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Abstract. Security breaches seldom occur because of faulty security mecha-
nisms. Often times, security mechanisms are incorrectly incorporated in an appli-
cation which allows them to be bypassed resulting in a security breach. Method-
ologies are needed for incorporating security mechanisms in an application and
assessing whether the resulting system is indeed secure. We propose one such
methodology for designing secure applications. We begin by identifying the as-
sets in the application that need protection. We then find the kinds of attacks that
are typical for such applications. We show how to evaluate the application against
such attacks. If the results are unacceptable, that is, they pose a high security risk,
then some security mechanism must be incorporated into the application. We il-
lustrate how this can be done and show how the resulting system can be evaluated
to give assurance that it is resilient to the given attack.

1 Introduction

In the commercial world, designing secure applications is impacted by various parame-
ters, such as time-to-market, cost and effort involved. The presence of these constraints
often prevents the development of applications which are adequately secure. We pro-
pose a risk driven development approach for designing such applications. While de-
signing an application one needs to understand the threats in the current design and the
risks associated with those threats. If the risks are unacceptably high, the application
must be redesigned. Redesigning the application means methodically incorporating se-
curity mechanisms into the application and evaluating whether the resulting application
is adequately secure.

Security mechanisms are solutions to security problems in applications. For exam-
ple, encrypting information is a solution to prevent malicious attackers from eaves-
dropping on sensitive information sent in clear-text. However, there might be several
mechanisms to solve one problem. This implies that we need to evaluate to what extent
the different mechanisms solve the problem for a given application and what is the cost
associated with each. Security and risk management standards [1,2, 6] were developed



to aid secure systems development. Such standards often require extensive amount of
work and also include other activities than are necessary for evaluating security mecha-
nisms. In this paper, our goal is to complement the above mentioned work on standards
and show how to assess whether an application is indeed secure when a particular se-
curity mechanism has been incorporated. This is important because often the security
mechanisms designed to thwart attacks are adequate; yet security breaches still occur
because the security mechanisms are often bypassed in an application.

Our approach begins by specifying the primary model which represents the appli-
cation functionality. The items that need protection are identified as assets. The attacks
on the application are then identified and modeled. The attack model is then composed
with the primary model to produce the misuse model. The misuse model illustrates the
degree to which the application can be compromised and the risk posed by the attack.
If the risk is unacceptable, some security mechanism must be incorporated into the ap-
plication. The model of the security mechanism is then methodically composed with
the application. The result, which we refer to as the security treated model, represents
the application in which the security has been incorporated. Finally, we show how the
security treated model can be analyzed to give assurance that the application is indeed
resilient to the given attack.

Our approach is based on aspect-oriented modeling techniques. Complex software
is not developed as a monolithic unit but is decomposed into modules on the basis of
functionality. An attack is not confined to one module of the application but impacts
several of the modules. Similarly, a security mechanism will impact multiple modules
of the application. Modeling security mechanisms and attack models as aspects have
several benefits - it allows the attacks and the mechanisms to be understood in isolation,
which makes it easier to manage and change these models. Once security mechanisms
or attack models are represented as aspects, then techniques for composing aspects
with the primary model can be used to understand the effect of the attack or the effect
of security mechanism on the application.

The rest of the paper is organized as follows. Section 2 describes the e-commerce
system which we use to illustrate our methodology. Section 3 gives an example attack
and shows how the attack can be represented as an aspect. This section also describes
how to generate the misuse model from which we we can identify the impact of the at-
tack on our example application. Section 4 shows how the security mechanism designed
to thwart the given attack can be represented as an aspect and how this mechanism can
be integrated with the application. It also shows how the resulting system can be ana-
lyzed to give assurance that it is indeed resilient to the attack. Section 5 discusses some
related work. Section 6 concludes the paper with some pointers to future directions.

2 Example E-Commerce System

We illustrate the reasoning about security risk mitigation with the login service of an
e-commerce platform. The ACTIVE e-commerce platform provides services for elec-
tronic purchasing of goods over the Internet. The platform was developed initially for
the purchase of medical equipment, although it is generalized to provide services for any
kind of goods. (For details, please see T. Dimitrakos et. al [2]). ACTIVE is a general



purchase platform that can host a variety of electronic stores for vendors. The infrastruc-
ture consists of a web server running Microsoft Internet Information Server (IIS), a Java
application server (Allaire JSP Engine) and a Microsoft SQL server running RDBMS.
The communication between the application server and the database is handled using
the JDBC protocol.

There are two types of consumer users in the ACTIVE system, visitors and regis-
tered users. Personalized shopping services are only available to registered users, but
all users can browse and purchase items from ACTIVE. In addition, visitors cannot
add any personal information to the system that will be retained for future shopping
sessions.

The IST EU-project CORAS (for details see CORAS project report [7]) performed
three risk assessments of ACTIVE in the period 2000-2003. The project looked into
security risks of the user authentication mechanism, secure payment mechanism, and
the agent negotiation mechanisms of ACTIVE. The example in this paper concentrates
on the result from the risk assessment of the user authentication mechanism, and its
impact on login services.
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Fig. 1. Primary model (E-commerce login service) static diagram

We begin by creating a static diagram of the login service components. This di-
agram is shown in Figure 1. (We have simplified the diagram to only include model
elements directly affected by the attack and its treatment.) There are several classes that
play a part in the login process. A user wishing to login to the e-commerce system runs
an ACTIVEclient in a web browser on their local machine. The browser communicates
with a login manager (loginManager) which is located on a server across the Internet.
The login manager has several related classes. An account manager (UAcctManager)
and the associated database (UAcctDB) are used to authenticate users using a simple
user name and password provided by the client web browser. A profile manager (UPro-
fileManager) is used to keep track of personalized shopping information. A registration



manager (registrationManager) is used to allow a visitor to become a registered user
and a purchase service class (accessPurchaseServices) is used to access the different
shopping services.

Risk-driven development (RDD) UML profile elements are also shown in Figure 1.
These profile elements are used to annotate UML diagrams with additional information
useful in risk treatment trade-off analysis. For example, the < <classAsset>> stereo-
type is used to indicate that the UAcctDB class is an asset in the system. A RDD profile
tag (stakeholder information) is associated with the asset. Stakeholder information is an
array containing the name of the stakeholder (“VPMktg” in this case), the role of the
stakeholder (decision maker), and the value the stakeholder places on the asset (in this
case, extremely high value).
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Fig. 2. Primary model (E-commerce login service) sequence diagram

The login sequence is shown in Figure 2. The registrationManager and accessPur-
chaseServices classes are not shown in this figure since they are classes whose services
are used after a user has entered the system as a registered user or a visitor.

Figure 2 shows the sequence for a login operation. First, a user, through a web
browser (ACTIVEclient), requests a login page from the e-commerce system by sending



requestLoginPage to loginManager. loginManager responds with loginPage. The user
enters his unique user name (uname) and password (pword), and this information is
sent to loginManager. The server then sends validate message to UAcctManager. The
UAcctManager sends an error message to the loginManager if the user account does not
exist or cannot be validated. Otherwise userValidated message is returned to the server.
If the user login information is valid, the loginManager sends getUProfile message to
UProfileManager. The UProfileManager retrieves the user’s profile and sends it to the
loginManager. Using this information the loginManager creates an appropriate home
page which is returned to the user’s web browser. If the user’s login information could
not be validated, or the user’s profile could not be obtained, a visitor page is returned to
the browser. Although this is the end of the login sequence, the user can either continue
as a visitor, or register as a new user in the e-commerce system.

In this example, our requirements are that users should have access to the e-commerce
system and non-users should be allowed access as visitors. Consequently, we add sev-
eral RDD profile elements in the login service sequence. The first defines the start
of the login service with the stereotype <<userService>>, and the associated tag
{loginService.SLdefault.start = TRUE }. This service begins when the ACTIVEclient
sends a requestLoginPage message to the loginManager. Another set of user service
beginning tags occurs when loginManager returns either a HomePage (registeredUSer-
vice) or a VisitorPage (visitorUService) to the ACTIVECclient. These other user services
have service information associated with them, namely the probability that they will be
achieved, and the source of that information. In this example, “expertl” supplied the
information, but there can be multiple sources of such information, including running
system data from a honeypot. In this example, the probability of a user being registered
is higher than that of a user being a visitor. Note that the visitor user service is achieved
under two circumstances: 1) if the user name and password cannot be validated, and 2)
if the user profile information cannot be obtained. Finally, RDD profile elements iden-
tify the points in the sequence when the login service has been completed, namely, at
the end of the message when the login manager returns HomePage or VisitorPage to
the ACTIVECclient. Note that the messages in the sequence diagram all have an explicit
return message. This is required to be able to compose sequence diagrams according to
our composition mechanism.

3 The Man-in-the-Middle Attack

The risk assessments performed as part of the CORAS project identified the login pro-
cess as being vulnerable to man-in-the-middle attacks. During this kind of attack user
names and passwords can be intercepted by an attacker, and used at later times to im-
personate a valid user.

Each attack in our model is an aspect because an attack is not confined to one
specific module of the application but impacts the entire application. We propose to
represent those attacks that are not confined to one specific application as a generic
aspect. Generic aspects are represented as patterns which are described using UML
templates. These templates must be instantiated for each application to obtain a context-
specific attack model.



In this section, we show how the man-in-the-middle attack can be represented as a
generic aspect. Messages between a requestor and authenticator are intercepted by an
attacker. This can only occur if all messages flow through the attacker and not through a
direct association between the requestor and authenticator. The attacker either intercepts
the message intended for the server, or the attacker eavesdrops on the communication
medium between the browser and the server. In the first case, the attacker must pose as
the server so that the message intended for the server really gets sent to the attacker.
The attacker then relays messages between the client browser and the server until the
private information has been obtained by the attacker. In the second case the attacker
does not impersonate the server, but rather just eavesdrops on the message flow. The
attacker may not obtain all of the messages flowing between the client and server, but
simply sample messages in the hopes of obtaining information. We use the first type
of man-in-the-middle attack in this paper since the attacker can actually participate in
complex protocols, and change messages if desired before passing them on to the client
Or server.

Due to space constraints, we not not show the attack model, but rather describe it.
The attack model is shown as part of the misuse model described in the next section.

The generic attack model describes two service levels for the user service. The
first is the default service level (indicated by SLO) which is the “best” level of service.
This level of service is based on the physical connection. The second level of service
described is level X (denoted by SLX), which means that either a non-user has gained
access to the system, or that users have lost access to system services (that is, the system
has gone down). In short, the service level X means that the system has been compro-
mised. In addition, a requestor, authenticator, and an attacker must all be connected to
the same network to enable a man-in-the-middle attack.

The annotations for the misuse service include service information such as that in-
cluded for the user services in the primary login sequence, but they also contain other
information. Misuse service information consists of the source of the information, the
probability that the service level will be achieved, the average time it takes to achieve
the service level (MTTM), the average effort it takes (METM), and the impact on as-
set value (IV). Probability information can either be supplied by an expert, based on
experience with similar systems, or by a honeypot system that logs actual events. Dif-
ferent generic diagram with different probabilities, values of MTTM, METM, and IV
can be created for cases where the connection is an Internet, LAN, or some other type
of connection.

3.1 Generating the Misuse Model

In order to understand the impact the man-in-the-middle attack has on the e-commerce
application, we need to generate the misuse model. The misuse model will indicate how
much the primary model can be compromised by the attack. Two steps are needed to
generate the misuse model:

1. Instantiate the generic attack aspect to obtain the context-specific attack aspect.
2. Compose the context-specific attack aspect with the primary model to obtain the
misuse model.



Instantiating the Generic Aspect: The generic aspect is application-independent.
It is specified using UML templates. These templates must be instantiated for a given
application. This instantiation is done by binding names in the generic aspect to those
in the primary model. Elements present in the generic aspect that do not have a coun-
terpart in the primary model must also be instantiated. The instantiation of the generic
aspect will be referred to as a context-specific aspect. For the e-commerce example,
a context-spceific aspect is obtained by making the ACTIVEclient the requestor of an
authentication, the loginManager the authenticator, and the login message the authenti-
cation request. The user service of interest is the login service.

Obtaining the misuse model: The context-specific aspect must be composed with
the primary model to obtain the misuse model. The first step is to compose the class
diagrams of the attack and primary models. For lack of space, we do not show the
class diagram of the attack model or the composition process. The result from this
composition is the class diagram of the misuse model shown in Figure 3. The misuse
class diagram differs from the primary model class diagram in the following ways:
(i) an attacker class is added, (ii) an association between attacker and ACTIVEclient
is added, (iii) an association between attacker and loginManager is added, and (iv)
direct association between the ACTIVEclient and loginManager is deleted because all
communications now go through the attacker class.
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Fig. 3. Misuse model (primary model + man-in-the-middle attack) static diagram

The sequence diagrams describe the behavior of the primary model and the man-
in-the-middle attack. The sequence diagrams must also be composed. The composition
must be performed such that important properties of each model are preserved. Here
again, we do not describe the mechanics of the composition process. The composed
sequence diagram will serve to illustrate how much the primary model can be compro-
mised.

The properties identified for the login service sequence that need to be preserved
in this composition process are: (1) an application session is created, (2) users must



be validated, (3) registered users receive a home page with profile information, and
(4) unregistered users receive a visitor page. The properties that need to be preserved
from the man-in-the-middle misuse are: (1) all messages from the client to the server
through the duration of the session must pass through the attacker, (2) an authenticated
session returned to the attacker indicates that the SLX service level has been achieved
(3), no session returned to the attacker indicates that the SLX service level has not been
achieved. The resulting composed sequence diagram is shown in Figure 4.
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Fig. 4. Misuse model (primary + man-in-the-middle) sequence diagram

The main change in this sequence diagram from that given in Figure 2 is that an at-
tacker lifeline has been inserted and all communication between the ACTIVEclient and
the loginManager go through attacker. The other change is in the probability associated
with the SLX service level of the login service. This probability has been changed to
reflect that the original probability is now included in an alternative sequence whose
probability is 0.8 (the probability that the user profile exists). The value is calculated as
part of the composition, by multiplying the outermost probability by the inner proba-
bility to obtain the new value of the inner probability.

3.2 Evaluating the Impact of Attack on the Application

The misuse model must be analyzed to determine the impact the attack can have on
the primary model. The login service composed with the man-in-the-middle attack thus



contains some properties that are undesirable. Paramount is the achievement of the SLX
service level. The presence of the SLX service level means that some user service has
been made available to persons not authorized to use it. Specifically in this example,
an attacker gains knowledge of the user account login information, uname and pword.
The class containing these items has been tagged as an asset in the primary static dia-
gram, with a value that is “extremely_high”. Once the HomePage message is returned
to the attacker, the value of this asset has been decreased, as is indicated by the RDD tag
stating that the impact on asset value is “negative”. The ability of the attacker to extract
these secrets can be formally analysed using tool support of the formal security analysis
techniques developed by Jiirjens [17]. To counter this attack, some security mechanisms
must be incorporated with the application. The mechanism that we choose is TLS Au-
thentication that is described next. We chose to use TLS since it is a follow-on to SSL
(Secure Sockets Layer), which is a commonly available authentication mechanism used
in web applications. Other mechanisms could also be used to provide a stronger authen-
tication mechanim for the application.

4 Incorporating TLS Authentication in the Application

The security properties of integrity and confidentiality are both at issue with the man-in-
the-middle attack, so mechanisms that address integrity and confidentiality are potential
risk treatments. We demonstrate the use of transport layer security (TLS) [10] to mit-
igate the man-in-the-middle attack risk. TLS is based on passing certificates between
a client and server for authentication purposes, and to establish secret session keys for
the encryption of all subsequent messages. In this paper, we use the version of TLS
proposed by Jiirjens [17]. The sequence of the TLS mechanism is shown as a generic
aspect diagram in Figure 5.

The TLS generic aspect contains two main classes: |Client and |Server. For the
purposes of this example, certificate creation and certificate authority public keys are
assumed to be obtained in a secure manner. The client must have the certificate author-
ity’s public key, and the server must have a certificate, signed by the certificate authority
(CA), of its name and public key. The notation in Figure 5 includes the concept of sent
and received values, using a primed (*) sent value name to indicate a value that has
been received. Other assumptions include the fact that both nonces (unique identifier
numbers) and session keys must change each time the protocol is initiated.

A TLS sequence begins with |Client sending an init message that contains a nonce
(iNonce), its public key (CPublicKey), and a self-signed certificate containing its name
and its public key (selfSignedCCert(|C, CPublicKey)). When |Server receives this mes-
sage, it extracts the client name and public key using the client public key sent in the
message (shown as extract(usingCPublicKey, |C, CPublicKey) in Figure 5). It checks
to make sure that the public key in the signed portion of the message is the same as the
public key sent in the unsigned portion of the message. If not, the entire operation is
aborted.

If the client public keys match, the server creates a message containing the session
key that needs to be used for encryption once the connection is complete, the nonce
received in the original client message, and the client public key. This message is then
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Fig. 5. Generic aspect of TLS mechanism sequence diagram

signed using the server’s private key. This signed message is then encrypted using the
client’s public key. The result, along with the server’s certificate (signed by a trusted
certificate authority) is sent to the client in a respond message. This is message labeled
encryptedSignedMessage, CASignedSCert(S,SPublicKey) in Figure 5.

The client first extracts the server name and public key using the certificate author-
ity’s public key. If the name of the server in the message (|S") matches the name of the
server (|S) to which the original init message was sent, the protocol proceeds. Otherwise
the client aborts the operation. The encrypted portion of the message is decrypted using
the client private key (CPrivateKey), and the items in the resulting signed message are
extracted using the server’s public key. The received nonce value (iNonce) in the signed
message is compared to the nonce originally sent by the client (iNonce'), and the client
public key (CPublicKey) in the signed message is compared to the client’s public key
(CPublicKey’). If either of these items does not match, this indicates that an attack on
the communication has occurred, and the client aborts the operation. If the items match,
then the communication path is secure, and the client can encrypt its secrets using the
session key and transmit them to the server.

4.1 Generating the Security Treated Primary Model

The sequence diagram in Figure 5 can be composed with the e-commerce sequence di-
agram in Figure 2 in order to add TLS capabilities to the e-commerce system. Similarly,
the static portion of the aspect model can be composed with the static diagram of the
login service, although the result of this composition is not discussed in this paper.



To compose the sequence diagrams, we use the same method as we used to com-
pose the primary sequence with the man-in-the-middle attack sequence. The TLS as-
pect, specified in template form, must be instantiated for the e-commerce application.
This instantiation is done with the following bindings: (i) |Client in TLS is bound to
ACTIVEclient in the e-commerce application, and (ii) |Server is bound to loginMan-
ager.

Properties in the login service sequence and in the TLS sequence are identified, and
the properties that need to be preserved in the composed sequence are also identified.
The resulting composed sequence diagram is shown in Figure 6.
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Fig. 6. Security treated model (primary model + TLS) sequence diagram

The sequence shown in Figure 6 begins as the sequence did in Figure 2, with the AC-
TIVEclient requesting a login page from the loginManager. The loginManager responds
with loginPage. Now the TLS sequence is inserted; instead of ACTIVEclient sending a
login message with a user name (uname) and password (pword), a different login mes-
sage is sent. This new login message contains a nonce (iNonce), the user’s public key
(CPublicKey), and a self-signed certificate containing the user name and user’s public
key (selfSignedCCert(uname, CPublicKey)). The logic for the TLS handshake contin-
ues as in the TLS aspect model, with model element name changes per the bindings
discussed above. Once the TLS handshake completes successfully, the ACTIVEclient
sends a continue message to loginManager, which in turns causes the loginManager to
get personal profile information (if it exists), and a HomePage is sent back to the user
via ACTIVEclient. If the profile information does not exist, a VisitorPage is sent back to
the user. Note that the probabilities of the registeredUService and visitorUService have



been changed as was discussed in the previous composition section to reflect the prob-
ability that the third test is successful (0.83 multiplied by 0.8 and 0.2 respectively). We
can informally argue that the properties identified for each model have been preserved
in the composed model.

4.2 Analyzing the Security Treated Primary Model

Once the security mechanisms have been incorporated into the primary model, we need
to verify whether the given attack is prevented in this new model. That is, we need to
determine whether the TLS authentication adequately protects the application from the
man-in-the-middle attack. We can reason about the effective security by composing the
man-in-the-middle aspect with the security treated primary model.

The models are composed as before and the properties that need to be preserved
in the security treated model are identified and used to create the composed sequence
diagram.

H i . Hlog q g
ACTIVEc\Ientr questLoginPage () attacker requestLoginPage () loginManager UProfileManager

{loginService S{jstart - TRUE) __loginPage__ ||, loginPage 1]
g;gig:eogé%;mﬂcrﬁy, login (iNonce, APublicKey, g val = extract (usg\sc:yiuc»fevc,;r;m: CPublicKey)
CPublicKey)) selfSignedCCert (uname, CPublicKey)) res = compare (CPublicKey', GPublicKey)
alt tedSignedM [res|=[TRUE] ~ usersewiees>
encryptedSignedMessage, {loginService.SLO.serviceltfo [0] = (‘expert2’, 0.9)
GCASignedSCert (sName, encryptedSignedMessage, = sign (using! Y. y. iNonce',
SPublicKey) CASignedSCert (sName, SPublicKey) CPublicKey)
val = extract (usingCAPUblicKey, sName', y) ner i = encrypt (LsingC
res = compare (sNamg’,|sName) signedViessage)
it <<UserServices>
[res|=TRUE] {log SLo|servi [0]= (‘expert2, 0.85)
sMess = decrypt (usingCPrivateKey, encryptedSignedMessage)
val = extract (usingSPublitKey’, sessionKey', iNonce', CPublicKey')
res = compare (iNonce', fNonce) && compare (CPublicKey', CPublicKey)
alt ] [red 4 TRUE]<<UserService>>
{log SLo. [0] = (‘expert2', 0.83)
b _
ogin () ogin () getUProfile (uname)
{loginService SLX.start = TRUE} il
{loginService. SLX.mi 0] = (‘expert3’, prof
0.664, Ibw, low, negative)
alt rof <> NULI] <<userService>>
HomePage p ] UService.SLO.start = TRUE}
| foginSertiy S I {regsteredUService SL0.servielnio 0 = (oxpartr, 0.664)_|
[else]  <<userService>>
{visitorUService.SLO.start = TRUE}
{visitorUService.SL0.servicelnfo [0] = (‘expert1’, 0.166)
[ <<userService>> -~ ——- I
{loginService.SL0.end =| TRUE}
abortLoginAttempt
[T 7 ®Hel <<wsersemices> || T T I
{loginService.SL0.end = TRYE}
abortLoginAttempt
abortLoginAttempt abortLoginAttempt le ol
{loginService SI6Rd = TRUE} -

Fig. 7. Misuse model (security treated model + man-in-the-middle) sequence diagram

Figure 7 shows the sequence when the man-in-the-middle attack is composed with
the system protected by the TLS mechanism. We can reason informally about the com-
posed sequence as follows. First, the properties identified as part of the composition are



preserved in the composed sequence. Next, consider the login message parameters be-
tween the ACTIVEclient and attacker and between the attacker and loginManager. The
attacker must replace the ACTIVEclient public key (CPublicKey) with the attacker’s
own public key. This must be done so that any messages from the loginManager that
have been encrypted using the “client” public key are encrypted with the attacker’s pub-
lic key. This encryption means that the attacker can decrypt them. Since the attacker is
posing as the ACTIVEclient, the client’s certificate must be changed to include the client
user name and the attacker public key. The result is that the login message parameters
change to replace the client’s public key with the attacker’s public key, APublicKey.
Once the loginManager receives this message, it uses the public key in the message to
extract the name and public key in the certificate.

Since the public key in the message is the one used to encrypt the certificate, the first
test comparison will work. Next the loginManager creates a signed message containing
the attacker’s public key, and encrypts it using that same public key. This message
and the loginManager’s CA-signed certificate is sent to the attacker, which decrypts
the signed message with its private key. The signed message from the server is then
encrypted with the ACTIVEclient’s public key, and is sent to the ACTIVECclient, along
with the server’s official certificate from the CA.

The ACTIVEclient first extracts the server name and public key from the CA cer-
tificate using the CA public key. A comparison is made between the server name the
ACTIVEclient has and the server name in the certificate. This test will work. Next, the
ACTIVEclient decrypts the signed message from the loginManager using its private key.
It then compares the message nonce included in that message with the one it originally
sent, and the client public key included in that message with its own public key. This
test will fail because the client key included in the signed message from the loginMan-
ager is that of the attacker. Therefore the sequence will always move to the third test
failure alternative where the abortLoginAttempt message will be returned to the user
of ACTIVEclient and the sequence ends. Thus, the treatment prevents the attack, and
consequently the undesirable properties it allows, from occurring.

5 Related Work

Standards such as the ISO 15408 Common Ceriteria for Information Technology Secu-
rity Evaluation [6] can help developers focus on processes and development activities
that lead to more secure systems. However, these standards only address the develop-
ment activities of the system, not its operational security. They are also based on assess-
ment by certified assessors. Trade-off techniques such as Architecture Trade-off Analy-
sis Method (ATAM) [19] and Cost Benefit Analysis Method (CBAM) [18] operate at an
architectural level, and also require experienced assessors. Any of these assessments re-
quire a strong resource commitment on the part of the organization that uses them. Risk
identification, assessment, and management are the targets of the CCTA Risk Anal-
ysis and Management Methodology (CRAMM) [3] and CORAS [7,21] frameworks.
CORAS makes use of multiple standards, including the Australian/New Zealand Stan-
dard for Risk Management [1], ISO/IEC 17799-1: Code of Practice for Information Se-
curity Management [13] and ISO/IEC 13335: Information technology — guidelines for



management of IT security [14]. CORAS adapts the asset-driven structured approach
in CRAMM, and uses model-based risk assessment in integrated system development
processes. Our Aspect-Oriented Risk Driven Development (AORDD) framework [12,
11] makes use of the CORAS processes and the asset-driven approach of CRAMM. The
analysis described in this paper is a part of the AORDD framework. It is lightweight in
that there is no need for a certified assessor, and it also provides information that is
directed to a single risk treatment, rather than to an overall system. Unlike the process-
targeted frameworks and standards, it deals with system operation.

The aspect-oriented techniques we use are part of our on-going AOM research,
where aspects are UML templates that are instantiated in the context of a system prior
to composition (see France et al. [8, 9] and Straw et al. [22] for details on the AOM nota-
tions and composition). Jacobson [15, 16] and Kiczales [20] describe AOM techniques
that require that an aspect contains information regarding where and how it will be com-
posed with a system model. Our generic aspects are free of this information and thus can
be reused in multiple systems by instantiating them in different contexts. Clarke et al.
[4,5] describe AOM composition techniques that augment or replace model elements
and behavior. Our composition also allows elements and behavior to be deleted from a
composition, or to be interleaved with other behavior and elements. The latter capability
has been particularly useful in our AORDD work with security risk treatments.

6 Conclusion

In this paper, we propose a methodology for designing secure applications. We identify
the assets in the application that need protection. We then find the kinds of attacks
that are typical for such applications, based on risk assessments that are beyond the
scope of this paper. We show how to evaluate the application against such attacks. If
the results of this evaluation indicate that the assets may be compromised, then some
security mechanism must be incorporated into the application. Our focus is therefore
on evaluating the ability of security mechanisms to protect against previously identified
risks rather than on detecting new vulnerabilities. We illustrate how this can be done
and show how the resulting system can be evaluated to give assurance that it is resilient
to the given attack. A lot of work remains to be done. In this paper, all our analysis
was done manually without any tool support. In future, we plan to investigate how this
analysis can be automated to some extent. Specifically, we will look at how existing
theorem-provers and model-checkers can aid this process.
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