Aggregation Queries in the Database-As-a-Service Model

Einar Mykletun and Gene Tsudik
Computer Science Department
University of California, Irvine

{mykletun,gts}@ics.uci.edu

Abstract

In the Database-As-a-Service (DAS) model, clients
store their database contents at servers belonging to
potentially untrusted service providers. To maintain
data confidentiality, clients need to outsource their
data to servers in encrypted form. At the same time,
clients must still be able to execute queries over en-
crypted data. One prominent and fairly effective tech-
nique for executing SQL-style range queries over en-
crypted data involves partitioning (or bucketization) of
encrypted attributes.

However, executing aggregation-type queries over
encrypted data is a notoriously difficult problem. One
well-known cryptographic tool often utilized to sup-
port encrypted aggregation is homomorphic encryp-
tion; it enables arithmetic operations over encrypted
data. One technique based on a specific homomorphic
encryption function was recently proposed in the con-
text of the DAS model. Unfortunately, as shown in this
paper; this technique is insecure against ciphertext-
only attacks. We propose a simple alternative for han-
dling encrypted aggregation queries and describe its
implementation. We also consider a different flavor of
the DAS model which involves mixed databases, where
some attributes are encrypted and some are left in the
clear. We show how range queries can be executed in
this model.

1 Introduction

The Database-As-a-Service (DAS) model was in-
troduced by Hacigiimus, et al. in [1] and, since then,
has received a lot of attention from the research com-
munity. DAS involves clients outsourcing their pri-

vate databases to database service providers (servers)
who offer storage facilities and necessary expertise.
Clients, in general, do not trust service providers with
the contents of their databases and, therefore, store the
databases in encrypted format. The central challenge
is how to enable an untrusted service provider to run
SQL-style queries over encrypted data.

In [1], HaCigiimus, et al. suggested a method for
supporting range queries in the DAS model. Since
encryption by itself does not facilitate range queries,
[2] involves bucketizing (partitioning) attributes upon
which range queries will be based. This involves di-
viding the range of values in the specific domains of
the attribute into buckets and providing explicit labels
for each partition. These bucket labels are then stored
along with the encrypted tuples at the server. Based on
the same bucketization strategy, the follow-on work in
[3] addresses aggregation queries in DAS by propos-
ing the use of a particular homomorphic encryption
function. In general, homomorphic encryption is a
technique that allows entities who only possess en-
crypted values (but no decryption keys) to perform cer-
tain arithmetic operations directly over these values.
For example, given two values F(A) and E(B) en-
crypted under some homomorphic encryption function
E(), one can efficiently compute E(A + B). It is easy
to see that such functions can easily support SU M op-
erations over a desired range of values.

In this paper we show that the homomorphic en-
cryption scheme in [3] is insecure by demonstrating its
susceptability to a ciphertext-only attack. This makes
it possible for the server (or any other party with ac-
cess to the encrypted data) to obtain the correspond-
ing cleartext. We propose a very simple alternative for
handling aggregation queries at the server, which does

‘—‘

P =

Unified Client

Database

Server

Service Provider

Figure 1. Database-As-a-Service Overview

not involve homomorphic encryption functions. We
further describe the protocols for formulating and ex-
ecuting queries as well as updating encrypted tuples.
We then focus on a variant of DAS which has not been
explored thus far: the so-called mixed DAS model,
where some attributes are sensitive (and thus stored
encrypted) while others are not (and are thus left in
the clear).

Organization: This paper is organized as follows:
Section 2 describes the salient features of the DAS
model and the bucketization technique. Section 3 in-
troduces homomorphic encryption functions and de-
scribes our attack on the scheme in [3]. Section 4 de-
scribes our simple solution for supporting aggregation-
style queries in the DAS model. and Section 5 ad-
dresses query processing in the mixed-DAS model.
Section 6 overviews related work and Section 7 con-
cludes the paper.

2 The DAS Model

The Database-As-a-Service (DAS) model is a spe-
cific instance of the well-known Application-As-
a-Service model. = DAS was first introduced by
Hacigiimus, et al. [1] in 2002. It involves clients
storing (outsourcing) their data at servers admin-
istered by potentially untrusted service providers.
Although servers are relied upon for the manage-
ment/administration and availability of clients’ data,
they are generally not trusted with the actual data con-
tents. In this setting, the main security goal is to
limit the amount of information about the data that the
server can derive, while still allowing the latter to exe-
cute queries over encrypted databases. (A related issue
is how to maintain authenticity and integrity of clients’
outsourced data; this has been addressed by the related

work in [4, 5, 6].)

Before outsourcing, a DAS client is assumed to en-
crypt its data under a set of secret keys. These keys
are, of course, never revealed to the servers. The client
also creates, for each queri-able attribute, a bucketiza-
tion index and accompanying metadata to help in for-
mulating queries. For every encrypted tuple, each at-
tribute index is reflected in a separate label (bucket id)
which is given to the server. Table 1 shows an example
of partitioning for a salary attribute. Clients maintain
the metadata describing the partitions.

Although the term “DAS client” generally refers to
an organizational entity, the actual client who queries
the outsourced data may be a weak device, such as
a cell-phone or a PDA. Thus it is important to min-
imize both bandwidth and computation overhead for
such clients.

Table 1. Bucketization

| employee.salary |
Partition ID

[0,25K] 41
(25K, 50K] | 64
(50K, 75K] 9

(75K, 100K] | 22

2.1 Bucketization

There are two basic strategies for selecting bucket
boundaries: equi-width and equi-depth. With the for-
mer, each bucket has the same range. Table 1 is an
example of equi-width bucketization where each par-
tition covers 25K. However, if the attribute is dis-
tributed non-uniformly, this bucketization technique
essentially reveals (to the server) the accurate bucket-
width histogram of the encrypted attribute. In contrast,

equi-depth bucketization attempts to avoid this prob-
lem by having each bucket contain the same number of
items, thereby hiding the actual distribution of values.
The downside of this approach is that, in the presence
of frequent database updates, the equi-depth partition
needs to be adjusted periodically. This requires addi-
tional (and non-trivial) interaction between the server
and the client (database owner).

Although useful and practical, bucketization has
an unavoidable side-effect of privacy loss since la-
bels (bucket id-s) disclose some information about the
cleartext. Unless there are as many buckets as there
are distinct values in the domain of an attribute, some
statistical information about the underlying data is dis-
closed through bucket id-s. Some recent results [7, 8]
analyze and estimate the loss of privacy due to bucketi-
zation. These results show that, although some degree
of privacy is invariably lost (since statistical informa-
tion is revealed), only very limited information can be
deduced from encrypted tuples and associated labels

[8].

Table 2 shows a subset of a table employee with
the attributes: employee id, age, and salary. The en-
crypted version of the table, stored at the server, is
shown in Table 3. It contains the fields: etuple, bucket
identifiers each of the original attributes, and addi-
tional ciphertext values denoted by fieldname" that
will be utilized when the server computes aggregation
queries (see Section 3). If the server aggregates data
during range queries, it will be unable to include val-
ues from encrypted tuples. It should therefore be pos-
sible for the service provider to execute certain com-
mands upon the sets selected during range queries, and
the next section describes the use of homomorphic en-
cryption which allows arithmetic operations directly
over ciphertexts.

Table 2. Plaintext Relation

| eid | age | salary |

12 | 40 58K
18 | 32 65K
51 | 25 40K
68 | 27 76K

Table 3. Relation employee

etuple(encrypted tuple) | eid’® | age'® | salary'® | age™ | salary®
| |

%i#9*&IbB@... 72 | sl 9 52 73
P 5g4%H$j0a0... 72 3 9 29 65

X(63;g103... 26 | 33 64 90 43
[f3+Wb5P@r-Cs... 85 33 2 81 38

2.2 Query Processing

A client’s SQL query is transformed, based upon
metadata, into server-side and client-side queries (Q°
and Q¢). The first is executed by the server over en-
crypted data. The results are returned to the client
where they are decrypted and serve as input to the sec-
ond query. When € is run at the client, it produces the
correct results. As described below, the results from
executing ()° form a superset of those produced by
Q°. In other words, after the decryption of the tuples
returned by ()%, Q° filters out extraneous tuples.

The use of bucketization limits the granularity of
range limits in server-side queries. This is because the
server cannot differentiate between tuples within the
same bucket (i.e., tuples with identical labels). There-
fore, server-side queries are further decomposed into
certain and maybe queries, denoted by ()7 and Q)7,,
respectively. The former will select tuples that cer-
tainly fall within the range specified in the query and
its results can be aggregated at the server. @), selects
etuples corresponding to records that may qualify the
conditions of the range query, but which cannot be de-
termined without decryption and further selection by
the client. This query’s result set consists of the efu-
ples from the border buckets in the range query. Upon
receiving the two result sets the client runs query Q¢
to produce the final results.

Figure 2 illustrates the procedure whereby a client
query () is decomposed into Q¢, Q?3,Q;,. Using Ta-
ble 3 data as an example, if a query specified the range
of salaries between $30-75K, then ()¢ would identify
bucket 9 and @7, bucket 64. This query-splitting ne-
cessitates post-processing by the client — running Q°
against the results returned by the server after run-
ning °. We refer to [2] for details about the query-
splitting.

Client

Q— Q% Q:;,Qm

Server

Q2, Qm

Execute queries

Query results for Q¢

Query results for @,

Run Q° over Q & Q3.

Figure 2. Transformation of Client Query

3 Querying over Encrypted Data

The bucketization technique described above en-
ables a server to run range queries over encrypted tu-
ples. However, we have yet to describe any useful
functions that can be computed in conjunction with
such range queries. This section focuses on aggrega-
tion queries over encrypted data. More specifically, we
are interested in mechanisms for computing the most
rudimentary (and popular) aggregation function: SUM
over a set of tuples selected as a result of a range query.

3.1 Homomorphic Encryption

A homomorphic encryption function allows ma-
nipulation of two (or more) ciphertexts to produce a
new ciphertext corresponding to some arithmetic func-
tion of the two respective plaintexts, without having
any information about the plaintext or the encryp-
tion/decryption keys. For example, if E() is multi-
plicatively homomorphic, given two ciphertext F(A)
and F(B), it is easy to compute E(A * B). Whereas,
if E() is additively homomorphic, then computing
E(A + B) is also easy. One well-known example of
a multiplicatively homomorhic encryption function is
textbook RSA.! An example of an additively homo-
morhic encryption function is Paillier [10].

In more detail (as described in [3]) a homomorphic
encryption function can be defined as follows:

Assume A is the domain of unencrypted
values, &, an encryption function using

'In practice, RSA encryption is not homomorphic since plain-
text is usually padded and encryption is made to be plaintext-
aware, according to the OAEP specifications [9].

key k, and Dj, the corresponding decryp-
tion function, i.e., Va € A, Dy(E(a)) =
a. Let o and (8 be two (related) func-
tions. The function a is defined on
the domain A and the function (3 is de-
fined on the domain of encrypted val-
ues of A. Then (Ex,Dg,a,F) is de-
fined as a homomorphic encryption function
it Dy(B(Ex(a1), Ex(az)s o Exlam)) =
alay,ag, ..., an). Informally, (€, Dk, a, 5)
is homomorphic over domain A if the result
of the application of function o on values
may be obtained by decrypting the result of
0 applied to the encrypted form of the same
values.

Homomorphic encryption functions were originally
proposed as a method for performing arithmetic com-
putations over private databanks [11]. Since then,
they have become part of various secure computa-
tion schemes and more recently, homomorphic prop-
erties have been utilized by numerous digital signature
schemes [12, 4]. As mentioned above, some encryp-
tion functions are either additively or multiplicatively
homomorphic. An open problem in the research com-
munity is whether there are any cryptographically se-
cure encryption functions that are both additively and
multiplicatively homomorphic. (It is widely believed
that none exist.)

3.2 Homomorphic Function in [3]
The homomorphic encryption function proposed in

[3] is based upon the so-called Privacy Homomor-
phism (PH) scheme [11]. PH is a symmetric encryp-

tion function with claimed security based on the diffi-
culty of factoring large composite integers (similar to
RSA). PH encryption works as follows:

o Key Setup:
k = (p,q), where p and q are large secret primes.
Their product: n = pgq is made public.

¢ Encryption: Given plaintext (an integer) a,
&(a) = C = (c1,¢2) = (a (mod p)+R(a) xp,
a (mod ¢)+ R(a) x q), where a € Z,, and R(x)
is a pseudorandom number generator (PRNG)
seeded by x.

e Decryption: Given ciphertext (c1, c2),
Di(cr,c2) = (1 modplgg™' + (e
mod ¢)pp~! (mod n)

This encryption function exhibits both additive and
multiplicative properties (component-wise). The ad-
dition of “noise” — through the use of R(x) — is done
in multiples of p and g, respectively, which is meant to
make encryption non-deterministic and make it more
difficult for an attacker to guess the secret key k. How-
ever, as we show below, this actually makes it easier to
attack this encryption scheme through their extensions
to the original homomorphic scheme.

There are several types of textbook-style attacks
against encryption functions [13]. At the very least, an
encryption function is required to withstand the most
rudimentary attack type — ciphertext-only attack. Such
an attack occurs when the adversary is able to discover
the plaintext (or worse, the encryption key) while only
having access to ciphertexts (encrypted values). We
now show that the above PH-based encryption is sub-
ject to a trivial ciphertext-only attack, which results not
only in the leakage of plaintext, but also in recovery
of the secret keys. The attack is based on the use of
a well-known Greatest Common Divisor (GCD) algo-
rithm.

To make the attack work we make one simple as-
sumption: that there are repeated (duplicate) plaintext
values. This assumption is clearly realistic since it
holds for most typical integer attributes, e.g., salary,
age, date-of-birth, height, weight, etc. Of course, PH
encryption ensures that identical plaintext values are
encrypted into different ciphertexts, owing to the addi-
tion of noise.

We denote a repeated plaintext value by M and
two corresponding encryptions of that value as C' =
(c},ch)and C” = (¢1”,¢2”). Let R’ and R” represent
the respective random noise values for the first half of
each ciphertext. Recall that: ¢; = M (mod p)+ R’ x
pand ¢;” = M (mod p) + R” x p. Then, we have:
dd—c" =R xp—R' xp=(R' —R’) x p.

Since R’ and R’ are relatively small®> factoring
(¢} — ¢17) is trivial. Hence, obtaining p (and, like-
wise, q) is relatively easy. Moreover, we observe that,
even if factoring (¢j — ¢;”) were to be hard (which
it is not), it is equally trivial to compute the great-
est common divisor of (¢j — ¢;”) and n. Note that
p=GCD(n,c) — ") = GCD(pg, (R — R”)p).

This attack can be performed by the server by
simply iterating through pairs of ciphertexts corre-
sponding to a single database attribute, until a pair of
duplicate-plaintext ciphertexts are found. In general,
given t ciphertexts (for a given attribute), the server
would have to perform at most O(¢?) GCD compu-
tations before computing p and gq. Once p and q are
obtained, decrypting all ciphertexts is an easy task.

There are other weaknesses associated with the ho-
momorphic scheme proposed in [3]. An extension
is for acommodating encryption of negative numbers
stipulates how values should be transformed prior to
encryption. However, when such ciphertexts are mul-
tiplied, decryption simply fails! A separate issue arises
due to the use of noise introduced through the use of
R(x). This function produces a pseudo-random num-
ber used as a multiplicative coefficient of p and ¢, both
of which are already large integers. Therefore, the re-
sulting ciphertexts increase in size, taking significant
storage at the server.

3.3 Other Homomorphic Encryption Functions

Since the encryption function proposed in [3] is in-
secure, it is worthwhile to investigate whether there
are other homomorphic encryption functions that can
replace it. Recent cryptographic literature contains
several encryption schemes that exhibit the addi-
tively homomorphic property. (Note that we are not

2If R; values were large, then the resulting ciphertexts would
become even larger than their current size, especially since en-
cryption does not include the noise component in its modular re-
ductions.

as interested in multiplicatively homomorphic prop-
erty because multiplication is not as frequent as ad-
dition in aggregation queries). Candidates include
cryptosystems proposed by Paillier [10], Benaloh
[14], the elliptic-curve variant of ElGamal [15] and
Okamoto/Uchiyama [16]. One common feature of
these schemes is that, unlike PH encryption, they are
all provably secure public-key cryptosystems based
upon solid number-theoretic assumptions. An unfortu-
nate consequence is that ciphertexts tend to get rather
large, and the operation of combining ciphertexts can
be computationally intensive. This is problematic
when dealing with computationally weak clients, such
as cellphones or PDAs.

One very different alternative is a symmetric en-
cryption function recently proposed by Castelluccia, et
al. [17] in the context of secure aggregation in sensor
networks. This function requires no number-theoretic
assumptions, is very efficient and incurs only a minor
ciphertext expansion [17]. It is based on a variant of
a well-known counter (CTR) mode [13] of encryption
and can be used in conjunction with any block cipher,
such as Triple-DES or AES [18, 19]. (The only no-
table difference is that it uses an arithmetic addition
operation, instead of exclusive-OR to perform the ac-
tual encryption. The keystream is generated according
to the normal counter mode.)

All of the above homomorphic encryption functions
are secure, when used correctly. However, we show —
in Section 4 — that there are simpler mechanisms for
achieving aggregation over encrypted data.

4 Proposed Approach

With the exception of total summation queries, most
aggregation queries are typically predicated upon a
range selection over one or more attributes. However,
if all tuple attributes are encrypted, aggregation is im-
possible without some form of bucketization or parti-
tioning. Assumming a bucketization scheme (as de-
scribed in Section 2.1), we now describe a trivial alter-
native for supporting aggregation-style queries. This
technique does not require any homomorphic encryp-
tion and demands negligible exta storage as well as
negligible amount of computation.

Our approach involves the data owner pre-
computing aggregate values, such as SUM and

COUNT, for each bucket, and storing them in en-
crypted form at the server. This allows the server,
in response to a bucket-level aggregation query, to di-
rectly reply with such encrypted aggregate values, in-
stead of computing them on-the-fly at query process-
ing time. The encrypted bucket-level aggregate val-
ues can be stored separately. Table 4 shows sample ta-
ble with SUM and COUNT values per salary attribute
bucket, based on the data in Table 1. The number of

Table 4. Aggregate values stored per bucket

| employee.salary.aggregates |

Bucket ID SUM COUNT
41 Enc(930) Enc(15)
64 Enc(1020) | Enc(13)

9 Enc(774) Enc(9)

22 Enc(568) Enc(6)

rows in this table is the same as the number of buck-
ets for the bucketized attribute. During execution of a
range query, the server simply looks up the appropriate
values from the aggregate table and returns them to the
client. This frees the server from expensive computa-
tion with homomorphic encryption functions and also
obviates any security risks.

We recognize two drawbacks in the proposed tech-
nique: (1) extra storage for encrypted aggregates, and
(2) additional computation following database update
operations. The first is not an actual concern since ex-
tra space is truly negligible in comparison to that stem-
ming from ciphertext expansion in either PH-based or
public key homomorphic encryption functions. The
second does present a slight complication which we
address below. The main benefit is that the server is
relieved from adding ciphertexts during query execu-
tion, removing this computational overhead.

4.1 Aggregation Query Processing

We now describe the processing of aggregation-
style range queries using the proposed technique.
As before, each query is partitioned into client- and
server-side sub-queries Q¢ and ()°, respectively. Q€ is
basically the original query and)° is its bucket-level
“translation” and split into Q) and Q7 (certain and
maybe queries). However, unlike bucket-level range

queries, aggregation queries result in the server re-
turning one or more bucker-level encrypted aggregate
values as the query response to ;. (07, executes as in
[1] (described in Section 2.2) and returns the etuples
belonging to bordering buckets which may be part of
the final query response. For example, consider the
following query:

SELECT SUM, COUNT from employee WHERE
(employee.salary > 30K) and (employee.salary <
75K)

The corresponding server-side query ()° would
be: SELECT SUM, COUNT from employee.salary.agg
WHERE (id=64) or (id=9)

The corresponding query reply would consist
of:

1. Enc(1020) and Enc(13) for bucket id 64

as well as:
2. etuples for all tuples with bucket id 9

As a final step, the client needs (1) decrypt, filter and
aggregate the etuples, (2) to decrypt and sum up the
respective bucket aggregates, and (3) combine results
from the two steps to compute correct aggregates.

4.2 Handling Updates

Whenever a data owner updates its outsourced
database to modify, delete or insert tuples involving
bucketized attributes, the aggregate values need to be
updated as well. An update query may therefore re-
quire two communication rounds with the server: the
stored aggregate values need to be returned by the
server in the first round, and then updated and returned
by the data owner in the second round. In between
the two rounds, the owner modifies the aggregate val-
ues accordingly (i.e., computes new SUM and/or new
COUNT). This procedure is shown in figure 3, where
a client inserts a new tuple and updates the salary ag-
gregate table simultaneously.

We use the term data owner as opposed to client to
capture the fact that there may be many clients who
are authorized to query the outsourced data (and who
have appropriate decryption keys). Whereas, the there

might be only one owner, i.e., the entity authorized to
modify the database. Thus, while an owner is always
a client, the opposite is not always true.

We also note that the two-round interaction shown
in figure 3 is not necessary if there is only one owner
(but many clients). Recall that, for each database, its
owner as well all other clients are required to store cer-
tain metadata (bucketization scheme) for each buck-
etized attribute. The size of the bucketization meta-
data is proportional to the number of buckets. Conse-
quently, it is reasonable to require the (single) owner
to store up-to-date bucket-level aggregate values for
each bucketized attribute. (In other words, the addi-
tional storage is insignificant as it at most doubles the
amount of metadata.) Consequently, the first round of
communication (as part of update) is unnecessary.

5 Mixed Databases

Up until this point we have discussed a DAS model
in which all the client’s data is encrypted. We now
look at execution of aggregation queries in a novel
DAS flavor, where some attributes are encrypted and
some are left in the clear. We label this as a mixed
database. Such databases provide de facto access con-
trol since individuals not in possession of decryption
keys cannot access sensitive data. Differentiating be-
tween confidential and non-confidential attributes also
reduces the computational load related to encryption
at both the server and client.

An interesting aggregation query in a mixed
database specifies a range over a plaintext value while
aggregating an encrypted attribute. Table 5 illustrates a
mixed database where the emp id and age attributes are
kept in the clear while salary is encrypted. A potential
query asks for the total salary of all employees within
a certain age group. Such queries cannot be executed
with the proposed solution in Section 4, because the
attribute over which the range is defined is not bucke-
tized (since it is not encrypted). Instead, this plaintext
attribute either has an index built over it or not. In the
former case the index is utilized to select the match-
ing tuples, while in the latter, a complete table scan is
necessary during query execution. It still remains nec-
essary for the server to aggregate over encrypted data,
and we therefore return our focus to homomorphic en-
cryptions functions. Next we compare and analyze the

Client

Server

SELECT SUM, COUNT from employee.salary.agg WHERE id == 9

E(T74), £(9)

D(SUM), D(COUNT)
SUM+=66K, COUNT++

E(SUM), E(COUNT), new tuple

ACK

Figure 3. Owner/Client inserts new tuple

homomorphic functions introduced in Section 3.3 to
determine the most appropriate candidate function for
the mixed DAS model.

Table 5. Mixed Database

| Saculty.salary |

emp id | age | salary”
31 52 87
32 45 12
33 38 41

5.1 Additive Homomorphic Encryption Scheme
Candidates

We are interested in comparing provably secure
additive homomorphic encryption schemes. Criteria
used to evaluate schemes included the size of their ci-
phertexts, the cost of adding ciphertexts, and that of
decryption. Cost of encryption is of less importance
since it is a one-time offline computation performed
by the data owner, and has no effect on query response
time.

The four homomorphic encryption schemes that we
consider are Paillier [10], Benaloh [14], Okamoto-
Uchiyama (OU) [16] and the elliptic-curve variant of
ElGamal (EC-EG) [15]. Appendix A describes each
of these schemes in greater detail. The privacy homo-
morphism in [3] does not qualify as a viable candi-
date because of its weak security, which is pointed out
in Section 3.2. Castelluccia et al.’s secret key homo-
morphic scheme [17] requires that additional data be

returned to the client for decryption. This data con-
sists of unique identifiers for each aggregated cipher-
text and is proportionate in length to the number of
aggregated values. Such bandwidth overhead dimin-
ishes the value of data aggregation, and we therefore
omit this scheme from our pool of candidates?.

5.2 Analysis and Comparison of Cryptoschemes

When comparing cryptosystems built upon differ-
ent mathematical structures (EC-EG operates over el-
liptic curves while the OU and Benaloh work over
multiplicative fields), it is important to devise a com-
mon computational unit of measurement for purposes
of fair comparison. We choose that unit to be /024-bit
modular multiplications and follow the same method-
ology for comparison as in [20]. The fundamental op-
eration in EC-EG is elliptic curve point addition. Ap-
pendix B describes how to derive the equivalent num-
ber of modular multiplications to that of an elliptic
curve point addition. The number of 1024-bit mod-
ular multiplications will define the computational cost
of summing ciphertexts at the server and decryption of
aggregate values at the client.

Table 6 shows the comparison of the three homo-
morphic cryptosystems. The size of ciphertexts re-
flects both the overhead of storage at the server and
transmission of aggregate values. It is measured in
bits. The cost of homomorphic addition (summing two
ciphertexts) and decryption is measured by the num-

31t is possible to remove the additional bandwidth overhead by
storing additional encrypted data at the server, but a description of
this technique is outside the scope of this paper

Table 6. Performance Comparison of Additive

Homomorphic Cryptosystems

‘ Scheme H Addition H Decryption H Bandwidth ‘

Paillier 4 1536 2048
EC-EG 1 16384 328
0]8) 1 512 1024
Benaloh 1 131072 1024

ber of 1024-bit modular multiplications required by
the operations.

The parameters for each of the four cryptosystems
have been selected such as to obtain an equal 1024-bit
level of security. For Paillier, Benaloh and OU, primes
p and g are selected such that |n| = 1024, while EC' —
EG uses one of the standard (IEEE) ECC curves over
Fi63 defined in [21]. Random nonces are assumed to
be 80-bits*.

The decryption cost for Benaloh and EC-EG de-
pend on the size of the aggregated values to be de-
crypted. These values in turn are a result of the size
of the attribute aggregated and the number of values
aggregated. Both cryptosystems employ a baby-giant
step algorithm during decryption. These algorithms
work by searching for the plaintext in its possible value
range, while using tables of pre-computed values (at
regular intervals) to speed up the search. The size of
these tables directly affect the efficiency of the search
in that the larger the tables the faster the search. When
deriving the results in Table 6, we assumed aggre-
gation of 10,000 20-bit bit values (e.g. up to mil-
lion dollar salaries). Let max denote the number of
bits required to represent the largest possible aggre-
gate value. In our case, max = 34. As is common with
baby-giant step algorithms, \/max pre-computed val-
ues are stored in a table, and @ computations are
required for the search (on average). This means that
217 computations will be required during Benaloh and
EC-EG decryption, along with pre-computed tables of
2.6MB and 16.7MB, respectively.

“Random nonces are used in cryptosystems to make them non-
deterministic, in that encryption of identical plaintexts will yield
different ciphertexts

5.3 Recommendations

OU and Paillier clearly stand out amongst the four
candidate schemes, mainly due to their lower decryp-
tion costs. This is of importance since decryption
will be performed by clients, which may be compu-
tationally limited devices (e.g. cell phone). Between
the two, OU is the preferred choice in each of the
measured performance categories. This is a result of
Paillier’s cryptosystem requirement of a larger group
structure (2048 versus 1024 bits), resulting in greater
storage and bandwidth overhead, as well as more ex-
pensive computations. The large cost difference in
summation of ciphertexts (4 to 1 ratio) also plays a sig-
nificant role, since this operation will be executed very
frequently by the server. We therefore declare OU to
be the algorithm of choice for aggregation queries in
mixed-databases.

EC-EG and Benaloh are poor candidate choices be-
cause of their extremely high decryption costs and
the large storage requirements (at clients) associated
with their baby-giant step algorithms. This poor per-
formance reflects the database environment in which
they are evaluated, where tables may contain several
thousand tuples, creating a large value space to search
through (during decryption). The two algorithms are
seemingly good choices in alternative settings that
only require a few number of small values to be ag-
gregated (e.g. certain sensor networks) [22].

6 Related Work

The Database-As-a-Service (DAS) model was in-
troduced by Hacigiimus, et al. in [1] and, since then,
has received a lot of attention from the research com-
munity. The specific technique of bucketizing data to
support range queries over encrypted tuples was de-
scribed in [2]. Bucketization involves dividing the
range of values in the specific domains of the attribute
into buckets and providing explicit labels for each par-
tition. Recent work [7, 8] analyze and estimate the loss
of privacy due to bucketization. Since statistical infor-
mation is revealed, some degree of privacy is invari-
ably lost, but these results show that only very limited
information can be deduced from the encrypted tuples
and their corresponding bucket identifiers [8].

[11] is the first work describing homomorphic en-

cryption functions (referred to as a Privacy Homo-
morphisms (PHs) by the respective authors). Such
functions were originally proposed as a method for
performing arithmetic computations over private data-
banks. [3] suggests a specific homomorphic encryp-
tion function to use within a DAS model that utilizes
bucketization. The additional functionality provided
by this function expands upon the range of queries
that can be executed by the DAS server, specifi-
cally supporting a set of aggregation operations (SUM,
COUNT and AVG).

An alternative DAS flavor involves the use of a
Secure Coprocessor (SC) to aid with processing of
server-side queries. A SC is a computer that can be
trusted with executing its computations correctly and
unmolested, even when attackers gain physical access
to the device. It also provides tamper resistance, allow-
ing for secure storage of sensitive data such as crypto-
graphic keys. [23] describes a high-level framework
for incorporating a SC in a DAS setting, including the
query splitting between the client, server and SC, and
suggest [24] as a SC candidate.

7 Conclusion

In conclusion, we proposed an alternative tech-
nique to homomorphic encryption functions to sup-
port aggregation queries over encrypted tuples in the
Database-as-a-Server Model. The previously sug-
gested solution in [3] was shown to be insecure.
Our technique if simple and reduces the computa-
tional overhead associated with aggregation queries on
both the server and client. Next we explored mixed
databases, where certain attributes are encrypted while
others are left in the clear. Additively homomorphic
encryption functions are needed to support basic ag-
gregation queries for such databases. We analyzed and
compared a set of homomorphic encryption candidates
and selected our preferred algorithm.

References

[1] H. Hacigumus, B. Iyer, and S. Mehrotra, “Providing
database as a service,” in International Conference on
Data Engineering, March 2002.

[2] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Exe-
cuting sql over encrypted data in the database-service-
provider model,” in ACM SIGMOD Conference on

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Management of Data, pp. 216-227, ACM Press, June
2002.

H. Hacigumus, B. Iyer, and S. Mehrotra, “Effi-
cient execution of aggregation queries over encrypted
databases,” in International Conference on Database
Systems for Advanced Applications (DASFAA), 2004.

E. Mykletun, M. Narasimha, and G. Tsudik, “Au-
thentication and integrity in outsourced databases,” in
Symposium on Network and Distributed Systems Se-
curity (NDSS’04), Feb. 2004.

E. Mykletun, M. Narasimha, and G. Tsudik, “Sig-
nature ‘bouquets’: Immutability of aggregated signa-
tures,” in European Symposium on Research in Com-
puter Security (ESORICS’04), Sept. 2004.

P. Devanbu, M. Gertz, C. Martel, and S. G. Stub-
blebine, “Authentic third-party data publication,” in
14th IFIP 11.3 Working Conference in Database Se-
curity, pp. 101-112, 2000.

B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-
preserving index for range queries,” in International
Conference on Very Large Databases (VLDB), 2004.

A. Ceselli, E. Damiani, S. Vimercati, S. Jajodia,
S. Paraboschi, and P. Samarati, “Modeling and as-
sessing inference exposure in encrypted databases,” in
ACM Transactions on Information and System Secu-
rity, vol. 8, pp. 119-152,2005.

M. Bellare and P. Rogaway, “Optimal asymmetric
encryption,” in Advances in Cryptology - Eurocrypt,
pp- 92-111, 2004.

“Public-key cryptosystems based on composite degree
residuosity classes,” in 99 (P. Paillier, ed.), vol. 1592
of LNCS, pp. 206-214, International Association for
Cryptologic Research, IEE, 1999.

R. Rivest, L. Adleman, and M. Dertouzous, “On data
banks and privacy homomorphisms,” in Foundations
of Secure Computation, Academic Press, pp. 169—
179, 1978.

D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Ag-
gregate and Verifiably Encrypted Signatures from Bi-
linear Maps,”

A.J. Menezes, P. C. van Oorschot, and S. A. Vanstone,
Handbook of applied cryptography. CRC Press se-
ries on discrete mathematics and its applications, CRC
Press, 1997. ISBN 0-8493-8523-7.

J. Benaloh, “Dense Probabilistic Encryption,” Pro-
ceedings of the Workshop on Selected Areas of Cryp-
tography, pp. 120-128, 1994.

[15] T. ElGamal, “A public key cryptosystem and a sig-
nature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. 1T-31,
pp- 469472, July 1985.

[16] T. Okamoto and S. Uchiyama, “A New Public-key
Cryptosystem as Secure as Factoring,” EUROCRYPT,
pp- 308-318, 1998.

[17] C. Castelluccia and E. Mykletun and G. Tsudik, “Effi-
cient Aggregation of encrypted data in Wireless Sen-
sor Networks,” Mobile and Ubiquitous Systems: Net-
working and Services, 2005.

[18] N. L. of Standards and Technology, “Triple-des algo-
rith,” FIPS 46-3, 1998.

[19] N.I. of Standards and Technology, “Advanced encryp-
tion standard,” NIST FIPS PUB 197, 2001.

[20] N. Gura, A. Patel, A. Wander, H. Eberle, and
S. Shantz, “Comparing Elliptic Curve Cryptography
and RSA on 8-bit CPUs,” Cryptographic Hardware
and Embedded Systems (CHES), pp. 119-132,2004.

[21] IEEE, “Standard P1363:
ifications For Public-Key
http://grouper.ieee.org/groups/1363/.

Standard ~ Spec-
Cryptography,”

[22] E. Mykletun and J. Girao and D. Westhoff, “Public
Key Based Cryptoschemes for Data Concealment in
Wireless Sensor Networks,” International Conference
on Communications, 2006.

[23] E. Mykletun and G. Tsudik, “Incorporating a Secure
Coprocessor in the Database-as-a-Service Model,” In-
ternational Workshop on Innovative Architecture for
Future Generation High Performance Processors and
Systems, 2005.

[24] J. G. Dyer, M. Lindemann, R. S. R. Perez, L. van
Doorn, and S. W. Smith, “Building the IBM 4758
Secure Coprocessor,” in EEE Computer, pp. 57-66,
2001.

[25] T. ElGamal, “A Public Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms,”
CRYPTO, vol. IT-31, no. 4, pp. 469-472, 1985.

[26] J.M. Adler and W. Dai and R. L. Green and C.A. Neff,
“Computational Details of the VoteHere Homomor-
phic Election System,” ASIACRYPT, 2000.

A Cryptographic Schemes

This appendix describes three additive homomor-
phic encryption schemes.

A.1 Paillier

A new provably secure cryptosystem that supports
the additive homomorphic operation was introduced
by Pascal Paillier [10]. The cryptosystem is based
on the composite residuosity problem. Encryption
and decryption funcitons require a very large modu-
lus which affects the size of ciphertexts and the cost of
computations. Addition is achieved through the multi-
plication of ciphertexts. Paillier’s cryptographic algo-
rithm is outlined below.

Paillier
PublicKey n =pq,g

Private Key (p,q)

Encryption plaintext m € Z,,
r E€ER Ln,
ciphertext ¢ = ¢g™r" (mod n?)
D . _ L(c>‘ mod n2)
ecryption compute m = F*———-% mod n

L(g>» mod n?2)

Let p and q represent 512-bit prime numbers. Their
product, n = pgq, is the resulting 1024-bit modulus,
A(n) = lem(p — 1, — 1), L(u) = “21, and g is an
element such that gcd(L(g* mod n?),n) = 1.

A.2 Okamoto-Uchiyama (OU)

In Eurocrypt 98’, Okamoto and Uchiyama proposed
a new public-key cryptosystem as secure as factoring
and is based on the ability of computing discrete loga-
rithms in a particular sub-group [16]. Specifically, for
an odd prime p, the p-Sylow subgroup is defined as
v = {z < p* |z =1 (mod p)}, and |y,| = p. A
function L that maps elements from -y, to Z, is de-
fined as L(x) = (z — 1)/p. Function L has homomor-
phic properties from multiplication to addition. For
elements a,b € vy, L(a*b) = L(a) + L(b) (mod p),
and for ¢ € Zy,, L(a®) = c * L(a).

Their scheme is characterized by probabilistic en-
cryption, additive homomorphic properties, and relat-
ing the computational complexity of the encryption
function to the size of the plaintext. We now describe
their cryptosystem:

Let p and ¢ be random k-bit primes and set n = p?q.
For an n of approximately 1024 bits, a choice of &
could be 341. Next, randomly choose a g € Z,, such

that element g, = ¢’ (mod p?) has order p. Fi-
nally, set h = ¢" (mod n). The additive homomor-
phic property is achieved through the multiplication of
ciphertexts: Enc(mi+ms) = Enc(mq) x Enc(ms).

Okamoto-Uchiyama (OU)

PublicKey n =p?q,g,h
Private Key (p,q)

Encryption plaintext m € 2%,

T €ER Ln,

ciphertext ¢ = g™h" (mod n)
Decryption ¢ = ¢! (mod p?)

compute m = L(c¢')L(gp) ™"

Note that ¢"~! (mod p?) = gmp= D gnrp=1) — gy (mod p?)

(mod p)

A.3 Benaloh

In [14] Benaloh introduced a probabilistic cryp-
toscheme whose encryption cost is dependent on the
size of the plaintext. The key-setup is as follows: let
n = pq for large primes p, ¢ and choose value r such
that r|(p — 1), gcd(p—;l,r) = land ged(q—1,r) = 1.
The public key y is chosen such that y € Z} and
y®=D@=1/" (mod n) # 1. The scheme’s security
is based upon the cryptographically assumption that it
is computationally difficult to decide higher residuos-
ity: given z,r and n of unknown factorization, find x
such that z = z" (mod n). The additive homomor-
phic property is achieved through the multiplication of
ciphertexts.

Benaloh

smallest integer m’ < r such that ™™ ¢ (mod n) €

Enc(0).
One method to speed up decryption is to store pre-
computed values T; = y*@=D@=1/" (mod n), for

1 = 0,1,..., » — 1 in a lookup table. Then, for ¢ =
Enc(m), it is the case that ¢?~D@=1/" (mod n) =
T, and one can therefore avoid the brute force search
by using the lookup table. For large values of 7 it
may be too expensive to store all r 7}, values, and
one can then resort to a big-step little-step method by
only pre-computing 7T; for i ~ k+/r as k ranges from
1 to r. Such an optimization reduces the storage, pre-
computation time and decryption time to O(+/7) at the
decryptor.

A.4 Elliptic Curve variant of ElGamal (EC-EG)

We now describe the elliptic curve ElGamal encryp-
tion scheme (EC-EG). This is equivalent to the origi-
nal ElGamal scheme [25] but transformed to an addi-
tive group. Key set-up consists in choosing an elliptic
curve E together with a 163-bit prime p and generator
G. Its security is based upon the Elliptic Curve Dis-
crete Log Problem (ECDLP).

ElGamal Encryption Scheme (EC-EG)

Public Key E,p,G,Y =zG, where G, Y € F),
Private Key z € F),
Encryption plaintext M = map(m),
r €r Fp,
ciphertext C' = (R, S), where
R=EkG,S=M+kY
Decryption M =—xR+ S =—akG+ M + xkG,

m = rmap(M)

PublicKey n =pq,y,r
Private Key (p,q)

Encryption plaintext m € Z,,
u €R Ly,
ciphertext ¢ = y™u" (mod n)
Decryption compute m such that (y~™ ¢ (mod n)) € Enc,(0)

form’ =0,1,2,.. until — Lorm = m’

To understand why decryption works, it is useful
to notice that the decryptor needs the ability to decide
higher residuosity, which can be done efficiently when
the factorization of n is known. Note that z € Enc(0)
iff z(>=D(@=1D/7 (mod n) = 1. Therefore, one can
decrypt a ciphertext ¢ by finding, via brute force, the

EC-EG is additively homomorphic and ciphertexts
are combined through addition. The summation of
two EC-EG ciphertexts requires two point additions,
namely one for each of the ciphertext components R
and S.

map() refers to the mapping function used to map
values (e.g. plaintexts) into points on the curve, and
vice versa. Such a function is necessary because
the operands of elliptic curve operations are elliptic
curve points. This mapping needs to be determinis-
tic such that the same plaintext always maps to the
same point. Note that the operation used to map a
value is independent from the transformation used to

encrypt it: encryption simply transforms a point into
another point on the elliptic curve. There exist stan-
dard mapping functions but we require one that has
the additional property of being homomorphic, i.e.
map(my + ma2) = map(mi) + map(mz), as sug-
gested in [26].

B Common Computational Unit of Measure-
ment

Section 5.2 describes using a common computa-
tional unit of measurement when comparing cryp-
tosystems based upon different underlying fields (el-
liptic curve and finite fields). In this appendix, we de-
scribe how to equate an elliptic curve operation with
finite field multiplications.

The computation of our focus is zG over F},, where
x is a |p|-bit scalar and G is a point on the curve. Simi-
larly to the square-and-multiply method in finite fields
(used during modular exponentiations), we apply the
double-and-add algorithm, requiring |p| doublings and
1/2|p| additions. Each point doubling/addition oper-
ation involves the computation of an inverse which is
approximately equivalent to 3 multiplications. With
the additional 2 multiplications that take place, we
count 5 total multiplications per point addition and
doubling, and therefore a total of 5 x % x |p| = 2 x|p|
modular multiplications to compute xG. Next, we
need a method for comparing the cost of modular mul-
tiplications over different sized moduli. Note that a y-
bit modular multiplication has a complexity of O(y?).
One can then conclude that a y-bit modular multipli-

y? :
L 1024-bit

cation is approximately equivalent to
modular multiplications.

As an example, the computation G over F},, where
p is a 163-bit prime, requires on average 245 = 163 +
82 point doublings and additions, i.e. 1225(245 x 5)
160-bit modular multiplications. A 1024-bit modular
multiplication is approximately 40 times more expen-
sive than that of a 163-bit one, and so, computing *G
requires approximately 1225/40 = 31 1024-bit mod-

ular multiplications.

