
Improving the Scalability of
Cloud-Based Resilient Database Servers?

Lúıs Soares and José Pereira

University of Minho
{los,jop}@di.uminho.pt

Abstract. Many rely now on public cloud infrastructure-as-a-service for
database servers, mainly, by pushing the limits of existing pooling and
replication software to operate large shared-nothing virtual server clus-
ters. Yet, it is unclear whether this is still the best architectural choice,
namely, when cloud infrastructure provides seamless virtual shared stor-
age and bills clients on actual disk usage.
This paper addresses this challenge with Resilient Asynchronous Commit
(RAsC), an improvement to a well-known shared-nothing design based
on the assumption that a much larger number of servers is required for
scale than for resilience. Then we compare this proposal to other database
server architectures using an analytical model focused on peak through-
put and conclude that it provides the best performance/cost trade-off
while at the same time addressing a wide range of fault scenarios.

Keywords: Database servers; cloud computing; scalability; resilience.

1 Introduction

There is a growing number of organizations taking advantage of infrastructure-
as-a-service offered by public cloud vendors. In fact, multi-tiered applications
make it easy to scale out upper layers across multiple virtual servers as they
are mostly “embarrassingly parallel” and stateless. The scalability, availability,
and integrity bottleneck is still the database management system (DBMS) that
holds all non-volatile state.

Although there has recently been a call to rethink databases from scratch,
leading to NoSQL databases such as Amazon SimpleDB, this challenge is still
being addressed by pushing existing SQL database server clustering to the limit.
The simplest approach, since it doesn’t require explicit support from the DBMS
and addresses only availability, is failover using virtual volume provided by the
cloud infrastructure such as Amazon Elastic Block Storage (EBS). A more so-
phisticated approach is provided by Oracle Real Application Cluster (RAC) [1],
also backed by a shared volume, but leveraging multiple hosts for parallel pro-
cessing. An alternative is a shared-nothing cluster with a middleware controller
? Partially funded by project ReD (PDTC/EIA-EIA/109044/2008) and FCT PhD

scholarship (SFRH/BD/31114/2006).

built also with any off-the-shelf DBMS and allowing parallel processing with
many common workloads. This is the approach of C-JDBC [2]. In addition, a
certification-based protocol, such as Postgres-R [3], can further improve perfor-
mance by allowing execution of update transactions by a single server.

The trade-off between scalability and resilience implicit in each of the of these
architectures is however much less clear. Namely, different options on how update
transactions are executed lead to potentially different peak throughput for a spe-
cific resource configuration, in terms of available CPUs and storage bandwidth,
with a write intensive load. Moreover, state corruption, namely, upon a software
bug can have different impacts in different architectures. Avoiding the severe
impact on availability when the only resort is to recover from backups is very
relevant. Answering these questions requires considering how each architecture
handles updates and to what extent different components of the database man-
agement system are replicated independently, thus leading to logically and/or
physical replicas of data.

The contribution of this paper is therefore twofold. First, we propose Resilient
Asynchronous Commit (RAsC), an improvement to certification-based database
replication protocol that decouples effective storage bandwidth from the number
of servers, allowing the cluster to scale in terms of peak throughput. We then re-
evaluate different architectural aspects for clustering with an analytical model
that relates each of the described architectures with resilience and scalability
metrics.

The rest of this paper is structured as follows: In Section 2 we provide the
background on clustering architectures. Section 3 proposes an optimization on
one of the clustering architectures. Section 4 introduces the model. Section 5
compares different architectures within this model, justifying the relevance of
the proposed contribution. Finally, Section 6 concludes the paper.

2 Background

Transaction processing in a relational database management system is usually
regarded a layered process [4]. At the top, SQL is parsed. The resulting syntax
tree is then fed to the optimizer, which uses a number of heuristics and statis-
tical information to select the best strategy for each relational operator. The
resulting plan is then executed by calling into the logical storage layer. In this
paper, we use a simplified view of transaction processing as a two layer pro-
cess as depicted in Figure 1(a): We consider parsing, optimization, and planning
as the Processing Engine (PE) and logical and physical storage management
as the Storage Engine (SE). This maps, for instance, with MySQL’s two-layer
architecture, with pluggable storage engines.

Note that assertive faults at PE and SE levels, that lead to erroneous re-
sults, have very different impacts. At the SE level, they may invalidate basic
assumptions of physical layout and of transactional recovery mechanisms and
lead to invalid data. This can only be recovered by taking the server off-line
and, possibly, only by restoring from backup copies. Faults a the PE level will

SE

PE

Disk

Clients

SQL

TUPLES

BLOCKS

(a) Standalone.

SE

PE

D0

C0

R1

SE

PE

D1

C1

Coordination

SQL

TUPLES

BLOCKS

R0 R1

(b) Shared Disk Failover
(SDF).

SE

PE

D0

C0

SE

PE

D1

C1

SE

PE

Dm

Ci

LAN

SAN

SQL

TUPLES

BLOCKS
Coordination

R0 R1 Rn

(c) Shared Disk Parallel (SDP).

SE

PE

D0

C0

SE

PE

D1

C1

SE

PE

Dm

Ci

LAN
Coordination

SQL

TUPLES

BLOCKS

R0 R1 Rn

(d) Shared Nothing Active
(SNA).

SE

PE

D0

C0

R1

SE

PE

D1

C1

SE

PE

Dm

Ci

LAN

Coordination

SQL

TUPLES

BLOCKS

R0 R1 Rn

(e) Shared Nothing Certification-
Based (SNCB).

Fig. 1. Standalone and clustered servers.

still be contained within transaction boundaries and can be recovered by undoing
affected transactions, manually or from undo logs.

The key defining architectural decision of database server clustering archi-
tectures is the amount of sharing that occurs, which defines at which level co-
ordination happens and what layers (PE and/or SE) are replicated or shared.
This determines not only the resulting scalability and resilience trade-off, but
the applicability of each architecture to an off-the-shelf database server. We now
examine four representative architectures.

Shared Disk Failover (SDF). Cluster management software ensures that the
DBMS server is running in only one of the nodes attached to a shared disk, often
using a Storage Area Network (SAN). If the currently active node crashes, it is
forcibly unplugged and the server is started on a different node. The standard log
recovery procedure ensures the consistency of on-disk data, thus it is applicable
to any DBMS. A variation of this approach can be built without a physically
shared disk by using a volume replicator such as DRBD [5]. Otherwise, disk
redundancy is ensured by a RAID configuration.

This architecture is thus targeted exclusively at tolerating server crashes and
is often deployed in a simple two server configuration. As depicted in Figure 1(b),
coordination exists only outside the DBMS ensuring that the shared volume is
mounted exactly by a single server. It is impossible to use the standby nodes

even for distributing read-only load as cache coherence issues would arise if the
volume was mounted by multiple nodes. Since replication is performed at the
raw disk level, neither the PE or SE are replicated in updates and no tolerance
to corruption is provided.

Shared Disk Parallel (SDP). Allowing multiple nodes to concurrently access
the same shared storage requires that caches are kept consistent. In detail, the
ownership of each block changes through time, in particular, whenever a write
operation is issued. A distributed concurrency control mechanism is thus respon-
sible to hand over the page to the issuing instance and no I/O is required in this
process, even if the page is dirty. Reads are shared by having the owner to clone
the page whenever a read request is issued. Flushing blocks back to disk is per-
formed by only one replica at the time. As shown in Figure 1(c), coordination is
thus performed within the storage engine layer. An example of this architecture
is Oracle Real Application Cluster (RAC), which is based on the Oracle Parallel
Server (OPS) and Cache Fusion technology [6].

This architecture is thus targeted mainly at scaling the server both in terms
of available CPU and memory bandwidth, although it provides the same degree
of fault tolerance as SDF, since most of the server stack is still not replicated in
update transactions.

Shared Nothing Active (SNA). By completely isolating back-end servers, a
middleware layer intercepts all client requests and forwards them to the indepen-
dent replicas. Scalability is achieved as read-only requests are balanced across
available nodes. Only update transactions need to be actively replicated on all
replicas. The controller thus acts as a wrapper. It exposes the same client inter-
face as the original server, for which it acts as a client. There is no direct com-
munication between cluster nodes, as coordination is performed outside servers,
as shown in Figure 1(d). A popular implementation is provided by Sequoia, for-
merly C-JDBC [2], which intercepts JDBC and is portable to multiple back-end
servers.

The major scalability drawback is that update statements must be fully de-
terministic and have to be carefully scheduled to avoid conflict that translate
into non-deterministic outcome of the execution and thus inconsistency. In prac-
tice, this usually means not allowing concurrent update transactions at all. This
architecture is thus targeted at scaling the server in face of mostly read-only
workload. By completely isolation back-end servers, it replicates all layers in up-
date transactions and thus tolerates all outlined assertive fault scenarios in both
PE and SE. In fact, a portable implementations such as Sequoia even supports
DBMS diversity. In principle, it could even support voting to mask erroneous
replies based on corrupt state [7].

Shared Nothing Certification-Based (SNCB). Active replication of update
transactions in shared nothing clusters can be avoided by using a certification-
based protocol. Each transaction is thus executed in the replica that is directly
contacted by the client, without any a priori coordination. Thence, transactions
get locally synchronized, according to the local concurrency control mechanism
and only just before commit a coordination procedure is initiated. At this time,

Execute Commit

Apply

Apply

Apply

Apply

Request Reply

(a) Regular.

Execute Commit

Apply

Apply

Apply

Apply

Request Reply

f
c
+1

(b) Safe.

Execute Async C.

Apply + AC

Apply

Apply

Request Reply

f
d
+1

Async. A.

Async A.

Rotating synchronous quorum

(c) RAsC.

Fig. 2. Variations of the SNCB architecture.

the initiating replica multicasts updates using a totally ordered group commu-
nication primitive [8]. This causes all nodes to deliver the exact same sequence
of updates, which are then certified by testing for possible conflicts. This leads
to the exact same sequence of transaction outcomes that is then committed
independently by each node. Although no commercial products based on this
approach exist, there have been a number of related research proposals and
prototypes [3, 9–11].

Since coordination happens between Processing and Storage Engines (Fig-
ure 1(e)), it is capable of performing fine grained synchronization of scaling
with an update intensive workload. As a consequence of shared execution, this
approach does not tolerate logical corruption, however, is tolerates physical cor-
ruption at the storage engine and disk layers. This is a very interesting trade-off,
since such logical corruption can be corrected by undoing changes even while
the system is on-line.

3 Resilient Asynchronous Commit

The SNCB architecture thus offers a very interesting trade-off: Since assertive
faults at the PE can be corrected by undoing changes even while the system is
on-line and it naturally copes with assertive faults at the SE level, it provides
much of the advantages of the SNA architecture with a potentially better peak
throughput.

Traditionally, certification-based protocols use asynchronous group commu-
nication primitives for handling message passing between the replicas in the
cluster, as shown in Figure 2(a). Thus there is a chance that updates are lost in
the situation that the originating server’s disk is lost. To improve resilience one
can resort to an uniform reliable or safe multicast primitive [8], that gathers a
number of acknowledgments from at least fc + 1 nodes prior to delivery (Fig-
ure 2(b)), where fc is the upper bound on process faults. This ensures that a
number of other nodes have stored the update in memory and unless the cluster
fails catastrophically, it will eventually be committed to all disks [12].

Nonetheless, even if acknowledging transaction commit to the client awaits
only for local commit to disk, existing proposals do not distinguish commits that
are out of such critical path and will still force updates to disk. This poses an up-
per bound on database server scale-out, as storage bandwidth consumed by each

Global site variables
1 local = nsynchs = originator = []
2 certified = toCommit = ()
3 gts = 0
4 committing = None

Events at the initator
5 upon onExecuting(tid)
6 local[tid]=gts
7 continueExecuting(tid)

8 upon onComitting(tid, rs, ws, wv)
9 nsynchs[tid] = ()

10 tocast(tid, local[tid], rs, ws, wv,
myReplicaId)

11 upon onAborting(tid)
12 continueAborting(tid)

Delivery of updates
13 upon tocastDeliver(tid, ts, ws, wv, originatorId)
14 foreach (ctid, cts, cws, cwv) in certified

do
15 if cts ≥ ts and !certification(cws, rs,

ws) then
16 if local[tid] then
17 dbAbort(tid)
18 return
19 originator[tid] = originatorId
20 add (ctid, cts, cws, cwv) to certified
21 isSynch = isSynch(tid)
22 enqueue (tid, ws, wv, isSynch) to

toCommit
23 commitNext();

Transaction commit
24 upon onCommitted(tid, isSynch)
25 gts = gts + 1;
26 if !local[tid] then
27 if isSynch then
28 rsend(tid, myReplicaId,

originator[tid])
29 continueCommitted(tid)
30 committing = None
31 commitNext();
32 else
33 deliverSynchAck(tid, myReplicaId)

34 upon deliverSynchAck(tid, replicaId)
35 nsynchs[tid] += (replicaId)
36 if local[tid] and size(nsynchs[tid]) = fd+1

then
37 delete(local[tid])
38 delete(nsynchs[tid])
39 delete(originator[tid])
40 continueCommitted(tid)
41 committing = None
42 commitNext();

43 procedure commitNext()
44 if committing != None then
45 return
46 else
47 (tid, ws, wv, isSynch) =

dequeue(toCommit)
48 committing = tid
49 if local[tid] then
50 continueCommitting(tid,

isSynch)
51 else
52 commitRemote(tid, ws, wv,

isSynch)

Fig. 3. Resilient Asynchronous Commit Protocol (RAsC).

replica grows linearly with the size of the workload being handled. Our proposal
thus stems from the observation that the substantial storage bandwidth econ-
omy resulting from asynchronous commit [13] can also be obtained by sharing
the burden of synchronous commit across a large number of replicas.

Moreover, the same mechanism should allow waiting for multiple disk com-
mits such that scenarios with catastrophic failures can be handled. In detail, this
means performing an asynchronous commit on n − (fd + 1) nodes (where fd is
the number of tolerated disk faults and n the number of replicas), and a syn-
chronous commit elsewhere. Then we defer acknowledgment until synchronous
commit concludes. The resulting protocol (RAsC) is shown in Figure 2(c), in
which commit waits for a rotating subset of replicas to commit to disk.

Figure 3 details in pseudo-code the proposed Resilient Asynchronous Commit
protocol in combination with SNCB. The initiator is the site in which a transac-
tion has been submitted. Handlers, or hooks, are assumed to exist and are called
by the DBMS Transaction Manager. A set of interfaces targeting this behavior
has been proposed and several prototypes exist [14]. Nevertheless, these hooks
are further explained in the next few lines. Before a transaction tid executes its
first operation, the onExecuting handler is invoked. The version of the database
seen by tid is required for the certification procedure. Since we are considering
snapshot isolation, this is equal to the number of committed transactions when
tid begins execution. If the transaction at any time aborts locally, onAborting()

is invoked and the transaction is simply forgotten. After a successful local exe-
cution, the onCommitting hook is called, causing the updates to be atomically
multicast to the group of replicas. This ensures atomic and ordered delivery of
transaction updates to all replicas, which happens on the tocastDeliver hook.
After delivery, the certification procedure is performed and the fate of the trans-
action is deterministically and independently decided at every replica. Within
this hook, the isSynch() function determines if a synchronous commit is meant
to happen at the replica. The isSynch() function determines whether this replica
is in the rotating quorum for this transaction.

The last operation in the hook is a call to the scheduler that issues ex-
ecution/commit on the next certified transaction (commitNext). Whenever a
transaction commit finishes, which happens every time the onCommitted hook
is called, the version counter is incremented. For remote transactions it checks if
a synchronous commit has been performed and if so, an acknowledge is sent back
to the initiator replica, using a reliable send communication primitive (rsend).
Execution resumes by letting the Transaction Manager know that it may proceed
(continueCommitted hook), and by scheduling the next certified transaction to
commit (commitNext). For local transactions, a call to the deliverSynchAck is
performed. The deliverSynchAck hook is called every time the initiator receives
a synchronous commit acknowledge from a replica, or once the initiator commit
finishes (in this case the initiator acknowledges its own synchronous commit).
Once all the required synchronous commits have been performed the contin-
ueCommitted hook is called and local execution may resume, which ultimately
results in notifying the client that the commit succeeded. A final note about the
myReplicaId, replicaId and originatorId. These identifiers are used to perform
message passing, which may even be IP addresses, should the replicas reside
on different machines, or any other identifier that uniquely addresses replica
processes.

4 Analytical Model

To select the best architecture for different fault and workload scenarios, and to
what extent the Resilient Asynchronous Commit protocol improves the SNCB
architecture, we model the amount of computing and storage resources (i.e.
CPUs and disks) required to handle a given load while tolerating a number of
failures. Depending on the architecture chosen, there are additional parameters.
For instance, in a shared-nothing architecture, we have n independent nodes. In
general, the system cost directly depends on the following parameters:

1. aggregate computing bandwidth (C);
2. aggregate disk bandwidth (D).

An architecture is preferable if it allows us to tightly dimension the system
such that there is neither excess C or D. Also, that it allows the system to be
reconfigured in order to separately accommodate changing requirements.

Assumptions The following assumptions hold in our model. They are backed by
assumptions already made in previous work (Gray et al [15]).

– Each transaction t is made of a number of read (nr) and write (nw) oper-
ations (no = nr + nw), and we consider read-only (no = nr) and update
(no = nw) transactions;

– Read operations never block because they operate in their own snapshot
version of the database [16], hence only updates conflict;

– Read and write operations are equal in disk and cpu bandwidth consumption
(dw = dr = do and cw = cr = co), take the same time to complete (to), and
each transaction completes execution in a given time tt (tt = to · no);

– The system load (tps) is composed of a mix of update transactions (wtps)
and read only transactions (rtps). These are correlated by a wf factor (wf =
wtps
tps). The number of concurrent transactions in the system (nt) is derived

from the workload (nt = ntw + ntr = (wtps · nw · to) + (rtps · nr · to))).
– The size of the database (s) is the number of objects stored and item accesses

are uniformly distributed;
– Failures exist (f), but they never result in the failure of the entire system;
– n itself is the number of replicas in the system.

In contrast to previous proposals that model distributed database systems [17,
18], we focus on the availability of a shared storage resources (space and band-
width) offered by cloud infrastructure instead of assuming that storage is pro-
portional to number of allocated servers.

Resource Bandwidth We start by modeling the baseline (NONE) which is a
centralized database monitor with no disk redundancy. Bounds on system pa-
rameters are established by the workload. In a centralized and contention-free
system, the disk and CPU used, by a transaction t, are generically expressed
using Equation 1 and Equation 2.

dt = drt + dwt = (nr + nw) · do (1)
ct = crt + cwt = (nr + nw) · co (2)

An improvement over the baseline system (NONE-R), in terms of disk faults
resilience and read performance, is achieved using a RAID storage system (m
disks providing redundancy and parallelism). The tradeoff lies in the extra disk
bandwidth (m− 1) required to replicate blocks same data.

dt−none−r = (nr + m · nw) · do (3)

A different approach altogether, would be to use DRBD. This solution replicates
data at block level and provides multi-master replication by delegating to a top
layer software (a clustered file system like OFCSv2 or GFS) conflict detection and
handling. Nevertheless, concurrent writes are handled but they are not meant to
happen regularly at the DRBD level. Furthermore, when a database is deployed

on top of the DRBD, the replication is performed in a master-slave (hot standby)
fashion. This imposes a limit to resilience, as the number of replicas cannot be
higher than two (n = 2). Due to its current resilience limitations we find this
architecture rather uninteresting, and will not be considering it from now on.

dt−sdf = drt + n · dwt = (nr + 2 · nw) · do (4)
ct−sdf = crt + n · cwt = (nr + 2 · nw) · co (5)

SDF limitations may be easily mitigated by architecting a system based on a
distributed middleware approach, mostly like SNA. In this architecture, a mid-
dleware controller acts as the load balancer for reads and coordinator for writes.
Database back-ends are registered at the controller. Reads are only performed at
one replica, while writes happen everywhere. This approach is very similar to a
RAID based disk mirroring strategy, but instead of handling raw blocks, logical
data representations (e.g., SQL statements) are synchronized and executed at
each registered database instance. Equations 6 and 7 model the resource con-
sumption in this setup. Unfortunately, this approach has limited scalability when
dealing with write intensive (or write peaks) workloads and non-deterministic
operations.

dt−sna = (nr + n · nw) · do (6)
ct−sna = (nr + n · nw) · co (7)

SNCB mitigates the issues exhibited by SNA. We assume independent servers,
acting as a replicated state machine on write requests and with perfectly bal-
anced read requests. This is the case for certification based approach to replicated
databases (e.g., the Database State Machine - DBSM). Given that in a DBSM
setting each replica writes the same data on its local storage, the disk usage
is described by Equation 8 (we assume that the database working set fits in
main memory, so we disregard disk usage for read operations). On the other
hand, the CPU consumption does not increase by a degree of n. In fact, the
optimistic execution guarantees given a transaction t, it executes completely at
any given replica and the others only apply t’s changes. Consequently, remote
updates only take a fraction of the original CPU execution regarding the write
operations. This is depicted by the correlation factor kapply, which captures the
cost of applying the updates versus executing the original update operations.

dt−sncb = n · nw · do (8)
ct−sncb = (nr + (1 + kapply · (n− 1)) · nw) · co (9)

An alternative cluster architecture uses a shared storage. We assume that such
storage is a RAID unit of m disks. Since we are not accounting for messages
delays nor network bandwidth consumption, the disk bandwidth and cpu band-
width are the same as in the NONE-R and NONE, respectively.

Finally, for all of the above mentioned architectures, the aggregate C and D
bandwidth consumption is calculated as a function of the incoming transaction

rate (tps). This is depicted by Equation 10 and 11, respectively.

C = ct · tps (10)
D = dt · wf · tps (11)

Resource Contention The aggregate CPU and Storage bandwidth consumption
is driven by the workload (tps). Note that dependent on the workload is also
the contention rate of the system. Therefore, the aggregate consumption must
be calculated by taking into account contention. In [15], and under the same
assumptions presented here, we may find that the generic expression for sys-
tem contention rate (number of transactions waiting per second) is given by
Equation 12.

tpswait = (1− (1 − (
ntw · nw

2 · s
)nw) · tps · wf (12)

Except for the SNCB and SNA architecture, this equation models perfectly
transaction blocking. In SNCB, transactions tend to be in the system a bit
longer than normal execution, due to the process of applying remote updates.
As Equation 13 shows, ntw increases, and the system becomes more susceptible
to conflicts.

ntwsncb = wf · tps · nw · to · (1 + kapply) (13)

On the other hand, in SNA, transactions are set to execute sequentially by
the controller which becomes a major bottleneck. Since only update transac-
tions conflict and transaction execution is sequential, the number of transactions
waiting in the system is given by Equation 14.

tpswaitsna =
(wf · tps)2

(nw · to) · ((nw · to)− (wf · tps))
(14)

Finally, contention has a negative impact on system performance, which means
that the number of committed transactions per second is unarguably lower than
the number of input transaction rate. As such, subtracting the waiting rate from
the incoming rate, we get the overall system throughput (Equation 15).

tpso = wf · tps− tpswait + (1 − wf) · tps (15)

5 Evaluation

Strictly on the basis of resilience, one would probably choose the SNA archi-
tecture, after making the necessary changes to remove the single-point-of-failure
introduced by the controller. In this section, we evaluate the cost of this option
in terms of conflict scalability, i.e. how does it tackle peak write-intensive loads,
and resource scalability, i.e. how does it take advantage of existing resources for
performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X

Updates (%)

NONE
SDP
SNA

SNCB

(a) p = 0.025

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X

Updates (%)

NONE
SDP
SNA

SNCB

(b) p = 0.0125

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

X

Updates (%)

NONE
SDP
SNA

SNCB

(c) p = 0.00625

Fig. 4. Impact of item conflict probability in throughput.

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB

(a) wf = 0.01

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB

(b) wf = 0.2

 0

 2

 4

 6

 8

 10

 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB

(c) wf = 0.8

Fig. 5. Scalability of throughput with number of nodes, for different workload mixes.

Conflict Scalability We start by applying the contention model to determine
how each architecture scales with different workloads with different amount of
update transactions and updated items in each transaction. We do this by fix-
ing an arbitrary offered load and then varying the ratio of update transactions
from 0 to 1. Figure 4 show these with three different probabilities of single item
conflicts (the p parameter). Previous experiments [19] indicate that TPC-C pro-
duces results comparable to Figure 4(c) and agree with the proposed model in
terms of the resulting useful throughput in both shared-nothing scenarios.

The most interesting conclusion from Figure 4 is that the SNA approach ex-
hibits a sudden saturation point with increasing number of update transactions,
regardless of likelihood of actual conflicts. This precludes this architecture as a
choice when there are concerns about possible write-intensive workload peaks
leading to safety issues.

On the other hand, one observes that SNCB can approximate the perfor-
mance of SDP. Neither exhibits the sudden tip-over point and thus should be
able to withstand write intensive peak loads. Final notice, the NONE and SDP
lines are a perfect match.

Node Scalability The next step is to apply the bandwidth model to determine
how each architecture allows required resources to scale linearly with an increas-
ing throughput. Therefore, we assume that computing bandwidth is provided
in discrete units. To add an additional unit of CPU bandwidth one has there-
fore to add one more node to the cluster. This has an impact in shared nothing
architectures, since each additional node requires an independent copy of data.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB
SNCB-RAsC

(a) wf = 0.01

 0

 10

 20

 30

 40

 50

 60

 70

 1 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB
SNCB-RAsC

(b) wf = 0.2

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

X

N

None
SDP
SNA

SNCB
SNCB-RAsC

(c) wf = 0.8

Fig. 6. Required storage bandwidth with number of nodes, different workload mixes.

Figure 5 shows the speedup that can be expected when adding additional
nodes to the cluster. As expected, the SDP architecture should exhibit a perfect
speedup, should the conflict probability be fixed, as happens for instance with
TPC-C scaling rules. On the other hand, SNA shows that with anything other
than an almost read-only load of Figure 5(a), this architecture scales very poorly.
This is due to the fact that update transactions have to be actively executed
by all nodes, and regardless of the contention effect described in the previous
section.

Finally, Figure 5 shows that the SNCB architecture scales for low values of
wf × kapply. This means that efficiency when applying updates, for instance by
using a dedicated low level interface, can offset the scalability obstacle presented
by wrote intensive loads. Simple testing with the TPC-C workload and Post-
greSQL 8.1, without using any dedicated interface, shows that k = 0.3, which is
the value used henceforth.

Dedicated interfaces for applying updates have been implemented a number
of times for DBMS replication. For instance, Oracle Streams and Postgres-R
provide such interfaces for Oracle and PostgreSQL.

5.1 Disk Scalability

Figure 6 shows the aggregate storage bandwidth required to achieve the max-
imum theoretical scale up of Figure 5 and if possible, tolerating f = 1 faults.
Namely, SDP tolerates only disk faults, regardless of nodes in the cluster. SNA
with n > f + 1 tolerates f logical or physical corruption faults.

We now consider the following dilemma. Assume that one has 10 nodes in
the cluster, and 20 disks. Each of the disks provides sufficient bandwidth for 1×
throughput. If one chooses the SDP architecture, it is possible to configure the
storage subsystem with RAID 1+0 such that the exact bandwidth is achieved
(i.e. 10 stripes, 2 copies). This allows 10× the throughput. If one chooses SNCB,
one has to opt for at most 2 stripes in each of the 10 copies. This is sufficient
however for at most 5 nodes (from Figure 6(b)), which result in as little as 4×
the throughput (from Figure 5(b)). This is a 60% performance penalty.

Furthermore, one would be tempted to say that SNCB tolerates also f phys-
ical corruption faults with n > f + 1. However, certification-based protocols use
asynchronous group communication primitives which jeopardizes that goal.

Nevertheless, by using Resilient Asynchronous Commit (RAsC) storage band-
width is enough for the 10 nodes, thus for as much as 6× the throughput. This is
50% more than the standard SNCB configuration. By executing synchronously
only f +1/n updates, this allows each of the nodes to use only f +1/n of the pre-
viously required bandwidth, up to as much as 25× with typical update intensive
loads. This is shown in Figure 6(c).

6 Conclusion

In this paper we reconsider database server clustering architectures when used
with a larger number of servers, in which cost-effectiveness depends on decou-
pling CPU and disk resources when scaling out. In contrast to previous ap-
proaches [3, 9–11], Resilient Asynchronous Commit protocol (RAsC) improves
write scalability by making better use of resources with large number of servers
on a shared storage cloud infrastructure without changes to the DBMS server,
while at the same time allowing configurable resilience in terms of the number
of durable copies that precede acknowledgment to clients.

Then we use a simple analytical model to seek scalability boundaries of differ-
ent architectures and how shared resources in a cloud infrastructure can better
be allocated. The first conclusion is that the currently very popular SNA ar-
chitecture, although promising in terms of resilience should be considered very
risky for scenarios exhibiting peak loads and write-intensive peaks.The second
conclusion is that the SNCB approximates SDP in terms of linear scalability
with moderate write-intensive loads and does not exhibit the risky sudden drop
of performance with heavily write-intensive loads of SNA. The critical issue is
the parameter kapply in our model: The ratio of CPU bandwidth consumed when
applying already executed updates. Finally, together with the proposed RAsC
protocol, SNCB scales also in terms of storage bandwidth, especially with a
relatively low number of assertive faults considered.

References

1. Ault, M., Tumma, M.: Oracle Real Application Clusters Configuration and Inter-
nals. Rampant Techpress (2003)

2. Cecchet, E., Marguerite, J., Zwaenepoel, W.: C-JDBC: Flexible database clustering
middleware. In: USENIX Annual Technical Conference. (2004)

3. Kemme, B., Alonso, G.: Don’t be lazy, be consistent: Postgres-R, a new way to
implement database replication. In: VLDB ’00: Proceedings of the 26th Interna-
tional Conference on Very Large Data Bases, San Francisco, CA, USA, Morgan
Kaufmann Publishers Inc. (2000) 134–143

4. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete
Book. Prentice Hall (2002)

5. Ellenberg, L.: DRBD 8.0.x and beyond: Shared-disk semantics on a shared-nothing
cluster. In: LinuxConf Europe. (2007)

6. Lahiri, T., Srihari, V., Chan, W., MacNaughton, N., Chandrasekaran, S.: Cache fu-
sion: Extending shared-disk clusters with shared caches. In Apers, P.M.G., Atzeni,
P., Ceri, S., Paraboschi, S., Ramamohanarao, K., Snodgrass, R.T., eds.: Very Large
Data Bases (VLDB) Conference, Morgan Kaufmann (2001) 683–686

7. Gashi, I., Popov, P., Strigini, L.: Fault diversity among off-the-shelf SQL database
servers. Dependable Systems and Networks, 2004 International Conference on (28
June-1 July 2004) 389–398

8. Chockler, G.V., Keidar, I., Vitenberg, R.: Group Communication Specifications: a
Comprehensive Study. ACMCS 33(4) (December 2001) 427–469

9. Pedone, F., Guerraoui, R., Schiper, A.: The database state machine approach.
Distributed and Parallel Databases 14(1) (2003) 71–98

10. Wu, S., Kemme, B.: Postgres-R(SI): Combining replica control with concurrency
control based on snapshot isolation. In: ICDE ’05: Proceedings of the 21st Interna-
tional Conference on Data Engineering, Washington, DC, USA, IEEE Computer
Society (2005) 422–433

11. Elnikety, S., Dropsho, S., Pedone, F.: Tashkent: uniting durability with transaction
ordering for high-performance scalable database replication. In: Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006.
EuroSys ’06, New York, NY, USA, ACM (2006) 117–130

12. Grov, J., Soares, L., Jr., A.C., Pereira, J., Oliveira, R., Pedone, F.: A pragmatic
protocol for database replication in interconnected clusters. In: 12th IEEE Pacific
Rim International Symposium on Dependable Computing (PRDC 2006), Riverside,
USA. (2006)

13. Kathuria, V., Dhamankar, R., Kodavalla, H.: Transaction isolation and lazy com-
mit. Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on
(2007) 1204–1211

14. Correia, A., Pereira, J., Rodrigues, L., Carvalho, N., Vilaca, R., Oliveira, R.,
Guedes, S.: GORDA: An open architecture for database replication. Network
Computing and Applications, 2007. NCA 2007. Sixth IEEE International Sympo-
sium on (12-14 July 2007) 287–290

15. Gray, J., Helland, P., O’Neil, P., Shasha, D.: The dangers of replication and a
solution. In: Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data. Volume 25, 2 of ACM SIGMOD Record., New York, ACM Press
(jun 1996) 173–182

16. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ANSI SQL isolation levels. In: ACM SIGMOD International Conference on
Management of Data, New York, NY, USA, ACM (1995) 1–10

17. Bernabé-Gisbert, J.M., Zuikeviciute, V., Muñoz Escóı, F.D., Pedone, F.: A prob-
abilistic analysis of snapshot isolation with partial replication. In: Proceedings
of the 2008 Symposium on Reliable Distributed Systems, Washington, DC, USA,
IEEE Computer Society (2008) 249–258

18. Elnikety, S., Dropsho, S., Cecchet, E., Zwaenepoel, W.: Predicting replicated
database scalability from standalone database profiling. In: Proceedings of the
4th ACM European conference on Computer systems. EuroSys ’09, New York,
NY, USA, ACM (2009) 303–316

19. Jr., A.C., Sousa, A., Soares, L., Pereira, J., Moura, F., Oliveira, R.: Group-based
replication of on-line transaction processing servers. In: Latin-American Sympo-
sium on Dependable Computing. (2005) 245–260

