
Flexub: Dynamic Subscriptions for
Publish/Subscribe Systems in MANETs

Engineer Bainomugisha1, Koosha Paridel2,
Jorge Vallejos1, Yolande Berbers2, and Wolfgang De Meuter1

1Software Languages Lab, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Elsene , Brussels, Belgium.
{ebainomu, jvallejo, wdmeuter}@vub.ac.be

2Department of Computer Science, K.U.Leuven,
Celestijnenlaan 200A, B-3001 Leuven, Belgium.
{koosha.paridel, yolande.berbers}@cs.kuleuven.be

Abstract. Current publish/subscribe systems provide very limited sup-
port to modify subscriptions dynamically. Consequently, they cannot ef-
ficiently control the flow of events between publishers and subscribers,
which may lead to unnecessary network traffic. In addition, it is not
possible to automatically subscribe or unsubscribe to a service depend-
ing on certain context of use. This implies for developers to manually
manage subscriptions (e.g., taking care of when to cancel or re-issue a
subscription), which may result in inappropriate subscription states (e.g.,
subscriptions that are cancelled too late). In this paper, we propose the
concept of dynamic subscription mechanisms that improves the expres-
siveness and flexibility of subscriptions. We introduce a new dimension
to a subscription that allows a subscriber to express the flow of matched
events, and when a new subscription can be (re)issued. We validate our
claims for improved flexibility and expressiveness by providing language
abstractions and a prototype implementation of a dynamic subscription
mechanism framework called Flexub that supports a variation of sub-
scription mechanisms. When compared to existing subscription models,
our experiment results show that the support for dynamic subscription
mechanisms greatly reduces network traffic of events sent from publish-
ers to the subscribers. In addition, our approach reduces the workload
on the subscriber side.

Keywords: Publish/Subscribe systems, subscription mechanisms, mo-
bile ad hoc networks, context-aware systems

1 Introduction

Event filtering techniques and subscription models are two important areas of
research for Publish/Subscribe systems [10, 3, 6, 9]. The works on event filtering
and subscription models propose various ways for specifying the interests of a
subscriber and deciding which events the subscriber should receive. However,



2 Bainomugisha et. al.

emerging mobile applications for MANETs such as context-aware applications,
require more expressive subscription models, as it is desirable for subscribers to
be able to dynamically modify subscriptions depending on some context condi-
tions. For instance, a subscriber may need to specify that a subscription should
be automatically adapted or cancelled after a certain number of matched events
are received.

Current solutions suffer from limited expressiveness and provide insufficient
support to modify subscriptions dynamically. While event filters [10] can be
used to discard events that are of no interest to the subscriber, it is not possible
to express when a subscription should be cancelled or modified. Consequently,
subscribers have a limited control on the flow of matched events, which may
lead to unnecessary network traffic. Moreover, it is not possible to automatically
subscribe or unsubscribe to a service depending on certain context conditions
(e.g., battery level, number of required events, location, etc.). This implies for
developers to manually manage subscriptions (e.g., taking care of when to cancel
or re-issue a subscription), which may result in inappropriate subscription states
(e.g., subscriptions that are cancelled too late).

The main contributions of this paper are the following:

(i) We propose a concept of dynamic subscription mechanisms that improves the
expressiveness and flexibility of subscriptions. To achieve this, we introduce
a new dimension to a subscription that allows a subscriber to express the
flow of matched events, and a condition under which a new subscription
should be issued or re-issued.

(ii) We present a prototype extensible implementation of a framework called
Flexub that supports a variation of subscription mechanisms for Publish/-
Subscribe systems.

(iii) We demonstrate that a variation of three subscription mechanisms can be
easily expressed in Flexub: (a) continuous subscription, that allows the sub-
scriber to receive all the events that match with the subscription, (b) sub-
scribe once, that allows the subscriber to receive one and only one matched
event, and (c) subscribe once and again, that allows the subscriber to re-
subscribe, if needed, after each matching.

When compared to existing subscription models, our experiment results show
that the support for dynamic subscription mechanisms greatly reduces network
traffic of events sent from publishers to the subscribers. In addition, our approach
reduces the workload on the subscriber side by ensuring that subscriptions that
become irrelevant are cancelled as early as possible.

2 A Motivating Scenario

Nowadays in public places such as an airport, there are many people who have
mobile devices equipped with wireless communication capabilities. Such places
create an opportunity for people to share information with each other without
the need for fixed infrastructure. For example, the passengers in an airport can



Flexub: Dynamic Subscriptions for Publish/Subscribe Systems in MANETs 3

find partners to share a cab with, exchange weather information, touristic tips,
etc.

Consider three passengers, Alice, Bob and Carol travelling through London
Heathrow Airport. Alice is a passenger that is flying indirectly and is waiting in
the airport for transit. She has a few hours between her flights and therefore,
decides to find other passengers that would like to join in for a game in the
lounge. She would like to share this information and continuously get notified
whenever there is an interested passenger. Bob wants to go for vacation to an
island. He arrives at the airport and has two hours before his flight. He is curious
about the weather situation in the island. He would like to get notified only one
time when there is a passenger who shares that information. Carol has just
landed at the airport and wants to get a cab to her hotel. In order to minimise
costs she would like to find other passengers going to the same hotel to share a
cab with. She would like to get notified whenever another person is interested
in sharing until the cab’s capacity is reached. If the cab’s capacity is not yet
reached, she would like to get notified once again about the next person who is
interested.

2.1 Scenario Analysis

The above scenario reveals interesting subscriptions that a subscriber may re-
quire in order to control the flow of information from the publisher to the sub-
scriber. For instance, we can identify the following subscriptions:

S.1 Alice needs to issue a subscription that continuously matches the publica-
tions containing information about people interested in playing a game and
notifies her.

S.2 Bob needs to issue a subscription that matches with only one publication
containing weather information and notifies him.

S.3 Carol needs to issue a subscription that once and again matches with a
publication containing information about people interested in sharing a cab
and notifies her. In addition, she specifies a condition that the subscription
should be reissued as long as the cab capacity is not yet reached.

These sample subscriptions highlight the need for dynamic subscriptions i.e.,
subscriptions that allow the subscriber to specify the flow of matched events
as well as conditions under which a subscription may need to be adapted or
cancelled. The current solutions suffer from limited expressiveness and flexibility
and require the programmer to formulate ad hoc implementations to manage
subscriptions (e.g., taking care of when to cancel a subscription or re-issue a
subscription). Managing subscriptions in an ad hoc manner is error-prone and
may lead to subscriptions to be cancelled too early or too late. We further discuss
existing solutions in Section 5.

The next section presents our approach for expressing subscriptions with
more flexibility.



4 Bainomugisha et. al.

3 Dynamic Subscription Mechanisms

We propose the concept of dynamic subscription mechanisms that improves ex-
pressiveness of subscriptions and allows the flexibility to control the flow of
matched events. The model allows the subscriber not only to express the way
events should be matched but also a means to control the flow of events (e.g.,
a condition under which a subscription should be (re)issued or cancelled). We
achieve this by introducing a new dimension of a subscription function Si to
every subscription. In our model, subscription can be informally described as
follows:

SUBSCRIBE(T, Si, u) (1)

The above definition shows a subscription to an event type T, with a subscrip-
tion function Si, and an event filtering function u. The subscription function
(dimension) allows the subscriber to express extra specification about the flow
of matched events, and a condition under which a new subscription can be is-
sued or cancelled. We give a general description of the subscription dimension
as follows:

Si = (sm, p) (2)

Where sm denotes a subscription mechanism while p denotes a predicate func-
tion that specifies when to re-issue or cancel a subscription. A key observation
here is that, introducing a new dimension to a subscription, makes it possible
to express a subscription mechanism that specifies the semantics of the flow
of matched events. So far, we have identified a variation of three subscription
mechanisms: continuous subscription, subscribe once, and subscribe once and
again that we explain below.

Continuous subscription. In this mechanism, the subscriber continuously re-
ceives all new matched events from the publishers. The current Publish/Sub-
scribe systems support this kind of subscription mechanism. One drawback
of this mechanism is that the publisher is always in control of the information
flow, which can result in the subscriber being flooded with new information
in case the publisher produces events at a higher rate than the subscriber
can process.

Subscribe once. The subscribe once mechanism enables the subscriber to reg-
ister interest in receiving a single event from the publishers and the subscrip-
tion is automatically cancelled as soon as the first matched event is received.
Therefore, the subscriber is in control of the information flow.

Subscribe once and again. This mechanism is a hybrid of the subscribe once
and the continuous subscription mechanisms. The subscriber can receive
one or multiple events depending on the need. Each subscription is specified
with a predicate that is checked every time the subscriber receives an event
to determine whether a subscription should be re-issued or automatically
cancelled. The main advantage of this subscription mechanism is that the
subscriber is in control and decides when to receive new events.



Flexub: Dynamic Subscriptions for Publish/Subscribe Systems in MANETs 5

4 Flexub

In this section, we present a prototype implementation of a framework called
Flexub that supports a variation of subscription mechanisms for Publish/Sub-
scribe systems.

4.1 The Flexub Architecture

The Flexub architecture is composed of two layers, namely, a communication
middleware layer, and a language abstractions layer, that we explain below.

Communication middleware layer. We chose Fadip [8] as our communica-
tion middleware. Fadip is lightweight Publish/Subscribe middleware that
is tailored to work in MANETs. Fadip supports a hybrid model for rout-
ing by using bounded subscription propagation and message propagation at
the same time. Moreover, it uses a fading gossip technique, which decreases
the fanout of subscription and message propagation at each hop level. This
technique ensures that there are less redundant message propagations in the
network due to receiving the same message from different routes.

Language abstractions layer. The language abstractions layer provides high-
level abstractions for expressing the dynamic subscription mechanisms sup-
ported by Flexub. For each subscription mechanism, this layer provides the
corresponding high-level language abstraction. Such high-level abstractions
alleviate the programmer from the burden of manual management of sub-
scription cancellation and event filtering. Managing subscriptions in such
an ad hoc manner is error-prone and may lead to subscriptions to be can-
celled too early or too late. The details of using our language abstractions
to implement the airport scenario can be found in [1].

4.2 Evaluation: Simulated Experiment

We have performed a preliminary experiment in order to evaluate the benefits
of adding support for dynamic subscription mechanisms to a Publish/Subscribe
system. The goal of this experiment was to investigate two properties: (i) the
effect of dynamic subscription mechanisms on the network traffic of matched
events, and (ii) the workload on the subscriber side i.e., the amount of matched
events that are received by a subscriber versus the amount of events that are
required by the subscriber.

4.2.1 Experiment Setup
We implemented Flexub on top of Fadip [8], to investigate the effects of using
a dynamic subscription mechanism to control the flow of events. We performed
the simulations using OMNeT++ [11], a component-based, open-architecture
discrete event network simulator that is widely used in academia for the simu-
lation of computer networks. We also used an OMNeT++ modelling framework
called MiXiM to simulate wireless communication in the vehicular network.



6 Bainomugisha et. al.

Fig. 1. Network traffic usage by the number
of nodes, with and without using Flexub

Fig. 2. The number of desired events and
the number of received events by sub-
scribers in Fadip and in Fadip+Flexub

We used 50 to 150 nodes in the simulations. We randomly chose 20% of
these nodes as publishers and 5% of them as subscribers. The simulation runs
for 50 seconds and nodes move randomly around with a speed of 2 meters per
second in a playground with a size of 1500 meters by 1000 meters. With this
setting, we tried to resemble the movement of people walking around with their
computational devices in an airport terminal. Each subscribing node sends its
subscription in the beginning of the simulation and each publishing node sends
an event every 5 seconds.

First, we performed the simulation without using Flexub. In this setting, the
subscriptions are propagated without any flow control, and they keep continuing
to match and forward events. In the second setting, we use Flexub to add flow
control to the subscriptions. We assign a random number between 1 to 10, with
a normal distribution, that indicates the number of matched events, after which
the subscription is automatically cancelled.

4.2.2 Network Traffic
Figure 1 depicts the effect of using Flexub on network traffic usage, with a
network size of 50 nodes up to 150 nodes. We measure network traffic usage by
counting the total number of messages that all nodes sent during the simulation
time. This includes both subscription and publication messages. The results
suggest that:

– Flexub reduces the network traffic usage considerably. The reason is that in
Flexub, subscriptions have a flow control mechanism, and after the desired
amount of matched events for a subscription has been reached, they prevents
other unnecessary events to be further propagated in the network.

– Flexub helps Fadip to scale better. Without Flexub, the network traffic usage
increases exponentially by increasing the number of nodes. However, Flexub
linearises this effect on network traffic. This means that the support for dy-
namic subscriptions makes a Publish/Subscribe system to be more scalable



Flexub: Dynamic Subscriptions for Publish/Subscribe Systems in MANETs 7

and to work more efficiently with the increase in the number of nodes and
messages on the network.

4.2.3 Workload on the Subscribers
Figure 2 illustrates the effect of using Flexub on the number of events that
subscribers receive, comparing to the total amount of desired matched events.
The number of desired events is the sum of the required matched events for
every subscriber in the network. Moreover, the number of received events is
the sum of all events that a subscriber receives that can be more than what
the subscribers initially asked for. As the results suggest, Flexub helps to the
subscribers to receive fewer extra matching events. This reduces the workload on
the subscribers. The reason is that Flexub automatically cancels the propagation
of extra matched events in the early stages of their propagation. The benefit of
this effect is reducing the processing effort in the subscribers.

5 Related Work

In [4] the authors propose Cayuga that aims to extend the expressive power of
Publish/Subscribe systems by allowing subscriptions that span multiple events
and supporting parameterisation and aggregation of events. However, in Cayuga
it is not possible to express dynamic subscriptions and it does not provide sup-
port for specifying conditions under which a subscription can be automatically
cancelled.

Jayaram et. al. [7] propose parametric subscriptions in order to provide sup-
port for dynamic subscription adaptations. They enrich content-based Publish/-
Subscribe system with the ability for the subscriber to dynamically update its
subscription without loosing any events that occur between the adaptations.
Their work can be complementary to our approach in order to efficiently change
from one subscription mechanism to another.

Drosou et. al. [5] propose a preference-aware Publish/Subscribe system with
a ranking mechanism based on the user preferences. Their system only delivers
the top-ranked events to the subscribers, and filters out the rest. Therefore, they
aim to increase the relevance of the events received by the users. In comparison
with our system, they focus on the relevance of the matched events and not in
controlling the flow of the events.

6 Conclusions and Future Work

We proposed the dynamic subscription mechanisms concept that improves the
expressiveness and flexibility of subscriptions. Our preliminary experiments show
that the adding support for dynamic subscriptions greatly reduces the network
traffic of matched events received by subscribers. In addition, our approach re-
duces the workload on the subscriber side by ensuring that subscriptions that
become irrelevant are cancelled as early as possible.



8 Bainomugisha et. al.

For future work, we plan to investigate subscription mechanisms that reduce
the workload at the publisher side as well as other intermediary nodes in a
Publish/Subscribe system.

Acknowledgements
We would like to thank Pieter Mensalt for the initial experiments of subscription
mechanisms in iScheme [2]. This work was partially funded by the SAFE-IS
project of the Research Foundation - Flanders (FWO), the STADiUM project,
and the VariBru project of the ICT Impulse Programme of the Institute for
Research and Innovation.

References

1. E. Bainomugisha, K. Paridel, J. Vallejos, Y. Berbers, and W. D. Meuter. Flexub:
Dynamic subscriptions for publish/subscribe systems in manets. Technical Report
VUB-SOFT-TR, Vrije Universiteit Brussel, Belgium, April 2012. http://soft.

vub.ac.be/~ebainomu/publications/flexub-tr.pdf.
2. E. Bainomugisha, J. Vallejos, E. G. Boix, P. Costanza, T. D’Hondt, and

W. De Meuter. Bringing Scheme programming to the iPhone–Experience. Soft-
ware: Practice and Experience, 2011.

3. S. Bittner and A. Hinze. Pruning subscriptions in distributed publish/subscribe
systems. In Proceedings of the 29th Australasian Computer Science Conference -
Volume 48, ACSC ’06, pages 197–206, Darlinghurst, Australia, 2006. Australian
Computer Society, Inc.

4. A. Demers, J. Gehrke, M. Hong, M. Riedewald, and W. White. Towards expressive
publish/subscribe systems. In Advances in Database Technology - EDBT 2006,
volume 3896 of Lecture Notes in Computer Science, pages 627–644. Springer Berlin
/ Heidelberg, 2006.

5. M. Drosou, K. Stefanidis, and E. Pitoura. Preference-aware publish/subscribe
delivery with diversity. In Proceedings of the Third ACM International Conference
on Distributed Event-Based Systems, page 6. ACM, 2009.

6. F. Fabret, H. A. Jacobsen, F. Llirbat, J. Pereira, K. A. Ross, and D. Shasha. Fil-
tering algorithms and implementation for very fast publish/subscribe systems. In
Proceedings of the 2001 ACM SIGMOD international conference on Management
of data, SIGMOD ’01, pages 115–126, New York, NY, USA, 2001. ACM.

7. K. R. Jayaram, C. Jayalath, and P. Eugster. Parametric subscriptions for content-
based publish/subscribe networks. In Middleware, pages 128–147, 2010.

8. K. Paridel, Y. Vanrompay, and Y. Berbers. Fadip: Lightweight publish/subscribe
for mobile ad hoc networks. In R. Meersman, T. Dillon, and P. Herrero, editors,
On the Move to Meaningful Internet Systems, OTM 2010, volume 6427 of Lecture
Notes in Computer Science, pages 798–810. Springer Berlin / Heidelberg, 2010.

9. M. Petrovic, V. Muthusamy, and H. Jacobsen. Content-based routing in mobile
ad hoc networks. In The Second Annual International Conference on Mobile and
Ubiquitous Systems: Networking and Services, 2005., pages 45–55. IEEE, 2005.

10. S. Taherian and J. Bacon. State-filters for enhanced filtering in sensor-based pub-
lish/subscribe systems. In Proceedings of the International Workshop on Data In-
tensive Sensor Networks (DISN’07), Mannheim, Germany, May 2007. IEEE Press.

11. A. Varga et al. The OMNeT++ discrete event simulation system. In Proceedings
of the European Simulation Multiconference (ESM2001), pages 319–324, 2001.


