for both long-lived and universal interoperability these solutions

have demonstrably failed, indeed, future attempts at such global standards are

destined to fail too. Such one size fits all standards and middleware platforms cannot

cope with the extreme heterogeneity of distributed systems, e.g., from sensor

applications through to large-scale Internet applications; and a single communication

paradigm, e.g. RPC, cannot meet all application requirements. Moreover, new

distributed systems and applications emerge fast, while standards development is a

slow, incremental process; it is likely that new technologies will appear that will make

a pre-existing standard obsolete. Finally, new standards do not typically embrace an

existing legacy standard, which leads to immediate interoperability problems.

Software bridges have been proposed to enable communication between different

middleware environments. The bridge acts as a one-to-one mapping between

domains; it will take messages from a client in one format and then marshal this to the

format of the server middleware; the response is then mapped to the original message

format. Many bridging solutions have been produced between established commercial

platforms. The OMG created the DCOM/CORBA Inter-working specification [14].

OrbixCOMet [15] is an implementation of the DCOM-CORBA bridge, while

SOAP2CORBA [16] bridges SOAP and CORBA middleware. Further, Model Driven

Architecture advocates the generation of such bridges to underpin deployed

interoperable solutions. However, developing bridges is a resource intensive, time-

consuming task, which for universal interoperability would be required for every

protocol pair; further a future protocol requires a mapping to every existing protocol.

Finally, software bridges must normally be deployed and available in the network; for

many environments (particularly resource-constrained) this is not possible.

Intermediary-based solutions take the ideas of software bridges further; rather than

a one-to-one mapping, the protocol or data is translated to an intermediary

representation at the source and then translated to the legacy format at the destination

(and vice versa for a response). Enterprise Service Buses (ESB), INDISS [17],

uMiddle [18] and SeDIM [19] are examples that follow this philosophy. However,

this approach suffers from the greatest common divisor problem, i.e., between two

protocols the intermediary is where their behaviour matches, they cannot interoperate

beyond this defined subset. As the number of protocols grows this common divisor

then becomes smaller such that only limited interoperability is possible.

Substitution solutions (e.g., ReMMoC [20] and WSIF [21]) embrace the

philosophy of speaking the peer’s language. That is, they substitute the

communication middleware to be the same as the peer or server they wish to use. A

local abstraction maps the behaviour onto the substituted middleware. Like for

software bridges this is particularly resource consuming; every potential (and future)

middleware must be developed such that it can be substituted. Further, it is generally

limited to client-side interoperability with heterogeneous server.

Semantic Middleware solutions e.g. S-ARIADNE [22] employs efficient, semantic,

service-oriented solutions to achieve interoperability; this is utilized at the discovery

and matching stage to ensure that only services that semantically match attempt to

interoperate with one another; hence, concerning itself with only the application data

and function differences, not the heterogeneity of middleware (indeed a common

middleware platform is required).

There is a distinct disconnection between the mainstream middleware work and the

work on semantic interoperability. Our solution embraces and integrates the ideas of

both (as far as we are aware it is the first to employ ontologies to resolve

communication protocol interoperability); because of this, we argue that it is better

placed to achieve long-lived, universal interoperability. By employing ontologies to

classify, match and map communication protocols, we have the ability to

automatically generate a bridge between two legacy communication protocols. The

nature of the solution means that the problems of standards, exhaustive resource

requirements, and minimal matches can be overcome.

7. Conclusions

This paper puts forward the approach of using ontologies to handle the semantic

differences that arise between different systems, in order to enable them to

interoperate. We have elicited three major steps required for performing

interoperability, which are: discovery/learning, matching and synthesis of mapping.

We have also elicited the role ontology plays in handling these steps and we advocate

that the ontology has a crosscutting role in the steps involved during the

interoperability process. All three processes are intertwined and each step provides

the necessary input to perform the next step. For instance, the result from the

matching process provides a sound notion on the type of mapping that needs to be

performed. We have been able to validate the discovery/learning and matching phases

through a case study on VANETs, however, the synthesis of mapping between two

different systems remains part of our future work.

Furthermore, we also intend to extend in the future our experiment on VANETs

through the investigation of user-defined SWRL built-ins in order to compare the data

types of the fields in a message to achieve richer interoperability between protocols

through the handling of data heterogeneity. We also plan to explore a wider range of

middleware protocols including traditional technologies where bridging has been

attempted e.g., RPC protocols, message-based platforms and service discovery.

References

1. http://hermit-reasoner.com/

2. http://www.racer-systems.com/products/racerpro/

3. http://owl.man.ac.uk/factplusplus/

4. http://protege.stanford.edu/

5. Zhang, M and Wolf, R. 2007. Border Node Based Routing Protocol for VANETs in Sparse

and Rural Areas. IEEE Globecom Autonet Workshop (Washington DC, Nov. 2007), 1-7.

6. Liu, G., Lee, B, Seet, B., et al.. A Routing Strategy for Metropolis Vehicular

Communications, in Proc. Int. Conference on Information Networking (ICOIN), Feb 2004.

7. Durresi, M., Durresi, A., and Barolli, L. 2005. Emergency Broadcast Protocol for Inter-

Vehicle Communications, in Proc. 11th International ICPADS Conference Workshops.

8. Santos, R., Edwards, A., Edwards, R., and Seed, N. 2005, Performance evaluation of routing

protocols in vehicular ad-hoc networks, Int. J. Ad Hoc Ubiquitous Comput. 1, 1/2, 80-91.

9. Zhao J. and Cao, G. 2006. VADD: Vehicle-assisted data delivery in vehicular ad hoc

networks, in Proc. 25th IEEE International Conference on Computer Communications.

10. http://protege.stanford.edu/plugins/owl/api/

11. http://clarkparsia.com/pellet/

12.Object Management Group, "The common object request broker: Architecture and

specification Version 2.0," Technical Report 1995.

13. D. Booth et al. (2004, Feb) W3C Working Group Note, http://www.w3.org/TR/ws-arch/

14. Object Management Group, "COM/CORBA Interworking Specification Part A & B," 1997.

15. Iona Tech. (1999) OrbixCOMet http://www.iona.com/support/whitepapers/ocomet-wp.pdf.

16. L. Brueckne. (2010, January) SOAP2CORBA. [Online]. http://soap2corba.sourceforge.net

17. Y. Bromberg, V. Issarny, "INDISS: Interoperable Discovery System for Networked

Services," in Proc of the IFIP/ACM/Usenix Int. Middleware Conference, France, 2005.

18. J. Nakazawa, H. Tokuda, W. Edwards, and U. Ramachandran, "A Bridging Framework for

Universal Interoperability in Pervasive Systems," in Proc of 26th IEEE International

Conference on Distributed Computing Systems (ICDCS 2006), Lisbon, Portuga, 2006.

19. C. Flores, G. Blair, and P. Grace, "An Adaptive Middleware to Overcome Service

Discovery Heterogeneity in Mobile Ad Hoc Environments," IEEE Dist Sys Online, July 2007.

20. P. Grace, G. Blair, S. Samuel, "A Reflective Framework for Discovery and Interaction in

Heterogeneous Mobile Environments," ACM SIGMOBILE Review, Jan. 2005.

21. M. Duftler, N. Mukhi, S. Slominski, and S. Weerawarana, "Web Services Invocation

Framework (WSIF)," in Proc. OOPSLA 2001 Workshop on OO Web Services, Florida, 2001.

22. S. Ben Mokhtar, A. Kaul, N. Georgantas, V. Issarny. “Efficient Semantic Service

Discovery in Pervasive Computing Environments”, in Proc. of ACM/IFIP/USENIX 7th

International Middleware Conference, Melbourne, Australia, November 2006.

23. J. Cantais, D. Dominguez, V. Gigante, L.Laera, V. Tamma, “An example of food ontology

for diabetes control”, in Proc. of the ISWC 2005 workshop on Ontology Patterns for the

Semantic Web, Galway, Ireland, November 2005

24. C. Wang, K. He, Y. He, “MFI4Onto: Towards Ontology Registration on the Semantic

Web”, 6th IEEE Int. Conference on Computer and Information Technology (CIT'06), 2006.

