Transparent Scalability with Clustering for Java
e-Science Applications*

Pedro Sampaio, Paulo Ferreira, and Luis Veiga
psampaio@gsd.inesc-id.pt, {paulo.ferreira, luis.veiga}@inesc-id.pt
INESC ID/IST, Technical University of Lisbon, Portugal

Abstract. The two-decade long history of events relating object-oriented
programming, the development of persistence and transactional support,
and the aggregation of multiple nodes in a single-system image cluster,
appears to convey the following conclusion: programmers ideally would
develop and deploy applications against a single shared global memory
space (heap of objects) of mostly unbounded capacity, with implicit sup-
port for persistence and concurrency, transparently backed by a possibly
large number of clustered physical machines.

In this paper, we propose a new approach to the design of OODB systems
for Java applications: (O3)? (pronounced ozone squared). It aims at pro-
viding to developers a single-system image of virtually unbounded object
space/heap with support for object persistence, object querying, trans-
actions and concurrency enforcement, backed by a cluster of multi-core
machines with Java VMs that is kept transparent to the user/developer.
It is based on an existing persistence framework (ozone-db) and the fea-
sibility and performance of our approach has been validated resorting to
the OO7 benchmark.

1 Introduction

A trend been taking place with the rediscovery of the notion of a single-system
image provided by the transparent clustering of distributed OO storage systems
(e.g., from Thor [6] with caching and transactions ca. 1992, to present distributed
VM systems such as Terracotta). They allow to scale-out systems and overcome
the limitations and bottlenecks w.r.t. CPU, memory, bandwidth, availability,
scalability, and affordability of employing a single, even if powerful, machine,
while attempting to maintain the same abstractions and transparency to the
programimers.

The two-decade long history of events relating object-oriented programming,
the development of persistence and transactional support, and the aggregation
of multiple nodes in a single-system image cluster [8], appears to convey the fol-
lowing conclusion: programmers ideally would develop and deploy applications
against a single shared global memory space (heap of objects) of mostly un-
bounded capacity, with implicit support for persistence and concurrency, trans-
parently backed by a possibly large number of clustered physical machines.

* This work was supported by FCT (INESC-ID multiannual funding) through the
PIDDAC Program funds.



In fact, today more and more applications are developed resorting to OO lan-
guages and execution environments, encompassing common desktop and web ap-
plications, commercial business applications on application servers, applications
for science and engineering (e.g., architecture, engineering, electronic system de-
sign, network analysis, molecular modeling), and even games, virtual simulation
environments. This is due to the universality of the programming model and
performance offered by present JIT! technology. Such applications essentially
maintain, navigate and update object graphs with increasingly larger (main)
memory requirements, more than a single machine has available or can manage
efficiently. For storage, reliability and sharing purposes, these objects graphs also
need be made persistent to a repository.

In this paper, we propose a new approach to the design of OODB systems for
Java applications: (O3)? (pronounced ozone squared). It aims at providing to de-
velopers a single-system image of virtually unbounded object space/heap with
support for object persistence, object querying, transactions and concurrency
enforcement, backed by a cluster of multi-core machines with Java VMs that is
kept transparent to the user/developer. While embodying some of the principal
goals of the original OODB systems (orthogonal persistence, transparency to
developers, transactional support), it reprises them in the context of contempo-
rary computing infrastructures (such as cluster, grid and cloud computing), ex-
ecution environments (namely Java VM), and application development models,
described next. It is based on an existing persistence framework (ozone-db [5]).

The rest of the paper is organized as follows. In the next Section, we address
the relevant related work in some areas intersecting with our work goals. In
Section 3, we describe the architecture of (O3)2. Section 4 describes the main
implementation details and the performance results obtained with a benchmark
from the literature. Section 5 closes the paper with some conclusions and future
work.

2 Related Work

OODB systems traditionally designate those systems simultaneously databases
and object-based systems. They provide support for orthogonal (transparent)
persistence of object graphs, querying to the object store (usually a single server
machine), and frequently object caching. This is achieved without requiring an
extra mapping step to a relational database. They also enable navigation through
object graphs, type inheritance, polymorphism, etc. Earlier examples include
Gemstone [3]. Examples of recent work include ozone-db [5] and db4o [7]. They
provide transparency and object querying. The main limitation of past and cur-
rent OODB systems is that they do not offer true single-system image semantics.
A repository must fit in its entirety on a single machine; other machines may
only be used as backup replicas for fault-tolerance purposes, but the object heap
cannot be increased by aggregating the memory of several machines.

! Just-in time compilation.



Akin to DSM systems, distributed object systems were able to aggregate
memory (heaps) of several machines across the network in order to offer ap-
plications a shared object space with uniform referencing across process bound-
aries, together with some runtime services (e.g., micro transactions, long-running
transactions, possibly while disconnected using cached and replicated objects,
distributed garbage collection). Examples include work in Thor [6], OBIWAN [9],
and Sinfonia [1]. These systems provide object persistence and transparency to
developers w.r.t. programming model. However, support for single-system image
semantics is not fully provided since distribution is made known to application
developers, who must know where special (root) objects are located in the net-
work. No object querying is supported, only root object look-up.

The same approach can be applied to the notion of a VM for an object
oriented language. A distributed VM aggregates the resources of machines in a
cluster, able to provide, e.g., a Java VM with a larger heap encompassing part
(or all) of the individual machines’ object heaps. This provides a single-system
image with shared global object space [4], with virtually unbounded memory
available to applications. Examples include Jessica [10] and Terracotta (which,
albeit its success, holds the entire object graph in a coordinator machine and
employs others solely for caching). Persistence is not offered at all or is limited
to support for object swapping. Furthermore, no support for object querying is
provided.

3 Architecture

In this section, we describe the architecture of (O3)2. It is an extension of an
existing middleware, ozone-db [5], simply because it is open-source and we can
leverage some of its properties: persistence in object storage, transparency to
developers who just have to code Java applications, support for transversal on
object graphs using both a programmatic, as well as a declarative and query-
based approach (using XML, W3C-DOM, and allowing XPapth/XQuery usage).

However, ozone-db lacks support for single-system image semantics, i.e., cur-
rently an object store must reside fully in a single server machine, and objects
cannot be cached outside this central server.

(03)? provides single-system image semantics by employing a cluster of ma-
chines executing middleware that: i) aggregates the memory of all machines into
a global uniformly addressed object heap, ii) modifies how object references are
handled in order to maintain transparency to developers, regardless of where
objects are located across the cluster, iii) manages object allocation and place-
ment in the cluster globally, with support for inclusion of more specific policies
(e.g., caching objects in client machines for disconnection support). We first
describe the fundamental aspects regarding original ozone-db architecture and
then describe the architecture of (O3)2, and the referred mechanisms.

The ozone-db is an open source object oriented database project, totally
written in Java and aimed to allow the execution of Java applications that ma-
nipulate graphs of persistent objects in a transactional environment (including



optimistic long-running transactions). Ozone-db has a sizable user base of ap-
plication developers, and numerous e-Science applications ported to make use
of persistent objects (e.g., [2]). The middleware is completely implemented in
Java, portable, and executes on virtually all implementations of the Java VM.
A ozone-db database (or object repository) is in essence a server machine that
manages and maintains the object repository.

With ozone-db architecture, it is possible to instantiate the server and client
applications in the same machine or in different ones, depending on the comput-
ing resources available to the user, the size of the object repository, number of
applications and application instances. The access to objects stored in the server
is mediated by proxy objects, a common approach in most related systems.

The current architecture of ozone-db offers a number of interesting properties
but still suffers from important limitations. Mainly, its deployment is limited to
a single server machine which may become a bottleneck in terms of memory,
CPU, and I/O bandwidth. A medium range server machine may have 4 or 8 GB
of main memory (with some operating system configurations and architectures,
only half of that is available to applications and for that matter, to the Java
VM object heap), one or two quad-core CPUs (with technology such as hyper
threading, the number of hardware concurrent threads can double the number
of cores), and several large capacity hard disks. While for small and medium
size applications, such resources may be enough, they quickly become scarce
when applications manipulate larger object graphs and/or several applications
are executing concurrently.

Therefore, it would be advantageous to be able to aggregate the available
memory of several server machines for increased scalability, and their extended
CPU capability for increased performance. This requires that all interventions
be made within the scope of (03)? middleware, without imposing customized
Java VMs nor modifications to Java application code. This last option might
even be unfeasible, as applications may be distributed in bytecode format only.

Figure 1 describes a typical scenario of application execution in (O3)2. We
highlight the following differences: i) the object graph is distributed in main
memory and in storage, partitioned among a group of servers (for simplicity, only
three are shown), this being completely transparent to applications that need not
know the server group membership, and ii) a set of heavily accessed objects can
reside in local caches at clients, for improved performance and bandwidth savings
(and, additionally some support for disconnection). In Figure 1, the application
while connected to Server 1 has accessed objects A, B, C and D of the graph
with relevant frequency. Therefore, these objects are cached at the client in order
to improve performance.

The extensions to ozone-db required by the (O3)? architecture are performed
at the following levels described in the following paragraphs: i) transport, ii)
server, and iii) storage, leaving the application interface unchanged for trans-
parency w.r.t. developers.

The (03)? middleware running at servers is designed in the following man-
ner. Each server now holds in its main memory only a fraction of the objects



Server 2

Fig. 1. Typical application in the (03)2 architecture with a larger graph of objects
at the servers, and a subset of objects cached locally

currently in use. The graph of objects is thus scattered across all servers to im-
prove scalability w.r.t. available memory capacity and performance by employing
extra CPUs to perform object invocation. The servers are launched in sequence
and join a group before the cluster becomes available for client access. Regard-
less of object placement strategy, once a client gets a reference to an object, its
proxy targets directly the server where the object is loaded. Two strategies may
be adopted for object management and placement:

Coordinated: One of the servers acts as a coordinator, holds a primary
copy of metadata in memory, registering object location (indexed by objectID)
and locking information (clients can be connected to any server, though, e.g.,
with some server side redirecting scheme). This information is lazily replicated
to the other servers in the cluster. Modifications to this information (namely
for locking) are only performed by the primary. The coordinator may trigger
migration of subsets of objects among servers, may decide to keep the memory
occupation of all servers leveled or, in alternative, only start to allocate objects in
a server when the heap of the servers currently in use reaches certain thresholds.

Decentralized: No server needs to act as coordinator for the metadata.
When an object is about to be loaded from persistent store, its objectID is fed
to a hash function that determines the server where it must be placed, and where
its metadata will reside. This is a deterministic operation that all servers in the
cluster can perform independently. A simple round-robin approach would be
correct but utterly inefficient as it would not leverage any locality of reference.
Instead, a tunable parameter in the hashing function decides broadly how many
objects created in sequence (i.e., a subset of objects with very high probability
of having references among them) are placed at a server before allocation is
performed at another server. When objects are invoked later, this locality will
be preserved.



4 Implementation Issues and Results

The application interface of ozone-db is unchanged, therefore applications need
not be modified, nor even recompiled. The major aspects addressed are: i) server
group management, and ii) object referencing.

Server Group Management: The (O3)? middleware running at each
server in the cluster includes new classes 0OzoneServer, and OzoneCluster that
allow each server to reference and communicate with other servers, and main-
tain information about the identity and number of servers cooperating in the
(03)? cluster. Presently, cluster management and fault-tolerance operate with
the following approach. A designated cluster manager (just for these purposes
but that may double as coordinator as described in Section 3) keeps 0zoneCluster
data updated and forwards notifications to the other servers.

Object Referencing: Object referencing allows servers to redirect accesses
to objects loaded in other servers. To avoid performing this repeatedly, after the
appropriate server for an object is determined (via coordinated or decentralized
strategies), an object proxy is set up in order to reference that server directly,
without further indirection. In (O3)? implementation, an extra step is inserted
that triggers the determination of the server where the object proxy is, according
to the specified strategy (others may be developed by extending this behavior).

Evaluation: The evaluation of (O3)? was performed by executing a known
benchmark for OODBs (OO7) with dimension of objects, number of references
and connections per objects increased in order to make execution times longer
(topping at 200 roughly seconds). Both the original ozone-db and (03)? ar-
chitecture were used to execute the benchmark tests in two scenarios: i) single
server, and ii) three-node cluster (when testing ozone-db, only one of the ma-
chines is actually used as server, the other as a client). The machines used are
Intel Core2 Quad with 8 GB RAM and 1 TB HD each, running Linux ubuntu
server edition for extended address space for applications. The tests purpose is to
show that (O3)? clustered architecture, while improving scalability and memory
capacity, does not introduce significant overhead in application execution, and
that it reduces memory usage in the servers.

The tests evaluate memory usage at each server and execution time for three
OO7 benchmark tests: i) consecutive object creation, ii) complete transversal of
an object graph, and iii) transversal of the object graph searching for an object
(matching). The test database of OO7 consists of several linked objects in a tree
structure. The tree structure has three levels, 2000 or 4000 child objects for the
two first levels, and either 40000 or 200000 references among those objects to
simulate different object graph densities.

The results in Figure 2 show that total memory usage is similar across the
configurations for create and transversal tests. These tests occupy the most mem-
ory and (0O3)? does not introduce relevant overhead. Note that memory occu-
pation is reduced as servers are added because with 3-node (O3)? cluster, the
memory effectively used by each server is roughly a third of the total shown.
With ozone-db, all objects are loaded at one of the machines, the other only
used to offload client application (hence slightly reduced memory usage). This



= ozone-db single server 2000 objs., 40000 refs.
— “§ "ozone-db single server 2000 objs., 200000 refs.
= ozone-db single server 4000 objs., 200000 refs.

200 -
MBytes

®ozone-squared 3-node cluster 2000 objs., 40000 refs.

= ozone-squared 3-node cluster 2000 objs., 200000 refs.
ozone-squared 3-node cluster 4000 objs., 200000 refs.

150

100 4

50

create traversal match

Fig. 2. Memory usage tests (total memory used by single node and whole cluster)

®=ozone-db single server 2000 objs., 40000 refs.

1000000 -
ms —
log scale

= ozone-db single server 2000 objs., 200000 refs.
=o0zone-db single server 4000 objs., 200000 refs.
100000 - ®mozone-squared 3-node cluster 2000 objs., 40000 refs.
=ozone-squared 3-node cluster 2000 objs., 200000 refs.
ozone-squared 3-node cluster 4000 objs., 200000 refs.

10000 -

1000 -

_ILII
/\
create traversal match

Fig. 3. Execution time tests

shows that for the most memory intensive tests with (O3)?, the global memory
available for applications can indeed by multiplied without any significant over-
head at each server instance. In the case of original ozone-db, when the objects
are 4000 and the references are 200000 it is not possible to execute the applica-
tion, because the server has not enough memory. (O3)? scales making it possible
to execute this test with increased memory load without applications crash.
The results in Figure 3 show that total execution times for the benchmark
tests remain similar across configurations. This demonstrates that (O3)? man-
agement of several servers and distribution/partitioning of object graphs does
not introduce any noticeable overhead to application execution times. However,
we must bear in mind that OO7 benchmark is a single threaded application, so
no speed-up was to be expected. If there are multiple threads in execution and/or



multiple applications accessing the database, the extra CPU capability leveraged
by (03)? will keep processors’ load low and increase system throughput, if not
reduce individual application execution times.

5 Conclusion

In this paper, we propose a new approach to the design of OODB systems
for Java applications: (O3)? (pronounced ozone squared) that addresses the
limitations of previous work in the literature. It provides developers with a single-
system image of virtually unbounded object space/heap with support for object
persistence, object querying, transactions and concurrency enforcement, backed
by a cluster of multi-core machines with Java VMs. Transparency regarding
developers and their interface with the OODB system is untouched. Applications
need not be modified nor recompiled. Our approach has been validating by
employing a benchmark (OO7) relevant in the literature.

Future work includes more refined strategies for object placement (namely
based on traces of previous runs of the same application) and address the in-
completeness and unsoundness of the memory management of persistence stores
in ozone-db (based on explicit delete operations).

References

1. M. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis. Sinfonia: a new paradigm
for building scalable distributed systems. 21 st ACM SOSP, 2007.

2. Richard T. Baldwin. Views, objects, and persistence for accessing a high volume global data
set. In MSS ’03: Proceedings of the 20 th IEEE/11 th NASA Goddard Conference on Mass
Storage Systems and Technologies (MSS’03), page 77, Washington, DC, USA, 2003. IEEE
Computer Society.

3. P. Butterwoth, A. Otis, and J. Stein. The GemStone object database management system.
Communications of the ACM, 34(10):64—77, October 1991.

4. Rajkumar Buyya, Toni Cortes, and Hai Jin. Single system image. Int. J. High Perform.
Comput. Appl., 15(2), 2001.

5. Falko Braeutigam and Gerd Mueller and Per Nyfelt and Leo Mekenkamp. The ozone-db Object
Database System, www.ozone-db.org, 2002.

6. Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management in thor. In
International Workshop on Distributed Object Management, pages 79-91, 1992.

7. J. Paterson, S. Edlich, H. Horning, and R. Hoérning. The Definitive Guide to db4o. 2006.

8. GF Pfister, . B.M.A. Workstations, S. Div, and TX Austin. The varieties of single system image.
In Advances in Parallel and Distributed Systems, 1993., Proceedings of the IEEE Workshop
on, pages 59-63, 1993.

9. L. Veiga and P. Ferreira. Incremental replication for mobility support in OBIWAN. In Dis-
tributed Computing Systems, 2002. Proceedings. 22nd International Conference on, pages
249-256, 2002.

10. Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau. Jessica2: A distributed java virtual
machine with transparent thread migration support. In IEEE Fourth International Conference
on Cluster Computing, Chicago, USA, September 2002.



