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Abstract. Advances in the middleware paradigm has enabled applications to be 

integrated together thus enabling more reliable distributed systems. Although 

every middleware tries to solve interoperability issues among a given set of 

applications, nonetheless there still remains interoperability challenges across 

various middlewares. Interoperability enables diverse systems to work in 

accordance and extend the scope of services that are provided by individual 

systems. During an interoperability process, it is imperative to interpret the 

information exchanged in a correct and accurate manner in order to maintain 

coherence of data. Hence, the aim of this paper is to tackle this issue of 

semantic interoperability through an experimental approach using the domain 

of vehicular ad-hoc networked systems.  
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1.  Introduction 

Middleware technologies have proven a successful solution in ensuring 

interoperability within distributed systems. However, due to the heterogeneity of 

applications and environments, a number of different middleware systems have 

emerged. Due to conflicting standards, communication styles and heterogeneous 

protocols are unable to interoperate with one another. Solutions to this problem of 

middleware heterogeneity include bridging [14, 15, 16] and interoperability 

frameworks [17, 19, 20]. However, these are insufficient where interoperability is 

required ‘on-the-fly’, i.e., where two heterogeneous systems spontaneously encounter 

one another at runtime, there is a need to automatically learn the middleware solutions 

employed and then generate a dynamic bridge between the two systems.  

CONNECT1 is a software framework that dynamically generates these middleware 

mediators and hence provides emergent middleware solutions, which can encounter 

different networked systems dynamically, enable them to connect together, 

understand one another and be able to exchange data. Here, a fundamental 

requirement is the ability to discover and understand the meaning and behaviour of 

middleware technologies and standards in order to learn and generate the required 

software. This entails matching or comparison between different middleware in order 

                                                           
1 http://www.connect-forever.eu 



to identify how they are different, and based upon this synthesize an appropriate 

adaptive mapping mechanism to underpin the interoperability solution. To achieve 

such understanding, we advocate the novel use of ontologies that crosscut middleware 

solutions; this allows us to obtain semantic knowledge of the middleware in order to 

allow two different systems to effectively be able to interoperate with each other. 

In this paper, we present a dynamic interoperability framework that leverages 

ontologies in order to provide the following two important capabilities: 

 Classifying Protocols. This involves discovering and defining the type of 

messaging protocols from each system.  

 Matching Protocols. We can observe where the fields of two messages are the 

same and different to provide the information required to build a bridge. 

We use a case-study based evaluation that shows we can understand and match 

communication protocols from Vehicular Ad-hoc Networks (VANETS) domain. 

The paper is structured as follows: Section 2 briefly presents a background on 

ontologies. Section 3 explains the dynamic framework, and Section 4 details the case 

study. Section 5 then presents an experiment that validates and evaluates the case 

study results. Finally, Section 6 discusses related work and then Section 7 concludes 

the paper and briefly outlines our future work. 

2.  Background on Ontologies 

An ontology is a formal descriptive notation given to concepts that constitute a 

particular domain. It is a simple but powerful notion used to classify concepts of a 

domain in the form of a superclass-subclass model and also to define the relationships 

that exist among these different objects. In addition to making domain assumptions 

explicit, ontologies also permit reuse and analysis of this domain knowledge. 

Enabling the classified information regarding a domain to be shared as a common 

vocabulary across people and applications, ontologies consequently pave the way 

towards building a supportive infrastructure for information exchange and discovery. 

Any kind of domain can be modelled using ontologies, ranging from concrete such 

as defining a type of bread, to abstract such as defining an organization. Fig. 1 elicits 

the components that make up an ontology. The Primitive Concepts, for instance, 

denote the different constituents of a domain. On the other hand, the Defined 

Concepts set the criteria to determine whether an object is a member of a certain 

class. The Axioms define the restrictions that are laid on the domain, for example, a 

particular object O cannot have more than x number of subordinates. These assets can 

define a domain by structuring its different constituents and defining the relationships 

that exist among them. Furthermore, the ontologies can also classify this information 

in order to infer additional meaning to the domain. This is possible through the use of 

reasoners such as Hermit [1], RacerPro [2] and Fact++ [3].  

As an example, referring to the food ontology presented in [23], let us suppose we 

need to classify the foods into categories such as Healthy Foods and Non-Healthy 

Foods. Through the means of defined concepts these two classes can thus be created 

and stored in the ontology. Moreover, through the usage of relations, as explained in 

Fig. 1, the different foods can be defined in terms of their amount of fat, food energy, 



cholesterol, weight and saturated fat. Then, through the use of a reasoner, these 

various classes of food can be classified as either Healthy Foods or Non-Healthy 

Foods. The power of the reasoner is that it infers all meanings and facts based upon 

the semantic meaning provided by the ontology about the concepts of a domain.  

 

 
Fig. 1. Ontology Concepts 

 

The OWL language (Ontology Web Language) is the language designed by the W3C 

in order to build ontologies and is mainly devised for Semantic Web applications. The 

language formulates the domain information in terms of instances of OWL classes 

and enables the use of axioms to interpret and manipulate this information.  

The software mostly employed to develop ontologies is Protégé, a free, open-

source ontology editor [4]. Active development is being carried out to improve the 

software and its two latest versions are Protégé Version 3.x and Version 4.x. P3.x is 

shown to be in more stable state to use inference rules within the ontology and hence 

supports the SWRL rule language and SQWRL query language. SWRL stands for 

Semantic Web Rule Language and can add more expressivity to the OWL language 

through the creation of rules. These rules are expressed in terms of OWL concepts 

(classes, properties, instances). A rule-engine bridge mechanism is provided to embed 

a rule engine into the Protégé-OWL in order to execute the SWRL rules. One such 

bridge is the Jess rule engine which can be embedded in P3.x to execute rules and add 

more expressivity to the OWL language. In addition, the SWRL language has been 

extended to a query language called SQWRL (Semantic Query Web Rule Language) 

in order to enable extraction of information from the ontology. The SQWRL library is 



packaged with SQL-like built-ins that are used within the SWRL rules in order to 

execute SQL-like queries to pull out required information. The library further 

provides new sets of operators classified as Core and Collection operators, which 

enable basic as well as advanced operations such as select, counting, difference and 

data aggregation to execute in the rules. An example eliciting the use of a SQWRL 

query is given below, where a query retrieves all Breads having a price less than £2 

from a given ontology: 

 

 

 

On the other hand, P4.x supports the latest version of OWL language (OWL 2.0) 

and is tailored to handle large and complex ontologies. It can produce very expressive 

ontologies, but it yet cannot provide full support for the creation and execution of 

inference rules through SWRL and SQWRL. Since the features of P3.x suit more the 

requirements of our experiment in view of performing queries against our vehicular 

ontology and enabling matching of different concepts, we have resorted to the usage 

of Protégé Version 3.4.4 for the purpose of our experiment. 

3.  Framework for Dynamic Interoperability 

Our framework for dynamic interoperability provides mechanisms to achieve 

emergent middleware (Fig. 2); in this the crosscutting role of ontologies is depicted as 

central to achieving the objectives. The framework offers three phases of behaviour: 

 In the first phase, which regards the discovery and learning phase, the ontology 

is used to give a semantic meaning to the different concepts that are involved in a 

system. Based on Fig. 1, a system can be defined using the primary and defined 

concepts together with the axioms available from the ontology. Learning this 

system involves classifying these defined concepts within the ontology through 

the use of a reasoner, hence identifying related concepts. 

 The second phase, which involves enabling matching between any two systems, 

is achieved through use of semantic rules defined within an ontology. These rules 

compare the definition of any two concepts classified by the ontology and 

generate the difference that emanates from the given definitions. This step is 

crucial as it also shows the degree of similarity/difference that exists between two 

systems, thus determining the possibility of mapping from one system to another.  

 The third step involves the dynamic synthesis of a mapping mechanism in order 

to enable a system A to operate as another system B. The ontology is helpful here 

to list the missing requirements in A for it to perform as B and vice versa. Once 

this information is available, the mapping determines how to provide A with the 

adequate and absent requirements so that it can adapt itself to perform as B.  

The role of ontologies spans all the phases required to enable interoperability. We 

hence advocate and emphasize the importance of using ontologies to define the role or 

behaviour of a system; these define the types of protocols being deployed by the 

system and can help bridge the gap between any two different systems trying to 

interoperate with each other. 

Bread(?b) ^ hasPrice(?b, ?p) ^ swrlb:lessThan(?p, 2) � sqwrl:select(?b, ?p) 

 



 
Fig 2. Dynamic Interoperability Framework 

4.  Case Study on Vehicular Ontology 

To enable interoperability between any two systems means dealing with the low-level 

message exchange between them. Since different systems deal with different message 

formats, it is imperative to interpret these message formats in a way so that a solution 

can be devised regarding message exchange between them.  The case study that we 

present in this section is based on the framework explained in section 3 and aims at 

tackling the interoperability problem at the level of message formats. The main 

hindrance in exchanging data packets stems from the difference in the packet formats 

themselves. In this respect, our case study is based on the role played by ontologies in 

facilitating some level of dynamic semantic interoperability among different packet 

formats. It shows how we can use ontologies to interpret and enable some level of 

comparison between message formats from different protocols. 

Motivation of the application of Ontologies to VANETs. We chose VANETs as 

a case-study for our framework, because it is a domain of protocols with 

heterogeneity of message formats and routing strategies as shown in Fig. 3. Each 

particular VANET can only interpret the packet formats it has defined for itself. 

Hence, if we intend to make two different VANETs interoperate with each other, we 

need a way to be able to interpret the format of incoming packets to a VANET 

system. To enable this, we define a vehicular ontology to create a vocabulary of the 

various routing strategies defining their set of requirements. The main idea is to use 

this ontology to classify unknown incoming packets under the appropriate routing 

scheme and deduce how to enable the packet to interoperate with the current VANET. 



 
Fig 3. Routing Strategies in VANETs 

 

In Fig. 4 we show the application of our interopeability framework to VANETs. An 

important element is the Domain-Component based Model for VANETs; this is a 

dynamic middleware for sending, receiving and routing VANET packets—each  

distinct component serves one specific function within a VANET protocol. This is 

leveraged to create the emergent middleware between two VANET protocols. We 

now in turn describe the phases of the interoperability framework. 

 
Fig. 4 Applying the dynamic interoperability framework to VANETs  

Phase 1, Discover & Learn: Defining the VANET domain in the ontology. The first 

step is to define the VANET domain within the ontology, which is part of the first 

phase regarding discovery and learning. This ontology contains all of the meanings of 

the different routing strategies applicable to VANETs, together with the definition of 

known packet formats. As can be seen in Fig. 5, which shows part of the vehicular 

ontology, existing packet formats are defined and stored within the ontology. In this 



case, they are stored as subclasses of a class called NamedPackets. For instance, one 

of these is BBRPacket which is a protocol performing Broadcast and is derived from 

the protocol BBR [5]. Referring to Fig. 4, let us assume that our VANET system sends 

packets P1, suppose a broadcast-based packet, the format of which is already defined 

by the ontology. Upon receiving packet P2 with a new unknown format, suppose a 

trajectory-based packet, the system enables this new format to be defined and stored 

within the ontology repository.  

 
Fig. 5 The VANET Ontology  

Phase 1, Discover & Learn: Identifying a VANET protocol. The presence of a 

reasoner engine embedded within the ontology tool enables to infer the meaning of a 

packet. As a result, the packet is classified under the most appropriate routing 

strategy. This classification is an important step as it helps to establish a ground for 

comparison between packets belonging to different routing categories. Part of the 

inferred ontology is shown in Fig. 6, where the class BBRPacket has been properly 

classified as an IdentifiedPacket and also as an MFRBroadcastPacket. The 

requirements for MFRBroadcastPacket are the fields CommonNeighbourNo and 

NeighbourList. These fields form part of the format of a BBRPacket and hence the 

reasoner is able to classify the latter as being of type MFRBroadcast packet (Most 

Forwarding Broadcast). On the other hand, the class IdentifiedPacket denotes that the 

incoming packets contain fields that are known. It is possible that an incoming packet 

does not correspond to any of the routing strategies defined within the ontology, yet 

contains fields that have been already defined by the ontology. In this case, the packet 

is an IdentifiedPacket and this classification is enough to show that information can 

be extracted from the packet using SQWRL mechanisms (as shown later in the 

section). 

Phase 2, Match: Dynamic Bridging between P1 and P2. Once the classification 

process is done, the packet P2 (Fig. 4) can be compared to the existing packet P1 

through an intuitive mechanism which makes use of SWRL rules and SQWRL query 



rules within the ontology itself. These rules enable to deduce the difference that lies 

between the packet formats P1 and P2. For instance, let us assume P1 to be a BBR 

packet [5] (designed for performing Broadcast-based routing) and P2 to be a 

Broadcomm [7] packet (designed for performing cluster-based routing). At this stage, 

both packets P1 and P2 have already been classified under the appropriate routing 

scheme by the ontology. As can be seen in Fig. 7, which details out the packet format 

of both BBR (P1) and Broadcomm (P2), there is no direct mapping possible.  

 

 
Fig 6. Inferred Vehicular Ontology 

 

 

 
Fig. 7. Mapping BBR and Broadcomm packet formats 

 

Phase 2, Match: Role of SQWRL. In order to enable some kind of comparison 

between them, a rule-based mechanism needs to be deployed within the ontology in 

order to provide the adequate reasoning to enable matching. We need to make use of 

SQWRL like queries to retrieve the required information from the ontology. The 

following SQWRL rule formulates a comparison between BBR and Broadcomm in 

order to find out which fields are different between them:  

 

 
     

The SQWRL query states that if b is a BBR packet and has fields represented by f, 

create a set of all these fields called bag. On the other hand, if p is a Broadcomm 

packet and has fields denoted by pf, create a set of such fields called bagt. Then find 

the difference between these two bags and in such a case, select those fields that have 

been found to be in Broadcomm packet p but not in BBR packet b. The result of this 

query is the set of fields missing from BBR for it to function as a Broadcomm packet. 

As shown in Fig. 7, the fields lacking in BBR are: LocationCoordinates, TargetRoute 

and ClusterHead and this information is retrieved via the SQWRL query. 



  The OWL language enhanced with the use of SWRL and SQWRL results in 

creating an expressive vehicular ontology, which determines the nature of a packet 

given the field descriptions. Furthermore, it enables a comparison of any two 

particular packets and thus provides the difference between them in terms of the fields 

that are missing. Once the matching of the packets has been achieved, this leads to the 

next step, which is to perform the mapping between these two packets.  

Phase 3, Synthesize Mapping: Mapping P2 onto P1. Once the difference in the 

two packet formats P1 and P2 have been provided via the ontology, this final step 

entails engineering an adaptive mapping mechanism to enable P1 to function as P2.  

For example, if we need to enable BBR to function as Broadcomm, the step will 

determine how to provide the missing fields in the BBR packet, which are Location 

Coordinates, Cluster Head and Target Route. These are among the set of fields 

required for Broadcomm to perform cluster-based routing and are lacking from BBR. 

To detail how to enable this mapping mechanism is not within the scope of this paper 

as it is included in part of our future work regarding the interoperability process. 

5.  Dynamic Interoperability Experiments 

5.1 Methodology 

The case study above explains how interoperability can be tackled between two 

specific VANETs, which are cluster-based (Broadcomm) and broadcast-based (BBR). 

In order to validate this case study, we have conducted an experiment to enable the 

same interoperability procedures (i.e. discovery/learning and matching) to execute at 

run-time.  The experiment consists of tackling interoperability between other systems 

and our VANET system at run time through the use of our vehicular ontology. In 

order to enable the experiment at run time, we have made use of java-based programs 

and Protege-owl API [10] in order to manipulate the ontology at run time. The version 

of the Protege ontology tool that we have used is Protege3.4.4 [4] which provides full 

support to apply SWRL rules and SQWRL-based queries.  

In order to interpret incoming packets, we read those incoming packets and extract 

their field labels from their format at run time. These field labels are then stored in a 

text file. Another java program loads and manipulates the vehicular ontology at run 

time. The field names, stored in the text file, are then fed as input to the ontology 

which creates a new packet based on these values. We have used the reasoner Pellet 

[11] in order to classify the packets defined within the ontology. If the new packet 

contains fields which are identified by the ontology, then it is classified under a class 

called IdentifiedPacket, as shown in Fig. 8. Otherwise, the packet is ranked under 

UnIdentifiedPacket. Moreover, if the packet corresponds to the requirements of a 

given routing scheme, the reasoner classifies the packet under the appropriate routing 

class. However, if the packet partly corresponds to these requirements, it is classified 

as partially fulfilling the role of that routing scheme by the reasoner. Part of the 

resulting inferred version of the ontology is displayed in Fig. 6.  

We carried out test runs with different packet formats and these are displayed in 

Table 1. For each new incoming packet, the java program creates a new packet class 



in the ontology at runtime, displayed in the ObjectName column in Table 1. All the 

new packet objects are initially created as subclasses of the class UnNamedPackets, 

pictured in Fig. 8. The reasoner then classifies them as identified or non-identified 

packets and also ranks them under the appropriate routing scheme.  

 

 
Table 1. Test Cases 

 

 
Fig. 8. Inferred Vehicular Ontology with the generated Test cases 

5.2 Experiment Results 

Fig. 8 portrays the resulting ontology after the generation and classification of these 

test cases by the reasoner at run time. The first test run, UnIdentifiedPacketRecv0, 

consists of only the fields CommonNeighbourNo and DestinationIP, whereby 

CommonNeighbourNo is among the set of fields required for performing the 

MFRBroadcast routing. Therefore, the reasoner classifies the packet 

UnIdentifiedPacketRecv0 under the class PartialMFRBroadcast, which implies that 



this packet can partially provide requirements for performing MFRBroadcast routing. 

It is also classified as an IdentifiedPacket since it contains known fields. In the second 

test case, UnIdentifiedPacketRecv1, the fields Longitude, Latitude and TargetRoute 

are required for performing a Position-based routing. On the other hand, TargetRoute 

is also required among other set of fields to perform a Cluster-based routing. 

Therefore, the packet UnIdentifiedPacketRecv1 is classified under 

ClusterBasedPacket which, in turn, is a subclass of PositionBasedPacket and is also 

ranked as an IdentifiedPacket. In test case 3, although the packet, 

UnIdentifiedPacketRecv2, contains known fields such as BroadcastMeter, Distance 

and DestinationIP, the packet is not classified under any routing strategy since these 

fields are not defined as critical in the running of any routing strategy. However, 

because the packet has been identified as containing existing fields, it has been 

categorized under the IdentifiedPacket class. In addition to containing the same fields 

as in test case 1, the fourth test case, UnIdentifiedPacketRecv3, also contains 2 

unknown fields. Consequently, it is classified both under PartialMFRBroadcast and 

UnIdentifiedPacket. Finally, the fifth test case, UnIdentifiedPacketRecv4, contains all 

unknown fields and hence, is classified as UnIdentifiedPacket.  

5.3 Evaluation 

When using BBR, which requires fields such as CommonNeighbourNo, 

NeighbourList, and DestinationIP address to perform broadcast-based routing, then 

test case 0 will require NeighbourList to operate as BBR and the system will then be 

able to route the packet. The matching mechanism through the use of SQWRL queries 

as explained earlier indicates that the latter field is required to enable the existing 

VANET to route the packet. The mapping mechanism will eventually determine how 

to enable test case 0 to function as BBR. On the other hand, if test case 0 is compared 

against Broadcomm, there are more missing fields since Broadcomm requires more 

fields to operate. Furthermore, if we take test case 3, although a few of the fields have 

been identified to enable this packet to be partially classified under MFRBroadcast 

routing scheme, the lack of information about the unidentified fields acts as a 

hindrance to properly identify the format. We may need additional mechanisms to 

interpret the fields that are unknown, which we consider as part of our future work.  

In this experiment, we have tried to deal with the problem of interoperability in the 

domain of VANETs and have been able to show that this problem can be tackled to a 

certain degree. The results of this experiment demonstrate that the use of ontology 

combined with SWRL and SQWRL can help perform a matching between any two 

packets. This forms the basis of comparing any two concepts, which is the starting 

point for handling interoperability between them. If we try to expand this idea in a 

much broader context where different networked systems are trying to interoperate 

with one another, we would need to create an ontology for every such system in order 

to capture the meaning of the concepts present within the domain. Thus, the 

deployment of ontologies creates yet another challenge which is the differences 

arising among the different ontologies of a same general domain, making their 

manipulation even more complex and difficult.  



   To deal with such different application ontologies, a new type of ontology is 

surfacing called the Reference ontology [24], which aims at providing links between 

heterogeneous ontologies. However, the authors in paper [24] argue that if ontologies 

expand a particular reference ontology in a coherent way, then matching their 

different concepts can be made easier. Providing an initial matching between distinct 

ontologies of a general domain through a reference ontology is indispensable. If we 

are moving towards the inception of an emergent middleware to tackle dynamic 

interoperability, then the reference ontology can provide a benchmark to compare 

related ontologies and hence facilitate matching the different concepts through the 

application of SWRL and SQWRL-like rules.  

  

6.  Related Work 

Universal interoperability is a long-standing objective of distributed systems research. 

The traditional approach to resolve interoperability problems is to agree on a standard, 

i.e., everyone uses the same protocols and interface description languages; 

CORBA[12], DCOM[13], and Web Services are good examples of this approach. For 

situations where systems can agree to a common standard, the approaches are highly 

effective. However, for both long-lived and universal interoperability these solutions 

have demonstrably failed, indeed, future attempts at such global standards are 

destined to fail too. Such one size fits all standards and middleware platforms cannot 

cope with the extreme heterogeneity of distributed systems, e.g., from sensor 

applications through to large-scale Internet applications; and a single communication 

paradigm, e.g. RPC, cannot meet all application requirements. Moreover, new 

distributed systems and applications emerge fast, while standards development is a 

slow, incremental process; it is likely that new technologies will appear that will make 

a pre-existing standard obsolete. Finally, new standards do not typically embrace an 

existing legacy standard, which leads to immediate interoperability problems. 

Software bridges have been proposed to enable communication between different 

middleware environments. The bridge acts as a one-to-one mapping between 

domains; it will take messages from a client in one format and then marshal this to the 

format of the server middleware; the response is then mapped to the original message 

format. Many bridging solutions have been produced between established commercial 

platforms. The OMG created the DCOM/CORBA Inter-working specification [14]. 

OrbixCOMet [15] is an implementation of the DCOM-CORBA bridge, while 

SOAP2CORBA [16] bridges SOAP and CORBA middleware. Further, Model Driven 

Architecture advocates the generation of such bridges to underpin deployed 

interoperable solutions. However, developing bridges is a resource intensive, time-

consuming task, which for universal interoperability would be required for every 

protocol pair; further a future protocol requires a mapping to every existing protocol. 

Finally, software bridges must normally be deployed and available in the network; for 

many environments (particularly resource-constrained) this is not possible. 

Intermediary-based solutions take the ideas of software bridges further; rather than 

a one-to-one mapping, the protocol or data is translated to an intermediary 



representation at the source and then translated to the legacy format at the destination 

(and vice versa for a response). Enterprise Service Buses (ESB), INDISS [17], 

uMiddle [18] and SeDIM [19] are examples that follow this philosophy. However, 

this approach suffers from the greatest common divisor problem, i.e., between two 

protocols the intermediary is where their behaviour matches, they cannot interoperate 

beyond this defined subset. As the number of protocols grows this common divisor 

then becomes smaller such that only limited interoperability is possible. 

Substitution solutions (e.g., ReMMoC [20] and WSIF [21]) embrace the 

philosophy of speaking the peer’s language. That is, they substitute the 

communication middleware to be the same as the peer or server they wish to use. A 

local abstraction maps the behaviour onto the substituted middleware. Like for 

software bridges this is particularly resource consuming; every potential (and future) 

middleware must be developed such that it can be substituted. Further, it is generally 

limited to client-side interoperability with heterogeneous server. 

Semantic Middleware solutions e.g. S-ARIADNE [22] employs efficient, semantic, 

service-oriented solutions to achieve interoperability; this is utilized at the discovery 

and matching stage to ensure that only services that semantically match attempt to 

interoperate with one another; hence, concerning itself with only the application data 

and function differences, not the heterogeneity of middleware (indeed a common 

middleware platform is required).     

There is a distinct disconnection between the mainstream middleware work and the 

work on semantic interoperability. Our solution embraces and integrates the ideas of 

both (as far as we are aware it is the first to employ ontologies to resolve 

communication protocol interoperability); because of this, we argue that it is better 

placed to achieve long-lived, universal interoperability. By employing ontologies to 

classify, match and map communication protocols, we have the ability to 

automatically generate a bridge between two legacy communication protocols. The 

nature of the solution means that the problems of standards, exhaustive resource 

requirements, and minimal matches can be overcome.   

7.  Conclusions  

This paper puts forward the approach of using ontologies to handle the semantic 

differences that arise between different systems, in order to enable them to 

interoperate. We have elicited three major steps required for performing 

interoperability, which are: discovery/learning, matching and synthesis of mapping. 

We have also elicited the role ontology plays in handling these steps and we advocate 

that the ontology has a crosscutting role in the steps involved during the 

interoperability process. All three processes are intertwined and each step provides 

the necessary input to perform the next step. For instance, the result from the 

matching process provides a sound notion on the type of mapping that needs to be 

performed. We have been able to validate the discovery/learning and matching phases 

through a case study on VANETs, however, the synthesis of mapping between two 

different systems remains part of our future work.  



Furthermore, we also intend to extend in the future our experiment on VANETs 

through the investigation of user-defined SWRL built-ins in order to compare the data 

types of the fields in a message to achieve richer interoperability between protocols 

through the handling of data heterogeneity. We also plan to explore a wider range of 

middleware protocols including traditional technologies where bridging has been 

attempted e.g., RPC protocols, message-based platforms and service discovery.  
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