Authenticating Multi-Dimensional Query
Results in Data Publishing

Weiwei Cheng', HweeHwa Pang?, and Kian-Lee Tan!

!Department of Computer Science, National University of Singapore
2School of Information Systems, Singapore Management University

Abstract. In data publishing, the owner delegates the role of satisfy-
ing user queries to a third-party publisher. As the publisher may be un-
trusted or susceptible to attacks, it could produce incorrect query results.
This paper introduces a mechanism for users to verify that their query
answers on a multi-dimensional dataset are correct, in the sense of being
complete (i.e., no qualifying data points are omitted) and authentic (i.e.,
all the result values originated from the owner). Our approach is to add
authentication information into a spatial data structure, by constructing
certified chains on the points within each partition, as well as on all the
partitions in the data space. Given a query, we generate proof that every
data point within those intervals of the certified chains that overlap the
query window either is returned as a result value, or fails to meet some
query condition. We study two instantiations of the approach: Verifiable
KD-tree (VKDtree) that is based on space partitioning, and Verifiable
R-tree (VRtree) that is based on data partitioning. The schemes are eval-
uated on window queries, and results show that VRtree is highly precise,
meaning that few data points outside of a query result are disclosed in
the course of proving its correctness.

1 Introduction

In data publishing, a data owner delegates the role of satisfying user queries
to a third-party publisher [6,10]. This model is applicable to a wide range of
computing platforms, including database caching [8], content delivery network
[23], edge computing [9], P2P databases [7], etc.

The data publishing model offers a number of advantages over conventional
client-server architecture where the owner also undertakes the processing of user
queries. By pushing application logic and data processing from the owner’s data
center out to multiple publisher servers situated near user clusters, network la-
tency can be reduced. Adding publisher servers is also likely to be a cheaper
way to achieve scalability than fortifying the owner’s data center and provision-
ing more network bandwidth for every user. Finally, the data publishing model
removes the single point of failure in the owner’s data center, hence reducing
the database’s susceptibility to denial of service attacks and improving service
availability.

However, since the publishers are outside of the administrative domain of
the data owner, and in fact may reside on poorly secured platforms, the query

results that they generate cannot be accepted at face value, especially where
they are used as basis for critical decisions. Instead, there must be provisions for
the user to check the “correctness” of a query answer.

Schema:
[id, x-coord, y-coord, user-name, account, ...]

Data:
Ymax o
° rl6
2 8 rll
o o 17
17 ?0 ro
1 o e
o r4 o
o
o Q 18
T o o 20
14
3 o T o
° v 13 ©
3
rI5 o
o rl9
Ymin
Xmin Xmax

Fig. 1. Running Example

Consider a dataset containing 20 data points in two-dimensional space as
shown in Figure 1. The figure also includes a window query Q, for which {r13,r14}
is the correct result. A rogue publisher may return a wrong result {r13, 714,100},
which includes a spurious point 7100, or {r13*, 714} in which some attribute val-
ues of 13 have been tampered with. To detect such incorrect values, the user
should be able to verify the authenticity of query result. A different threat is
that the publisher may omit some result points, for example by returning only
{r13} for query Q. This threat relates to the completeness of query result.

Most of the existing works provide for checking the authenticity [11, 16] and
completeness [6, 15] of query results on one-dimensional datasets. The exception
is Devanbu’s scheme [6] which handles multiple key attributes by essentially con-
catenating them in some preferred order key; [keya|.. keyq. However, the scheme
is expected to be very inefficient for symmetric queries, such as window and
nearest neighbor queries, that are typical in multi-dimensional context.

In this paper, we propose a mechanism for users to verify that their query re-
sults on a multi-dimensional dataset are authentic and complete. Our approach is
to build authentication information into a spatial data structure, by construct-
ing certified chains on the points within each partition, as well as on all the
partitions in the data space. We introduce two schemes based on this approach.
The first, the Verifiable KD-tree (VKDtree), is based on the space partitioning
k-d tree. The second, the Verifiable R-tree (VRtree), employs data partitioning

and is based on the R-tree. The schemes are evaluated on window queries, and
results show that VRtree is highly precise, meaning that few data points outside
of a query result are disclosed in the course of proving its correctness. Moreover,
both schemes are computationally secure, and incur low processing and update
overheads. To the best of our knowledge, the authentication mechanism intro-
duced in this paper is the first that enables a user to verify the completeness of
a multi-dimensional query result generated by an untrusted server.

The remainder of this paper is organized as follows. Section 2 provides the
background on data publishing model and the associated threats, and describes
some cryptographic primitives. Our authentication schemes are introduced in
Sections 3 and 4, while Section 5 presents results from a performance study.
Finally, Section 6 concludes the paper.

2 Background
In this section, we first present the target system deployment model and the

associated security threats. Next, we define some cryptographic primitives that
are used in our solution.

2.1 System and Threat Models

User
result +
public correctness
key query proof

Owner ——— | Publisher
data +

signatures

Fig. 2. Data Publishing Model

Figure 2 depicts the data publishing model, which supports three distinct
roles:

— The data owner maintains a master database, and distributes it with one or
more associated signatures that prove the authenticity of the database. Any
data that has a matching signature is accepted by the user to be trustworthy.

— The publisher hosts the database, and executes queries on behalf of the
owner. There could be several publisher servers that are situated at the edge
of the network, near the user applications. The publisher is not required to
be trusted, so the query results that it generates must be accompanied by

some “correctness proof”, derived from the database and signatures issued
by the owner.

— The user issues queries to the publisher explicitly, or else gets redirected to
the publisher, e.g. by the owner or a directory service. To verify the signatures
in the query results, the user obtains the public key of the owner through an
authenticated channel, such as a public key certificate issued by a certificate
authority.

Our primary concern addressed in this paper is the threat that a dishonest
publisher may return incorrect query results to the users, whether intentionally
or under the influence of an adversary. An adversary who is cognizant of the data
organization in the publisher server may make logical alterations to the data,
thus inducing incorrect query results. Even if the data organization is hidden,
for example through data encryption or steganographic schemes (e.g., [17]), the
adversary may still sabotage the database by overwriting physical pages within
the storage volume. In addition, a compromised publisher server could be made
to return incomplete query results by withholding data intentionally. Therefore
mechanisms for users to verify the completeness as well as authenticity of their
query results are essential for the data publishing model. While there are several
other security considerations in the data publishing model (such as privacy, user
authentication and access control), these have been studied extensively (e.g. [1],
[17], [12], [22]), and are orthogonal to our work here.

2.2 Cryptographic Primitives

Our proposed solution and many of the related work are based on the following
cryptographic primitives:

One-way hash function: A one-way hash function, denoted as h(.), is a hash
function that works in one direction: it is easy to compute a fixed-length digest
h(m) from a variable-length pre-image m; however, it is hard to find a pre-image
that hashes to a given hash value. Examples include MD5 [18] and SHA [3]. We
will use the terms hash, hash value and digest interchangeably.

Digital signature: A digital signature algorithm is a cryptographic tool for
authenticating the integrity and origin of a signed message. In the algorithm,
the signer uses a private key to generate digital signatures on messages, while
a corresponding public key is used by anyone to verify the signatures. RSA [19]
and DSA [2] are two commonly-used signature algorithms.

Signature aggregation: As introduced in [5], this is a multi-signer scheme
that aggregates signatures generated by distinct signers on different messages
into one signature. Signing a message m involves computing the message hash
h(m) and then the signature on the hash value. To aggregate ¢ signatures, one
simply multiplies the individual signatures, so the aggregated signature has the
same size as each individual signature. Verification of an aggregated signature
involves computing the product of all message hashes and then matching with
the aggregated signature.

Signature chain: In [15], a signature chain scheme is proposed that enables
clients to verify the completeness of answers of range queries. A very nice prop-
erty of the scheme is that only result values are returned, thus ensuring that
there is no violation of access control. The scheme is based on two concepts:
(a) The signature of a record is derived from its own digest as well as its left and
right neighbors’. In this way, an attempt to drop any value from the answer of
a range query will be detected since it would no longer be possible to derive the
correct signature for the record that depends on the dropped value. (b) For the
boundaries of the answer, a collaborative scheme that involves both the pub-
lisher and the client is proposed — the publisher performs partial computation
based on but not revealing the two records bounding the answer and the query
range, while the client completes the computation based on the two end points
of the query range.

3 Signature Chain in Multi-Dimensional Space

The goal of our work is to devise a solution for checking the correctness of query
answers on multi-dimensional datasets. The design objectives include:

— Completeness: The user can verify that all the data points that satisfy a
window query are included in the answer.

— Authenticity: The user can check that all the values in a query answer orig-
inated from the data owner. They have not been tampered with, nor have
spurious data points been introduced.

— Precision: Proving the correctness of a query answer entails minimal disclo-
sure of data points that lie beyond the query window. We define precision
as the ratio of the number of data points within the query window, to the
number of data points returned to the user.

— Security: It is computationally infeasible for the publisher to cheat by gen-
erating a valid proof for an incorrect query answer.

— Efficiency: The procedure for the publisher to generate the proof for a query
answer has polynomial complexity. Likewise the procedure for the user to
check the proof has polynomial complexity.

Without loss of generality, we assume that the data in the multi-dimensional
space are split into partitions — this can be done using a spatial data structure.
To ensure that the answer for a window query is complete, two issues must be
addressed. First, we need to prove that the answer covers all the partitions that
overlap the query window. We refer to these partitions as candidate partitions.
Second, we need to prove that all qualifying values within each candidate par-
tition are returned. The first issue is dependent on the partitioning strategy
adopted, and is deferred to Section 4. In the rest of this section, we shall focus
on the second issue.

Assuming we have proven that the query answer covers all the candidate
partitions, we now need to ensure that all the qualifying values in those partitions
have not been dropped. Consider a candidate partition P for the window query

Q = [(qi1,qi2s -+ - @d), (Qui, Qua, - - -, Gua)]- There are three possible cases: (a) Q
contains P. Since the window query bounds the partition, we need to ensure that
all the points in P are returned. (b) P contains Q. The query window is within
the space covered by the partition. A naive solution is to return all the points
in P. A better solution, which we advocate, is to return only those points that
are necessary for users to check for completeness. In both cases, our concern is
to ensure the secrecy of points that are outside Q. (c) P overlaps Q. This case
can be handled by splitting P into two parts: the part of P that contains), and
the part of P that does not overlap @. The former is handled in case (b), while
nothing needs to be done for the latter. Thus, we shall focus on cases (a) and
(b), and not discuss case (c) any further.

Our solution extends the signature chain concept in [15] to multi-dimensional
space. This is done by ordering the points within the partition, and then con-
structing the signature chain. In this paper, we adopt a simple scheme of order-
ing the points based on increasing (x1,a,...,x4) value. In 2-d space, (x1,y1)
is ordered before (xa,ys) if 1 < 23, or 1 = x5 and y; < ys. Based on this
ordering, we need to return all the points whose first dimension is within the
range [qi1, qu1], as well as the bounding points. Of course, some of these points
may fall beyond the query window along the second dimension. For such points
that should not be part of the answer, we return only their digests rather than
the actual values, in order to protect their secrecy and achieve high precision.

We choose this simple ordering scheme over more sophisticated space filling
curves [20] because: (a) A partition (corresponding to a 4K or 8K block/page)
typically consists of a small number of points (100-200). Moreover, the actual
number of points within a partition would be smaller than the maximum capacity
(since the page is typically not full). As such, it may not be worthwhile to employ
a complicated scheme. (b) None of the existing space filling curves perform well
in all cases. Thus, they really offer no significant advantage over the simple
scheme (especially given the small number of points).

For the example in figure 1, assuming that the entire space corresponds to
one partition, the points would be ordered from ry to rog. For case (a) where the
query bounds the partition, r1 to rog would be returned; for case (b) where the
query (i.e., the box that bounds ri3 and r14) is within the partition, we return
the values of r13 and 714 and the digest of the various dimensions for r17, r12,
r15, 716 and r17. We now present the details of our solution that extends the
signature chain scheme to multi-dimensional setting.

Construction: Let L = (L1, Lo, ..., Lg) and U = (U1, Us, ..., Uy) be two points
that bound the entire data space, where L,. < U, for all ». L and U are known to

all users. Consider a partition P bounded by two points py = (o1, Zo2, - - -, Tod)
and pry1 = (T(ht1),1, T(k+1),2) - - - » T(kt1),d) Where zo, < 2441, for all r. Sup-
pose P contains k data points p1 = (211,212, -+, Z1d), - - - Pk = (Tk1, Th2, - -+, Thd)-

Without loss of generality, we assume that p; is ordered before p; for 1 < i <
j < k. Clearly, pg is ordered before p; and px1 is ordered after py.

Our multi-dimensional signature chain constructs for each point within P an
associated signature (based on [15]):

sig(pi) = s(h(g(pi—1)]9(P:)l9(Pit+1))) (1)

where s is a signature function using the owner’s private key, h is a one-way hash
function, and | denotes concatenation. g(p;) is a function to produce a digest for
point p;:

d
g(]%) — Z hUr—xir—l(xir)lh:cir—LT—l(xiT) (2>
r=1
where h'(x;.) = hi~(h(z;)) and hO(x;.) applies a one-way hash function on
1
x.

Moreover, for the two delimiters,

sig(po) = s(h(h(L1]. .. |La)|g(po)lg(p1))) (3)

si9(pr+1) = s(h(9(Pk)|g(Prs1)|R(UL| ... |Ua))) (4)
In addition, cach partition P has an associated signature:

sig(P) = s(h(g(po)|g(pr+1)|h(k))) (5)

Query Processing: Assuming that a partition P is returned. We have to prove
that all the data points within P that fall within the query window @ are re-
turned.

Case (a): Q contains P. The verification process for this case is straightfor-
ward. The publisher server returns pg to py+1, and k, together with the respective
signatures sig(po) to sig(pr+1) and sig(P). (To reduce traffic overhead, we could
send just one combined signature instead of the individual signatures, using the
signature aggregation technique in [5].) The user first verifies that

s~ (sig(P)) = h(g(po)|g(pr+1)|h(k))

Then, for each p;, 1 <i < k, the user verifies that p; is indeed in P (by checking
that P bounds p;). Finally, for each p;, 1 < i < k, the user computes its digest
and checks whether

s~ (sig(ps)) = h(g(pi—1)|9(pi)|g(pi+1))

If all the above checks are successful, the answer contains all the data points in
P.

Case (b): P contains Q. Let p; = (2;1,%42,...,%;q). The data points in P
can be separated into: (a) pa,Pa+1,-..,P3—1,ps such that z;1 € [gn,qu1] for

! To achieve tighter security, h°(z;r) can be redefined as h°(zi.|rand(p;)) where
rand(p;) is a random number associated with p;; in which case we will need to supply
the corresponding rand(p;) with each returned record. For ease of presentation, we
shall adopt the simpler definition of A°(x;,).

a < i < 3. These points can be further categorized into answer points (A) and
false positives (F). For each answer point p; € A, Vr x; € [qir, Gur], Whereas

for each false positive p; € F, 3r zir € [qir, qur]- (b) D15+ Daz1,08+1,- - - Pk
which are clearly not answer points.

(i) For each point p; € A, the server returns p; and sig(p;).
(ii) For each point p; € F U {pa—1,ps+1}, the server returns several pieces of
information: (i) if x4 € [qir, qur], KV =%~ (24) |R%ir ~Er =1 (24,.) is returned;
(ii) if @ < qp, K9~ %" Y(x;,) and A% ~Lr=l(x,;,.) are returned; (iii) if
Tir > Qur, KV 7% 7 (2y,) and A%~ 9 —1(x;.) are returned.
(iii) The server also returns po, pr+1, k, sig(po), sig(pr+1) and sig(P).

With information from step (ii), the user can compute g(p;) without knowing
the actual value of p;:

— If 24 < qir, the user applies h on (h9«r=%ir=1(z,.)) (U, — qu,) times to get
)

— If 24 > qur, the user applies h on (h%ir=9%~1(x;.)) (g — L,) times to get
)

— The user computes g(p;) using Equation (2).

The above procedure is secure against cheating by the publisher provided h‘(p)
for i < 0 is either undefined or computationally infeasible to derive. We use an
iterative hash function for h’(p), because there is no known algebraic function
that satisfies the requirement. To ensure that h=!(p) # p, a hash function is
chosen that outputs a different digest length from the length of p.

Similar to case (a), the user verifies the completeness of the query answer as
follows:

— Verify that the bounding box is correct using information from step (iii),
and determine whether s~ (sig(P)) = h(g(po)|g(prs1)|h(k)).

— Verify that each point p in A is in P by checking that p is bounded by P.

— Verify that each point p; € A is authentic using information in step (ii) and
the derived information to check s™1(sig(p;)) = h(g(pi—1)lg9(pi)|lg(pit1))-

Again, any attempt by the publisher server to cheat would lead to an unsuccessful
match in at least one of the above cases.

Finally, we emphasize that extra data points that are returned for proving
completeness are in the form of digests. Thus only the existence of the data
points are revealed, but not their actual content. 2

2 If a non-answer p; € F has the same coordinate as an answer point p; € A along
some dimension, both points will have the same digest for that dimension and p;’s co-
ordinate will be revealed. This can be overcome by simply adopting h° (. |rand(p;))
as explained in footnote 1.

(o) (o)
B8
° rl6 . B3 o rl6
2 ‘g rll Bl B3| 1
° rg o 17 O 2 o rl
10 ° 10 el
rl o rl2 rl o rl
o 4 o © B6
o o
o aQ 18 B2 5 54 @ 18
r [} 20 r o 20
. Sle | el e \ i
rl3 13
3 13
o B7, o
rlfo rl9 rl5] r19|
(a) Space Partitioning (b) Data Partitioning

Fig. 3. Partitioning Strategies

4 Verifying the Data Partitions

Having shown how to prove that all qualifying data points in a candidate parti-
tion (that overlaps the query window) are returned correctly, we now look at the
first issue of verifying that the query answer covers all the candidate partitions.

A naive solution is to treat the entire data space as a single large partition,
so that the mechanism described in Section 3 alone suffices. However, we expect
this solution to have poor precision.

To achieve high precision, we adopt partition-based strategies so that only
those partitions that contain some qualifying data points need to be considered
for a query. In this way, any potential information leakage is limited to only
those partitions that contribute to the query answer, rather than across the
entire data space. We present our solution based on two partitioning techniques
(see Figure 3): space partitioning and data partitioning.

4.1 Space Partitioning

With space partitioning schemes, the partitions are disjoint but their union cov-
ers the entire data space. As such, all we need to do is to verify that the bounding
boxes of the returned partitions are correct, and that the union of these parti-
tions covers the query scope. The former has already been addressed in Section 3,
while the latter is just a simple check on the partition boundaries.

To illustrate, Figure 3(a) shows the data space being partitioned through a
k-d tree [4]. In the figure, the window of the query Q overlaps three partitions,
so only data from these three partitions are returned in the answer.

Besides the k-d tree, other spatial indexing techniques like the grid file [13]
and quadtree [21] can also be employed to help the publisher to locate the
candidate partitions quickly. Our authentication mechanism entails no changes
to the spatial data structures. (As we shall see shortly, this is not the case for
data partitioning schemes.)

4.2 Data Partitioning

With data partitioning approach (e.g., R-tree), the union of all the partitions
may not cover the entire data space. Thus, space that contains no data points
may not be covered by any partition, as illustrated in Figure 3(b). The existence
of empty space poses a challenge to verifying the completeness of query answers:
How does the user know that portions of a query window that are not covered by
any returned partitions indeed are empty spaces, without physically examining
all the partitions? Referring to Figure 3(b), how can the user be sure that @
only intersects boxes B4 and B6 and not the other partitions?

Our solution is to extend the signature chain concept to the partitions. Specif-
ically, we order the partitions by their starting boundaries along a selected dimen-
sion (as is done for point data), then chain the partitions so that the signature
of a partition is dependent on the neighboring partitions to its left and right.

Let the bounding box of the ith partition be demarcated by [I, u] where | =

(L1, liny -, lia), and w = (w41, w49, . . ., uiq). Each partition P; has an associated
signature (based on signature chaining):
sig(P;) = s(h(9(Pi-1)|9(Pi)|g(Pis1))) (6)

where P;_1 and Py, are the left and right sibling partitions of P;, and g(P;) is
defined as follows:

where k; is the number of points within P;.

In addition, we define two fictitious partitions as delimiters. This is similar
to what we did in building the signature chain for data points in Section 3, so
we shall not elaborate further.

During query processing, all the partition information along with their sig-
natures are returned as part of the query answer. The user can be certain that
no partition is omitted, otherwise some signatures will not match. For those
partitions that overlap the query window, the user then proceeds to check their
data points using the mechanism in Section 3. The remaining partitions that do
not intersect the query window are dropped from further consideration.

To minimize the extra partitions that are disclosed to the user, and to re-
duce performance overheads, we apply a hierarchical data partitioning indexing
structure like the R-tree on the data. The partitions within each internal node of
the R-tree are chained as described above. Given a window query, the publisher
server iteratively expands the child nodes corresponding to those candidate par-
titions in the current node, starting from the root down to the leaf nodes. All
the partition information and signatures along the path of traversal are added
to the query answer for user verification.

5 A Performance Study

In this section, we report results of an experimental study conducted to evaluate
the effectiveness of our authentication mechanisms, which we have implemented

in Java. We study three schemes: Verifiable KDtree (VKDtree) scheme that is
based on space partitioning using the k-d tree; Verifiable Rtree (VRtree) scheme
that is based on data partitioning using the R-tree; and Z-ordering scheme which
employs Z-ordering [14] on the entire data space (as a single partition). The
performance metric is the precision of query answers. Again, a low precision
reveals the existence of extra data points and incurs traffic overhead, but not
the actual content of those data points.

Unless stated otherwise, the following default parameter settings are used:
the number of dimensions is 4, the data distribution is Gaussian, the number
of data points is 1,000,000. The domain of each dimension is [1, 10M]. The
node capacity is 50 (i.e., each node holds up to 50 data points). Queries are
generated by picking a point randomly from the dataset, then marking out the
query window with the chosen point as center. The length of the query window
along each dimension is [x domain_size; by default, [is set to 0.1. For each
experiment, we run 500 queries, and take the average precision.

5.1 Effect of Number of Dimensions

We first vary the number of dimensions from 2 to 5. The results are summarized
in Figure 4(a). As expected, as the number of dimensions increases, all the
schemes lose precision, because more non-answer points must be provided to
verify the completeness of the query answers.

We also observe that the VKDtree scheme performs well for two-dimensional
space, but its precision drops dramatically at higher dimensions. This is because
more partitions are returned as a result of their overlapping the query window.
The result for Z-ordering is, surprisingly, similar to the VKDtree scheme. In fact,
it even performs better than VKDtree in some cases. Investigation shows that
this is because the coverage of the partitions returned under VKDtree may be
larger than the region covered by the Z-ordering scheme. Finally, the VRtree
scheme achieves precisions of at least 60%, is least affected by dimensionality,
and appears to perform the best overall. This is because the data partitioning
scheme is able to effectively limit the number of candidate partitions returned
in the query answers.

5.2 Effect of Different Data Distributions

In the second experiment, we study the effect of different data distributions. Fig-
ure 4(b) shows the precisions of the various schemes under three different distri-
butions: Exponential, Uniform and Gaussian. The precisions of all the schemes
are better with the exponential dataset, because the data generated under the
exponential distribution are clustered toward one corner (the origin) of the data
space, whereas they are more spread out under the other two distributions.

The relative performance of the three schemes remain largely the same as
before: with VRtree performing the best, while VKDtree and Z-ordering exhibit
similar performance. We also note that VRtree is much more effective than
VKDtree and Z-ordering under uniform data distribution.

f§ " " VKD-Tree —— ' ' VKD-Tree ——1

VR-Tree =<1 L 4
= 2-Ordering == 08 N VR-Tree ESSX1
osl 1 Z-Ordering =1
c c
o o
@ @ osf
g oer]]
& &
04 |
S oal 1 o
© ©
< o2t] Z o2t
0 0
Dimension 2 Dimension 3 Dimension 4 Dimension 5 Expon Uniform Gaussian
Di nensi on Data Distribution
(a) Dimension (b) Data Distribution
T 0.8 T
o7k VKD-Tree —— | VKD-Tree ———
VR-Tree E==<1 07 VR-Tree =<1
Z-Ordering == .7 b z-Ordering ==
c 06F N 1« N
o o 06
@ osf 1 @
2 2 st
° .f 1 @
& & o4l
L] (2]
03 1
2 2 o3f
O o2l] S £
01 E 01f
0 0
1000000 100000 10000 80 50 30
Data Size Node Capacity
(c) Database Size (d) Node Capacity

Fig. 4. Comparative Study

5.3 Effect of Dataset Sizes

With a fixed data space, the size of the dataset will have an effect on the perfor-
mance of the schemes. In particular, for large datasets, the data space becomes
more densely populated. For a fixed-size query, this means that the precision
will, with high probability, be higher (compared to one with small dataset size).
This intuition is confirmed in our study, as shown in Figure 4(c) which presents
the results for dataset sizes of 1,000,000, 100,000, and 10,000. The relative per-
formance of the various schemes remain largely the same as in the earlier exper-
iments, though VRtree is less affected by the size of the datasets compared to
VKDtree and Z-ordering.

5.4 Effect of Node Capacity

In this study, we examine the effect of node capacity, which determines the max-
imum number of points allowed per partition. Obviously, a larger node capacity
means that it is more likely that more non-answer points are returned (compared
to a smaller node capacity), thus yielding lower precisions. Figure 4(d) shows
the results for node capacities of 30, 50 and 80. From the figure, we notice that
the precision of all the schemes improve as the node capacity reduces from 80
to 50 and then to 30.

5.5 Client Computation Cost

In this section, we evaluate the overhead of computation cost at the client side in
authenticating the query results. For both VKDtree and VRtree, the client com-
putation cost includes result entry verification cost (Cry), boundary verification
cost(Cpy) and signature verification cost (Csy). Figure 5 shows the authenti-
cation overhead of VKD-tree and VR-tree conducted in our experiment, where
the overhead is measured as

client computation cost — processing cost

processing cost

where the processing cost refers to the cost for verifying only answer tuples.
It turns out that there is no significant differences between the two schemes -
while VRtree incurs lower cost to verify the answers (lower false drops), it incurs
additional cost to verify the chaining of partitions; whereas VKDtree does not
need to deal with partition chaining but it returns more false drops and hence
incur larger cost to verify the answers.

User Conputation Overhead

VKD-tree —+—
VR-tree —8—

Overhead (Percentage%
IS
8

2 3 4 5
Di mensi on

Fig. 5. Client Computation Cost

6 Conclusion

In this paper, we introduce a mechanism for users to verify that their query
answers on a multi-dimensional dataset are correct. The mechanism follows a
partition-based strategy, and comprises two steps: (a) verify that all partitions
relevant to the query are returned, and (b) verify that all qualifying data points
within each relevant partition are returned. The signature chain technique from
[15] is used to chain up points and partitions so that any malicious omissions can
be detected by the user. We study two schemes: Verifiable KD-tree (VKDtree)
that is based on space partitioning, and Verifiable R-tree (VRtree) that is based
on data partitioning. The schemes are evaluated on window queries, and results
show that the VRtree is highly precise, meaning that few data points outside of
a query answer are disclosed in the course of proving its correctness.

Acknowledgements

This project is partially supported by a research grant (R-252-000-228-112) from
the National University of Singapore, and a research grant from the Singapore
Management University.

References

10.

11.

12.

13.

14.

15.

. Encrypting File System (EFS) for Windows 2000.

http://www.microsoft.com/windows2000/techinfo /howit

works/security /encrypt.asp.

Proposed Federal Information Processing Standard for Digital Signature Standard
(DSS). Federal Register, 56(169):42980-42982, 1991.

Secure Hashing Algorithm. National Institute of Science and Technology. FIPS
180-2, 2001.

J. Bentley. Multidimensional Binary Search Trees Used For Associative Searching.
Communications of the ACM, 18(9):509-517, September 1975.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. In Proceedings of Advances in Cryptology
- FEUROCRYPT’03, E. Biham, Ed., LNCS, Springer-Verlag, 2003.

P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine. Authentic Data Publication
over the Internet. In 14th IFIP 11.8 Working Conference in Database Security,
pages 102-112, 2000.

R. Huebsch, J. Hellerstein, N. Lanham, B. Loo, S. Shenker, and I. Stoica. Querying
the Internet with PIER. In Proceedings of the 29th International Conference on
Very Large Databases, pages 321-332, 2003.

Q. Luo, S. Krishnamurthy, C. Mohan, H. Pirahesh, H. Woo, B. Lindsay, and
J. Naughton. Middle-Tier Database Caching for E-Business. In Proceedings of
the 2002 ACM SIGMOD International Conference on Management of Data, pages
600-611, 2002.

D. Margulius. Apps on the Edge. InfoWorld, 24(21), May 2002.
http://www.infoworld.com/article/02/05/23/ 020527feedgetci-1.html.

G. Miklau and D. Suciu. Controlling Access to Published Data Using Cryptog-
raphy. In Proceedings of the 29th International Conference on Very Large Data
Bases, pages 898-909, 2003.

E. Mykletun, M. Narasimha, and G. Tsudik. Authentication and Integrity in
Outsourced Databases. In Proceedings of the Network and Distributed System
Security Symposium, February 2004.

B. Neuman and T. Tso. Kerberos: An Authentication Service for Computer Net-
works. IEEE Communications Magazine, 32(9):33-38, 1994.

J. Nievergelt, H. Hinterberger, and K. Sevcik. The Grid File: An Adaptable,
Symmetric Multikey File Structure. ACM Transactions on Database Systems,
9(1):38-71, March 1984.

J. A. Orenstein and T. H. Merrett. A class of data structures for associative search-
ing. In Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles
of Database Systems (PODS), pages 181-190, 1984.

H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying Completeness of Rela-
tional Query Results in Data Publishing. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, 2005.

16.

17.

18.

19.

20.

21.

22.

23.

H. Pang and K. Tan. Authenticating Query Results in Edge Computing. In IEEE
International Conference on Data Engineering, pages 560-571, March 2004.

H. Pang, K. Tan, and X. Zhou. StegFS: A Steganographic File System. In Pro-
ceedings of the 19th International Conference on Data Engineering, pages 657668,
Bangalore, India, March 2003.

R. Rivest. RFC 1321: The MD5 Message-Digest Algorithm. Internet Activities
Board, 1992.

R. Rivest, A. Shamir, and L. Adleman. A Method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems. Communications of the ACM, 21(2):120-126,
1978.

H. Sagan. Space-Filling Curves. Springer-Verlag, New York, 1994.

H. Samet. The Quadtree and Related Hierarchical Data Structures. ACM Com-
puting Surveys, 16(2):187-260, June 1984.

R. Sandhu and P. Samarati. Access Control: Principles and Practice. IEEE Com-
munications Magazine, 32(9):40-48, 1994.

S. Saroiu, K. Gummadi, R. Dunn, S. Gribble, and H. Levy. An Analysis of Internet
Content Delivery Systems. In Proceedings of the 5th Symposium on Operating
Systems Design and Implementation, pages 315-327, 2002.

