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Abstract. Access control is a crucial concern to build secure IT systems and,
more specifically, to protect the confidentiality of information. However, access
control is necessary, but not sufficient. Actually, IT systems can manipulate data
to provide services to users. The results of a data processing may disclose infor-
mation concerning the objects used in the data processing itself. Therefore, the
control of information flow results fundamental to guarantee data protection. In
the last years many information flow control models have been proposed. How-
ever, these frameworks mainly focus on the detection and prevention of improper
information leaks and do not provide support for the dynamical creation of new
objects.
In this paper we extend our previous work to automatically support the dynamical
creation of objects by verifying the conditions under which objects can be created
and automatically associating an access control policy to them. Moreover, our
proposal includes mechanisms tailored to control the usage of information once
it has been accessed.

1 Introduction

Access control is one of the main challenges in IT systems and has received significant
attention in the last years. These efforts have matched with the development of many
frameworks dealing with access control issues [1–6]. However, many of these proposals
focus on the restriction on the release of information but not its propagation [7].

Actually, IT systems are developed not only to merely store data, but also to pro-
vide a number of functionalities designed to process data. Thereby, they may release
information as part of their functionalities [8]. Yet, a malicious user can embed in some
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application provided by the IT system, a Trojan horse that, once the application is exe-
cuted, copies sensitive information in a file accessible by the malicious user [9]. In this
setting, information flow control plays a key role in ensuring that derived objects do not
disclose sensitive information to unauthorized users.

This issue has spurred the research and development of frameworks that improve
authorization frameworks with some form of flow control. Sammarati et al. [10] pro-
posed to detect unauthorized information flow by checking if the set of authorizations
associated with a derived object are a subset of the intersection of the sets of autho-
rizations associated with the objects used to derive it. Similar approaches [11, 12] have
associated with each object an access control list that is propagated together with the
information in the object. However, in these approaches the creation of objects is im-
plicit. Essentially, they attempt to identify leaking information, but do not deal with the
creation of new objects.

Moreover, this approach is to rigid to implement real access control policies. Actu-
ally, it is not flexible enough to support information declassification [8]. For instance,
the US Privacy Act allows an agency to disclose information to those officers and em-
ployees of the agency who need it to perform their duties without the consent of the
data subject. Furthermore, the Act does not impose any constraint to data that do not
disclose personal identifying information.

In this paper, we extend our previous work [13] in order to automatically enforce
access control policies on objects dynamically created in Flexible Authorization Frame-
work (FAF) [14]. This requires to deal with some issues:

– deciding if an object can be created;
– associating authorizations with the new object;
– verifying if the derived object does not disclose sensitive information to unautho-

rized users.

The first issue is addressed by introducing conditions under which a data processing
can be performed and enforcing the system to verify them before creating new objects.
To cope with the second issue, we allow system administrators to define the policies
governing access to derived objects, based on the authorizations associated with the
objects used to derive them.

However, this is not sufficient to fully guarantee data protection. Actually, if a user
is authorized to execute an application in which a Trojan horse is embedded, such a
malicious application is considered as legitimate by the authorization framework. To
this end, we propose an approach based on [10–12] to block non safe information flow.
However, it is up to system administrators to decide whether or not an information flow
is safe. Thereby, we only provide support for detecting flows of information that may
be harmful to data subjects.

Other issues come up when the proposed approach is integrated in FAF. Actually, its
current architecture does not support the dynamical creation of objects. To this intent,
we need to improve it together with its underlying logic-based framework.

The remainder of the paper is structured as follows. Next (§2) we provide a brief
overview of FAF. Then, we illustrate our approach for dealing with the dynamical cre-
ation of objects (§3) and for automatically deriving their access control policy (§4).



Next, we propose a mechanism to control information flow and show how such a mech-
anism copes with the Trojan horse problem (§5). Finally, we discuss related work (§6)
and conclude the paper (§7).

2 Flexible Authorization Framework

Flexible Authorization Framework (FAF) [14] is a logic-based framework developed to
manage access to data by users. It consists of four stages that are applied in sequence.
The first stage takes in input the extensional description of the system, as subject and
object hierarchies and a set of authorizations, and propagates authorizations through the
organizational structure of the system. However, in this stage it is possible to derive con-
tradictory authorizations, that is, a subject could be authorized and denied to execute an
action on an object at the same time. The second stage aims to resolve this problem by
applying conflict resolution policies. Once authorizations are propagated and conflicts
resolved, there is the possibility that some access is neither authorized nor denied. In
the third stage, decision policies are used to ensure the completeness of authorizations.
In the last stage, specific domain properties are verified using integrity constraints, and
all authorizations that violate them are removed.

FAF provides a logic-based language, called authorization specification language
(ASL), tailored for encoding security needs. Before defining the language, we introduce
the logic programming terminology needed to understand the framework. Let p be a
predicate with arity n, and t1, . . . , tn be its appropriate terms. p(t1, . . . , tn) is called
atom. Then, the term literal denotes an atom or its negation. ASL syntax includes the
following predicates:

– A ternary predicate cando. Literal cando(o, s, a) is used to represent authorizations
directly defined by the system administrator where o is an object, s is a subject, and
a is a signed action terms. Depending on the sign, authorizations are permissions
or prohibitions.

– A ternary predicate dercando that has the same arguments of predicate cando and
is used to represent authorizations derived through propagation policies.

– A ternary predicate do that has the same arguments of predicate cando and rep-
resents effective permissions derived by applying conflicts resolution and decision
policies.

– A 5-ary predicate done that is used to describe the actions executed by users. Intu-
itively, done(o, s, r, a, t) holds if subject s playing role r has executed action a on
object o at time t.

– A propositional symbol error. Its occurrence in the model corresponds to a violation
of some integrity constraints.

– A set of hie-predicates. In particular, the ternary predicate in(x, y, H) is used to
denote that x ≤ y in hierarchy H.

– A set of rel-predicates. They are specific domain predicates.

Based on the architecture previously presented, every authorization specification AS
is a locally stratified program where stratification is implemented by assigning levels to



Table 1. Strata in FAF specification

Stratum Predicate Rules defining predicate
AS0 hie-predicates base relations.

rel-predicates base relations.
done base relation.

AS1 cando the body may contain done, hie- and rel-literals.
AS2 dercando the body may contain cando, dercando, done, hie- and rel-literals. Oc-

currences of dercando literals must be positive.
AS3 do the head must be of the form do( , , +a) and the body may contain

cando, dercando, done, hie- and rel-literals.
AS4 do the head must be of the form do(o, s,−a) and the body contains the

literal ¬do(o, s, +a).
AS5 error the body may contain cando, dercando, do, done, hie- and rel-literals.

predicates (Table 1 [14]). For any specification AS, ASi denotes the rules belonging to
the i-th level.

For optimizing the access control process, Jajodia et al. [14] proposed a materialized
view architecture, where instances of predicates corresponding to views are maintained.
Because predicates belong to strata, the materialization structure results (locally) strati-
fied. This guarantees that the specification has a unique stable model and well-founded
semantics [15, 16]. Following [14], we use the notationM(AS) to refer to the unique
stable model of specification AS.

3 Creating objects

When a user requires to perform a data processing, the IT system should verify whether
or not such a user has all necessary authorizations. In the remainder of this section, we
address this issue.

Let O be the name space of all possible objects that may occur in the specification.
We assume that they are organized into a hierarchical structure. This means that all
possible objects are fully classified with respect to their type. Further, we assume that
objects do not exist until they are created. This means that objects (together with their
classification) may be not in the scope of the specification, although they are defined
in O. Essentially, we assume that a possible object is considered only if some event
demands its existence, that is, it is created.

Following [17], we introduce predicate exists, where exists(o) holds if object o ex-
ists, that is, it is already created. We define the state of the system as the set of exist-
ing objects and their relationships. To deal with the creation of objects, Liskov et al.
[18] introduced two kinds of functions: constructors and creators. Constructors of a
certain type return new objects of the corresponding type and creators initialize them.
Essentially, constructors add object identifiers (i.e., names) to the state of the system
and creators assign a value to such names. However, this approach distinguishes the
identifier of an object from the values the object can assume. We merge this pair of
functions into a single function, called initiator. Essentially, when an object is created,



it exists together with its value. This allows us to be consistent with the semantics of
FAF. Further, we assume that objects are never destroyed. From these assumptions, we
can deduce that the set of objects belonging to a state of the system is a subset of the
set of objects belonging to the next state.

IT systems process data as part of their functionalities by providing automatic pro-
cedures used to organize and manipulate data. As done in [13], we represent data pro-
cessing through initiators and make explicit the objects used by data processing and the
users who performs them. Thus, we introduce an initiator for each procedure supported
by the IT system. For instance, we write

f(s, o1, . . . , om) = o

to indicate that object o is the result of data processing f when this is performed by
subject s and objects o1, . . . , om are passed as input.3 We assume that when an object
is created (i.e., it enters in the scope of the specification), also its classification belongs
to the specification. Notice that initiators do not belong to the specification language.
We use them only to emphasize the objects used in the procedure and the subject that
executes it.

Subjects may need to access exiting objects in order to create new objects. More-
over, only users that play a certain role or belong to a certain group may be entitled to
perform a certain data processing. This means that an authorization framework should
verify whether the subject has enough rights to access all objects needed to create the
new one and whether he can execute the procedure.

Our idea is to enforce the system to verify the capabilities of the subject before an
object is created. Based on this intuition, we redefine initiator f as

f(s, o1, . . . , om) =
{

o if C is true
⊥ otherwise

where C represents the condition that must be satisfied and⊥means that object o cannot
be created since s does not have sufficient rights to execute the procedure.

Initiators are implemented in our framework through rules, called creating rules.
These rules enforce the system to verify the conditions under which a user can create
the object.

Definition 1. Let f be an initiator, s be the subject executing f , o1, . . . , om be the
objects required by f , and o = f(s, o1, . . . , om) be the derived object. A creating rule
has the form

exists(o)← L1 & . . . & Ln & exists(o1) & . . . & exists(om).

where L1, . . . , Ln are cando, dercando, do, done, hie-, or rel-literals. cando, dercando,
do literals may refer only to o1, . . . , om.

Essentially, the conjunction of literals L1, . . . , Ln represents the condition that a
subject must satisfy in order to create object o. Last part of the body of the rule ensures
that all objects necessary to create the new object already exist.

3 Notice that initiators are not total functions since if one combines personal data of different
users for creating an account, such account is not a valid object.



Example 1. A bank needs customer personal information, namely name, shipping ad-
dress, and phone number, for creating an account. The bank IT system provides the
procedure openA for creating new accounts. Suppose a customer discloses his name
(n), shipping address (sa), and phone number (p) to the bank. A bank employee s will
be able to create account (= openA(s, n, sa, p)) only if it is authorized to read cus-
tomer data and he works in the Customer Services Division (CSD). In symbol,

exists(account)← do(n, s, +read) & do(sa, s,+read) & do(p, s, +read) &
in(s,CSD-employee,ASH) & exists(n) & exists(sa) & exists(p).

The outcome of a data processing may then be used to derive further objects. We
represent the process to create an object as a tree, called creation tree, where the root
is the “final” object and the leaves are primitive objects (i.e., objects that are directly
stored in the system by users). In order to rebuild the creation tree, the system should
keep trace of the process used to create the object. To this end, we introduce the binary
predicate derivedFrom where derivedFrom(o1, o2) is used to indicate that object o2 is
used to derive object o1. As for classification literals, derivedFrom literals referring an
object are added to the model only when the object is created.

Example 2. Back to Example 1, the bank IT system stores the following set of literals:

{derivedFrom(account , n), derivedFrom(account , sa), derivedFrom(account , p)}

4 Associating authorizations with new objects

Once an object has been created, authorizations should be associated with it. Since the
object is not independent from the objects used to derive it, the policy associated with it
should take into account the authorizations associated with them. Some proposals [11,
12] associate with each object an access control list (ACL) that is propagated together
with the information in the object. Essentially, the ACL associated with the new object
is given by the intersection of all ACLs associated with the objects used to create it.
However, when a system administrator specifies an access control policy for derived
objects, he should consider that not all data processing disclose individually identifiable
information [8]. For example, the sum of all account balances at a bank branch does not
disclose data that allows to recover information associating a user with his own account
balance.

We propose a flexible framework in order to allow system administrators to deter-
mine how authorizations are propagated to new objects. The idea is that authorizations
associated with the objects used to derive the new one can be used to determine the au-
thorizations associated with it. However, this approach cannot be directly implemented
in FAF since the specification results no more stratified [13]. Next, we propose how
FAF can be modified in order to support access control on derived objects maintaining
the locally stratified structure.

4.1 Redefining Rules

To maintain the locally stratified structure, we need to redefine creating rules, autho-
rization rules [14], derivation rules [14], and positive decision rules [14] by enforcing



some syntactic constraints to predicates occurring in the body of rules. Before doing
this, we have also to redefine the predicates defined in FAF. Essentially, we introduce a
new parameter representing the depth of the creation tree of the object into predicates
exists, cando, dercando and do. Further, we enforce rules to be applied only to existing
objects.

Definition 2. Let f be an initiator, s be the subject executing f , o1, . . . , om be the
objects required by data processing f , and o = f(s, o1, . . . , om) be the derived object.
A creating rule is a rule of the form

exists(i, o)← L1 & . . . & Ln & exists(j1, o1) & . . . & exists(jm, om).

where o is an object, i represents the current iteration, and L1, . . . , Ln are cando,
dercando, do, done, hie-, or rel-literals. cando, dercando, do literals refer only to
o1, . . . , om and 0 ≤ j1, . . . , jm < i.

Once an object has been introduced in the scope of the specification, its access
control policy is inferred by the system through authorization rules.

Definition 3. An authorization rule is a rule of the form

cando(i, o, s, a)← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and a signed action, i represents
the current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom, hie-,
or rel-literals. Every cando, dercando and do literal must be inferred at an iteration j
such that 0 ≤ j < i.

Example 3. A customer may prefer to not receive advertising on new services offered
by the bank. Therefore, he specifies that his information (i.e., name (n), shipping ad-
dress (sa), and phone number (p)) cannot be accessed by the Marketing Division (MD).

cando(0, n, xs,−read)← in(xs,MD-employee,ASH) & exists(i, n).
cando(0, sa, xs,−read)← in(xs,MD-employee,ASH) & exists(i, sa).
cando(0, p, xs,−read)← in(xs,MD-employee,ASH) & exists(i, p).

It is possible that no authorization is explicitly defined for the user with respect to a
request access. Thereby, the framework allows system administrators to specify policies
to propagate authorizations through the organizational structure of the system.

Definition 4. A derivation rule is a rule of the form

dercando(i, o, s, a)← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and a signed action, i represents
the current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom,
hie-, or rel-literals. Every cando, over and positive dercando literal must be inferred at
an iteration j such that 0 ≤ j ≤ i, and every do and negative dercando literal at an
iteration k such that 0 ≤ k < i.



Example 4. Employees of the Customer Services Division are authorized to manage
bank accounts. However, the actions that they can perform depend on the actions that
they are authorized to perform on the customer information used to create such an
account.

dercando(i, xo1 , xs, xa)← in(xo1 ,Account ,AOH) & derivedFrom(xo1 , xo2) &
do(j, xo2 , xs, xa) & in(xs,CSD-employee,ASH) &
exists(i, xo1) & j < i.

Using derivation rules, a system administrator can specify very flexible policies for
propagating authorizations. However, such a propagation may lead conflicting autho-
rizations. Decision rules are introduced to cope with this issue.

Definition 5. A positive decision rule is a rule of the form

do(i, o, s,+a)← L1 & . . . & Ln & exists(i, o).

where o, s and a are respectively an object, a subject and an action, i represents the
current iteration, and L1, . . . , Ln are cando, dercando, do, done, derivedFrom, hie-,
or rel-literals. Every cando and dercando literal must be inferred at an iteration j such
that 0 ≤ j ≤ i, and every do literal at an iteration k such that 0 ≤ k < i.

Example 5. Information on accounts is also required by employees of other divisions of
the bank in order to perform their duties. Thus, bank employees are entitled to access an
account only if they are not explicitly denied to access the account and the information
of its owner.

do(i, xo1 , xs,+read)← ¬ dercando(i, xo1 , xs,−read) & in(xo1 ,Account ,AOH) &
derivedFrom(xo1 , xo2) & ¬ do(j, xo2 , xs,−read) &
in(xs, employee,ASH) & exists(i, xo1) & j < i.

4.2 Materialized Views

The architecture proposed in [14] works properly when authorizations refer to primitive
objects, but it is not able to completely enforce access control policies when objects are
dynamically created. The main problem is when objects are “introduced” in the state
of the system. If derived objects are introduced before applying propagation policies,
they could not be created since required authorizations might be not yet computed.
Otherwise, if they are introduced after applying propagation policies, authorizations on
derived objects are not propagated.

Authorizations on new objects could depend on the authorizations associated with
those objects used to create them. To maintain the flexibility provided by FAF, we per-
mit any authorization predicate to occur in the body of rules. However, this affects the
process for enforcing access control policies. In particular, the locally stratified struc-
ture of specifications is not preserved. Next, we present the process to enforce access
control policies when objects are dynamically created.

The idea is to iterate the access control process proposed in [14] for n + 1 times
where n is the greatest depth of creation trees. At each step i, we compute the stable



model of ASi ∪M(ASi−1), where ASi is the set of authorization specifications ap-
plied at the i-th iteration and M(ASi−1) is the unique stable model of specification
ASi−1. Next, we describe the process for computing this materialization.

The first step corresponds to the “standard” FAF process where only primitive ob-
jects are considered. Essentially, creating rules add to the state of the system objects
that occur as leaves in some creation tree. Then, authorizations on these objects are
propagated, possible conflicts are resolved, and decision policies are applied. If autho-
rizations comply with integrity constraints, the output of the first iteration,M(AS0), is
used as input for the second iteration where objects derived by one derivation step are
considered. Repeatedly, the process proceeds until all derived objects are considered
where the i-th iteration takes in input the output of the previous iteration,M(ASi−1),
and creating rules add to the state of the system objects whose creation tree has depth
equal to i.

We now analyze the computation of the unique stable model of an authorization
specification AS during one step of the previous process. This process is, in turn, an
iterative process that, at each step i, computes the model of ASi

j ∪M(ASi
j−1), where

M(ASi
j−1) is the unique stable model of stratum ASi

j−1. Next, we describe the dif-
ferent steps of this materialization computation process at the i-th iteration.

Step (0): ASi
0 represents the lowest stratum. This stratum contains facts derived at the

i − 1-th iteration, M(ASi−1), and creation rules used to derive objects that are
the root of a creation tree having depth equal to i. Creating rules are recursive, but,
in agreement with Definition 2, exists literals occurring in the body of such rules
must be derived in one of previous iterations so that they belong to M(ASi−1).
Moreover, Definition 2 allows only cando, dercando and do derived in previous
iterations to occur in the body of creating rules. This guarantees that such literals
belong toM(ASi−1).

Step (1): ASi
1 contains facts derived at the previous stratum,M(ASi

0), and authoriza-
tion rules. Differently from [14], here authorization rules are recursive. However,
according to Definition 3, cando literals occurring in the body of such rules must be
derived in previous iterations so that they belong toM(ASi−1). This holds also for
dercando and do literals. Moreover, Definition 3 allows only exists literals derived
in the previous step to occur in the body of authorizations rules. Therefore, we can
conclude that if a cando literal is added to the model, every literal that can occur in
the body of the authorization rule belongs toM(ASi

0).
Step (2): ASi

2 contains facts derived at the previous stratum,M(ASi
1), and derivation

rules. As in [14], derivation rules permit a “real” (positive) recursion. In particular,
positive dercando literals having iteration parameter equal to i can occur in the
body of the rule. It is possible to prove, along the same lines as done in [14], the
correctness of the materialized view. Essentially, the body of derivation rules is split
into two parts: positive dercando literals having iteration parameter equal to i and
the rest. By Definition 4, we can easily verify that the literals belonging to the last
set either are inM(ASi−1) or are derived in one of previous steps. Thereby, they
belong toM(ASi

1). On the other side, we refer to [14] for the fixpoint evaluation
procedure that proves the correctness ofM(ASi

2).



Step (3): ASi
3 contains facts derived at the previous stratum,M(ASi

2), and positive
decision rules. By Definition 5, we can easily verify that literals occurring in the
body either are in M(ASi−1) or are derived in one of previous steps. Thus, do
literals are added to the specification only if every literal that can occur in the body
of positive decision rules belongs toM(ASi

2).
Step (4) and Step (5) are analogous to the ones presented in [14].

The above process ensures that the stable model computed during one iteration is a
superset of the stable model computed in previous iterations. Further, it guarantees that
every literal derived during an iteration refers to objects created in that iteration.

Theorem 1. Let ASi−1 and ASi be authorization specifications at i − 1-th and i-th
iterations, respectively. The following statements hold.

1. M(ASi−1) ⊆M(ASi)
2. Every literal inM(ASi)\M(ASi−1) refers to objects created at the i-th iteration.

In [14], authors have proved the locally stratified structure by assigning a level to
each type of predicates. In our setting, this is not sufficient since the level of the head
predicate could be strictly lower than that of predicates occurring in its body. However,
the locally stratified structure is maintained by distinguishing the iteration in which facts
are deduced and limiting the application of rules to existing objects. Essentially, strata
are ordered with respect to a lexicographic order: the first component is the iteration,
and the second corresponds to the level as defined in [14].

Theorem 2. Every authorization specification is a locally stratified logic program.

This result ensures that the specification has a unique stable model [16]. Baral et al.
[15] proved that well-founded semantics coincide with stable model for locally stratified
logic programs. This guarantees that the stable model of authorization specifications can
be computed in quadratic time on data complexity [19].

5 Information Flow Control

Data subjects want that their information is not misused once it has been accessed.
However, FAF does not provide any form of control on the usage of information. This
lack makes this authorization framework vulnerable to Trojan horses embedded in ap-
plications. If a user executing a tampered application has the required authorizations,
the Trojan horse will copy sensible information into a file accessible by a malicious
and unauthorized user. Therefore, it is necessary to characterize the flow of information
within the system.

FAF supports an integrity constraints phase in order to verify the consistency of the
system with respect to specific domain properties. Our idea is to use integrity constraints
also to verify the presence of leaks in the information flow. Similarly to [10–12, 20],
we propose to verify that the set of authorizations associated with a derived object is
a subset of the intersection of the authorizations associated with the objects used to
create it. Essentially, we want to ensure that a derived object does not disclose more
information that the objects used to derive it does.



To this end, we define the 4-ary predicate warning. The intuition is that literal
warning(o1, o2, s, a) holds if subject s can perform action a on object o1, but he cannot
perform a on object o2 where o2 is used to derive o1. Notice that warnings are different
from errors: they are failure of integrity constraints, like errors, but the system adminis-
trator may be perfectly happy with a system that does not satisfy them since information
should be disclosed for complying with availability requirements. Thus, if the system
reports a warning, the system administrator has to establish whether a leak complies
with system requirements or corresponds to a system vulnerability.

Definition 6. An information flow constraint is a rule of the form

warning(o1, o2, s, a)← do(i, o1, s, a)& derivedFrom(o1, o2)& ¬do(j, o2, s, a).

where s and a are respectively a subject and an action, i and j are iterations such that
0 ≤ j < i, and object o2 is used to derive object o1.

Essentially, the presence of warning literals in the model corresponds to the pres-
ence of covert channels [21] in the system. Therefore, we can detect possible illegal
information flow by checking the occurrence of warning in the model.

Theorem 3. If warning does not occur in the model, all information flows are safe.

We remark that it is up to the system administration decides if an “unauthorized”
flow is permitted or not. Every time a warning literal occurs in the model, he has to
decide if it corresponds to an unauthorized leakage and, in this case, fix it.

Example 6. Suppose a malicious user, Mallory, has tampered the procedure openA pro-
vided by the bank IT system for creating new accounts. In this setting, the modified
procedure copies customer information in a file (foo) accessible by the malicious user
himself along with its legal functionalities. Such information will then sell to bank com-
petitors by Mallory.

Accordingly, the malicious user defines the following rules

exists(i, foo)← do(j, n, s, +read) & do(j, sa, s, +read) &
do(j, p, s, +read) & in(s,CSD-employee, ASH) &
exists(j, n) & exists(j, sa) & exists(j, p).

cando(i, foo,Mallory , +read)← exists(i, foo).
dercando(i, foo,Mallory , +read)← cando(i, foo,Mallory , +read) & exists(i, foo).

do(i, foo,Mallory , +read)← dercando(i, foo,Mallory , +read) & exists(i, foo).

The first rule sets the permissions necessary to create file foo. The other rules are
needed by Mallory to access such a file.

Once an employee of Customer Services Division has run the procedure openA, the
bank account is created together with file foo. The authorization framework then infers
that Mallory is entitled to read foo. However, the bank IT system keeps trace that foo is
derived by customer information by storing the following literals:

{derivedFrom(foo, n), derivedFrom(foo, sa), derivedFrom(foo, p)}

Applying the information flow constraint to this scenario, the system spots a harmful
situation for the data subject since his information can be accessed by unauthorized
users.



Notice that we have proposed to verify only step-by-step flow, that is, we compare
authorizations associated with an object only with those associated with the objects
directly used to derive it. We adopt this solution since we claim that, if a system ad-
ministrator has already allowed an “unauthorized” flow, an additional warning on the
same flow is unnecessary. However, we can easily verify information flow with respect
to primitive information by making relation derivedFrom transitive.

6 Related Work

Proposals for enforcing access control policies can be classified under three main classes:
discretionary access control (DAC) [4, 5], mandatory access control (MAC) [1–3], and
role based access control (RBAC) [6]. DAC allows users to specify which subjects can
access their objects by directly defining an access control policy for each of their own
objects. In MAC approaches, users cannot fully control the access to their objects, but
it is the system that entirely determine the access that is to be granted. RBAC improves
DAC and MAC proposals by integrating access control policies into the organizational
structure of the system.

DAC models restrict access to objects on the basis of the identity of the invoking
user and authorizations defining the actions he can execute on such objects. However,
DAC models do not provide any form of support to control the usage of information
once it is has been accessed [9]. Thereby, they are vulnerable to Trojan horse attacks
[22]. This awareness has been matched by a number of research proposals on incor-
porating information flow control into access control models. Some proposals [11, 12]
associate with each object an ACL and propagate it together with the information in the
object. In particular, the access control list associated with a new object is given by the
intersection of all ACLs associated with the objects used to create it. Similarly, in [20,
10] an information flow is defined to be safe if the ACL associated with the new object
is a subset of the intersection of the sets of authorizations associated with the objects
used to derive it. However, contrarily to our work, these proposals do not deal with the
dynamic creation of objects.

Among MAC models, the model proposed by Bell and LaPadula [1] is a milestone
for later work. Essentially, the model categorizes the security levels of objects and sub-
jects, and enforces information flow to comply with “no read up” and “no write down”
rules. Then, this model was generalized into the lattice model [2, 3]. The above rules
are very robust but have some disadvantages. The main drawback is covert channels
[21]. A covert channel represents an implicit information flow that cannot be controlled
by the security policy. Several proposals have been presented to cope with this problem
[23–25]. However, their focus is on the detection of improper information leaks rather
than on the the dynamic creation of objects.

Osborn [26] proposed to verify information flow in the RBAC model through a
MAC approach. Essentially, they propose to map a role graph [27] (i.e., a graphical
notation for representing RBAC hierarchies) into an information flow graphs which
shows the information flow among roles. However, in this work information flow refers
to the propagation of primitive information with respect to hierarchies of roles, rather
than to derived information.



Yusuda et al. [28] propose a purpose-oriented access control model. Essentially,
purpose-oriented access rules identify which operations associated with an object can
invoke operations associated with other objects modifying the objects themselves. These
operations are classified with respect to the type of information flow. Based on this
classification, they build an invocation graph that, together with a MAC model, is used
to detect information leakages. Izaki et al. [29] integrate the RBAC model into the
purpose-oriented model. Essentially, the purpose-oriented model is enhanced by intro-
ducing the concept of role. The idea underlying this approach is to classify object meth-
ods and derive a flow graph from method invocations. From such a graph, non-secure
information flows can be identified.

7 Conclusion

The main contribution of this paper is a procedure for dynamically creating objects and
automatically deriving access control policies to be associated with them. First, we have
introduced creating rules in order to verify the conditions under which objects can be
created and add “legal” objects to the state of the system. Then, we have defined a flex-
ible framework for associating with a new object an access control policy based on the
authorizations associated with the objects used to create it. However, the architecture
of FAF does not support the dynamical creation of objects. Thus, we have improved
it together with its underlying logic-based framework in order to preserve the locally
stratified structure. This ensures the validity of advantage gained by FAF over its prede-
cessors in specifying and enforcing access control policies. Finally, we have provided a
mechanism in order to detect information leakages in the specification.
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