
Reliable Delivery of Event Data from Sensors to
Actuators in Pervasive Computing Environments⋆

Sudip Chakraborty, Nayot Poolsappasit, and Indrajit Ray

Computer Science Department
Colorado State University

Fort Collins, CO 80523, USA
{sudip, nayot, indrajit}@cs.colostate.edu

Abstract. The event-condition-action (ECA) paradigm holds enormouspoten-
tial in pervasive computing environments. However, the problem of reliable de-
livery of event data, generated by low capability sensor devices, to more capable
processing points and vice versa, needs to be addressed for the success of the ECA
paradigm in this environment. The problem becomes interesting because strong
cryptographic techniques for achieving integrity impose unacceptable overhead
in many pervasive computing environments. We address this problem by sending
the data over the path from the sensor node to the processing point that provides
the best opportunity of reliable delivery among competing paths. This allows us-
ing much weaker cryptographic techniques for achieving security. The problem
is modeled as a problem of determining the most reliable path– similar to routing
problems in networks. We propose a trust-based metric for measuring reliability
of paths. The higher the trust value of a path the more reliable it is considered.
We propose techniques for estimating the trust levels of paths and propose a new
algorithm for identifying the desired path.

1 Introduction

Pervasive computing technology has the potential to impactnumerous applications that
benefit society. Examples of such applications are emergency response, automated mon-
itoring of health data for assisted living, environmental disaster mitigation and supply
chain management. Pervasive computing uses numerous, casually accessible, often in-
visible, computing and sensor devices. These devices are frequently mobile and/or em-
bedded in an environment that is mobile. Most of the time theyare inter-connected with
each other, with wireless or wired technology. Being embedded in the environment
and interconnected allow pervasive computing devices to exploit knowledge about the
operating environment in a net-centric manner. This enables pervasive computing ap-
plications to provide a rich new set of services and functionalities that are not otherwise
possible through conventional means. Pervasive computingapplications frequently rely

⋆ This work was partially supported by the U.S. Air Force Research Laboratory (AFRL) and the
Federal Aviation Administration (FAA) under contract F30602-03-1-0101 and by the U.S. Air
Force Office of Scientific Research under contract FA9550-07-1-0042. Any opinions, findings,
and conclusions expressed in this publication are solely those of authors and do not necessarily
represent those of the AFRL, the FAA, or the AFOSR.

Fig. 1.Pervasive computing environment involving remote event detection and action triggering

on event-triggered obligation policies to operate in a dynamic environment. An obliga-
tion policy is associated with events, conditions, subjects, objects and actions. When the
event of interest occurs and the associated conditions evaluate to true, the subjects per-
form the specified actions on the objects. Events are typically identified and captured by
embedded sensing devices and actions are actuated by similar embedded devices. Pro-
cessing of captured event data for evaluation of conditionsare, on the other hand, mostly
performed at remote processing nodes or base stations. Thisis because the sensing and
actuating devices embedded in the environment are frequently of very low performance
capabilities including low computing, low storage and low power. Thus a major chal-
lenge in a pervasive computing environment is to provide a path for propagating sensor
data to processing nodes and action data to actuating nodes.Reliability of the paths
is important. The data should be delivered with the minimum possible error and in as
timely a manner as possible.

The reliable transmission path requirement imposes significant challenges in perva-
sive computing environments. A pervasive computing application can seldom assume a
reliable network infrastructure for communication. In a conventional setting, a node that
generates a message forwards it to a neighboring reliable node. The receiving node in
turn forwards the message to another fixed node that is known apriori. This procedure
is followed till the message reaches the destination. Everynode in this process knows
at least one other reliable node in the path towards the destination to which the message
can be handed over. Frequently a node will know about more than one other node and

thus have a choice of a better node. The nodes are static, thatis they do not change their
location and consequently the links between the nodes are stable. This and the proper
use of strong cryptographic techniques, easily facilitatereliable delivery of messages in
conventional settings. In a pervasive computing environments, on the other hand, mobil-
ity of nodes (sensing, processing or actuating) is frequently considered an asset. Figure
1 depicts the scope of the problem. Nodes are not locationally stable; instead they con-
tinuously change their coordinates. Thus, a node that needsa message delivered cannot
rely on another fixed node to forward the message but has to make use of one or more
nodes that happen to be within reachable distance at that particular moment. In addition,
since a majority of these nodes are low capability devices (in the sense of low computa-
tional capabilities, low storage and low power provisions), use of strong cryptographic
techniques needs to be ruled out. Moreover, in hostile environments these nodes get
easily compromised. Under such circumstances it will enormously benefit a pervasive
computing application if the path that provides most opportunity of reliable delivery of
messages is presented to it. Determining an appropriate path within a network is the
problem of routing. In this paper we revisit this problem in the context of pervasive
computing environments.

The problem of routing in mobile ad hoc networks have been addressed before [1–
11]. Among these [1, 6, 7, 10] study cryptographic techniques for securing the routing
protocol. Some use public key cryptography to encrypt the end-to-end transmission of
routing messages. Others use digital signature techniquesto authenticate routing mes-
sages at the peer-to-peer level connection. However, thesecryptographic techniques in-
cur high computation and storage overhead which limit theiruse in sensor devices. Use
of secret key techniques instead of public keys alleviate this problem to some extent al-
though at the expense of added complexity. Moreover, key distribution and management
is a big problem in secret key based systems. It is difficult toestablish a key distribution
or certification authority in mobile ad hoc environments. Ensuring the availability of a
key distribution center or a certifying authority is almostimpossible given the unstable
nature of the network.

The Hermes protocol developed by Zouridaki et al. [11] proposes using trustworthi-
ness of its neighbors for routing. The trust values are computed under the assumption
that they follow the beta probability distribution. The parameters of the beta distribution
come from the empirical observation of the forwarding behavior. Thus, nodes that main-
tain a good and steady forwarding history have more trust andconfidence on them. The
route is established for the most trusted path. However, themajor problem of this work
is its complete reliance on forwarding history for measuring trust. A malicious node
can easily fake this history thus presenting itself as a trusted node. Other similar works
include [12–14]. Among these [13] proposes a signal stability-based adaptive routing
(SSR) where the routes are selected based on signal strength. This work looks promis-
ing; however it does not discuss how to measure this signal strength quantitatively. In
[12] the authors propose an on demand secure routing protocol where the metric is
based on past history. Yi et al. [14] present a security-aware ad hoc routing protocol
(SAR) in which a route is selected on the basis of degree of ‘security guarantee’ that
the route provides. If two routes have same guarantee then the shorter path is chosen.
The security metric can be specified by standard security properties like timeliness, or-

dering, authenticity etc. However, the paper does not discuss how we can measure these
properties quantitatively.

We propose a trust-based routing protocol for pervasive computing environments.
Our protocol determines the most reliable path under currently determinable properties
of the system to forward a packet from source to destination.A node in the pervasive
computing environment is any entity that is able to forward apacket. It can be a sensor
node, a mobile device like a PDA or a cellular phone, a powerful computing device or
even an actuator like a switch. Reliability of a node is measured in terms of atrust value
for the node. Each node determines its neighbor’s trust based on physical properties of
the neighbor that can be directly observed, the neighboringnode’s behavior history (i.e.,
results of past interactions) and recommendation (or rating) about the neighbor from
other neighbors. The resulting trust value is used to generate the ‘cost of forwarding’,
or simplycost. The cost metric is inversely related to the trust metric, that is, higher the
trust (reliability) on the node, lower is the cost. This costis associated with links in the
network. We next modify the widely used distance vector routing protocol using these
costs between the links to find the path with minimum average cost. The chosen path
then becomes the most ‘reliable’ path.

The rest of the paper is organized as follows. Section 2 givesan overview of our
protocol including a discussion on cost function in subsection 2.1. We introduce our
trust metric in section 3 where the components and the methods to compute them have
been discussed in subsections 3.1, 3.2, and 3.3 followed by the computation of the fi-
nal trust value in subsection 3.4. Subsequent section 4 presents our trust-based routing
protocol. In section 5 we analyze our protocol. We present the security analysis of the
protocol in subsection 5.1. In subsection 5.2 we discuss thecomplexity of our proto-
col. We start with computation complexity followed by communication complexity and
storage complexity respectively. Finally, we conclude ourdiscussion in section 6 with
a summary for future work.

2 Overview of trust-based routing protocol

We assume that the pervasive computing environment supporting the application has
a very dynamic topology. Nodes join or depart the environment at random. Each node
in the network maintains a tableRT consisting of tuples of the form〈Dest,Win#,NH,
Costavg,∑Cost2,#Hops〉. In this table the node stores on a per-destination (Dest) basis,
the identity of the next neighbor (NH), to which the message needs to be forwarded.
Together with the next neighbor information, the node also stores the minimum average
cost (Costavg) and the number of hops (#Hops) to reach the particular destination. This
information is generated periodically. Thus each tuple bears a time stamp in the form of
a current time window (Win#). The routing algorithm that we propose is used to update
the next neighbor entry in theRT table for a particular destination.

A source node initiates the routing protocol if it has a packet to be sent to a destina-
tion for which it does not have any next hop (NH) entry. The source node can also ex-
ecute the routing protocol when the path to the destination has expired (when the value
underWin# is less than the current window number). The source sends out a route dis-
covery request. We assume that each node that participates in the pervasive computing

environment has atrust relationship with its neighbor (that is a node at 1 hop distance).
A trust-aware node periodically sends abeacon message to its neighbors. The beacon
message is something like an “I am alive” message and carriesinformation necessary
to prove the node’s existence. Once in a while a node can also send out a beacon mes-
sage on demand. In our protocol, a node may request arecommendation score from a
second node about a neighbor of the second node. In such casesthe recommendation
score is carried on a beacon message. Beacon messages are broadcast in nature. They
carry rudimentary checksums to provide weak protection against integrity violations.
The recommendation score is used as one of the parameters forcomputingtrustworthi-
ness of a neighbor. Trust relationships are periodically refreshed locally. At some point
after system initiation we assume that every node in the system will have a trust rela-
tionship with each of its neighboring nodes. We do not assumethat trust relationships
are symmetric or transitive.

We adapt the trust model proposed in [15]. We express the trust relationships be-
tween nodes asNr −→ Ne whereNr is thetruster node andNe is thetrustee node. We
represent this trust relationship as a tuple(Nr PNe , Nr RNe , Nr INe). The valueNr PNe rep-
resents an evaluation of thephysical properties of Ne by Nr. The valueNr RNe denotes
an evaluation of therecommendation scores of Ne from other nodes andNr INe evaluates
the interactions that Nr had with Ne. The exact interpretation of these terms are de-
ferred for the time being till the next section (section 3). We associate a numeric value
v(Nr −→ Ne) (from [−1,1]) with the above tuple which we refer to as the trust value
for nodeNr on nodeNe along the edge(Nr, Ne). We next convert this trust value to
a cost on the link(Nr, Ne). The higher the trust value the lesser is the cost to transfer
messages on the link. The path having the least average cost from the source node to
the destination node is considered the most reliable among the available paths and is
chosen by the source node to forward the data.

Figure 2(a) describes pictorially the main idea of our protocol. We assume that if a
nodeNr has a distrust value (that is value less than 0) on another nodeNe the cost on that
link is infinite and that next hop is discarded. When a node receives a route discovery

(a) The trust relations
in trust-aware pervasive
computing environment

(b) The forwarding cost
in trust-aware pervasive
computing environment

(c) Path having least aver-
age cost is most reliable

Fig. 2. Trust relation between nodes and the corresponding cost on the link

request from a source, it checks its routing tableRT . If a route to the destination is
present inRT which has not expired, it sends the ‘#Hops’ and cost related information
to the source. The source then evaluates the cost of the link between the neighbor and

itself and using the #Hops it computes the average cost of forwarding the packet to the
destination. The source may get multiple such responses. Itthen chooses the next hop
for which the average cost over the path is minimum. If the node that receives a route
discovery request from the source, does not itself have the next hop information in its
RT for that destination, it initiates a route discovery process as a source source. This
process can go on till the node which is 1 hop behind the destination initiates a route
discovery request.

2.1 Cost function

Each node tries to find the path to a given destination which has the minimum average
forwarding cost. Thecost of forwarding a packet from the nodeNr to Ne is a function of
v(Nr −→Ne). These two are related as follows: higher the trust, lesser is the cost and the
cost increases as the distrust increases (i.e., the trust decreases). Rationale is, the cost
(in terms of integrity violation and other malicious activities) of forwarding a packet
through a more trustworthy node is less than that through a less trustworthy node. The
cost is minimum (not zero though) whenNr has absolute trust (v(Nr −→ Ne) = 1) on
Ne. This minimum cost (Mincost) is a small positive cost incurred due to forwarding
overhead. It is uniform over the whole pervasive computing environment and set at the
bootstrapping of the system. We assume that the decay in costwith increased trustwor-
thiness is logarithmic with the following conditions: atv(Nr −→Ne) = 1, cost= Mincost

and atv(Nr −→ Ne) = −1, cost = ∞. The function is defined as,

cost(Nr, Ne) = Mincost − ln(
1+ v(Nr −→ Ne)

2
) (1)

The maximum allowable cost forNr is incurred whenv(Nr −→ Ne) = 0. This cor-
responds to the situation whenNr is neutral about trustworthiness ofNe. This cost,
denoted byMaxAllowedcost(Nr , Ne), is Mincost − ln(1

2), that is,MaxAllowedcost(Nr , Ne) =
Mincost +0.69.

Computing this cost value has some overhead but is only linear in the number of
nodes in the pervasive computing environment. The cost value is stored in the mobile
device for a predetermined time or until a new beacon messagehas arrived. The absence
of a beacon message from a particular node in a particular window of time represents a
broken link during that time period. It can happen for various reasons including that the
node is compromised. The node in such a case may either discard the broken link from
the list of current neighbors or mark it as unused. Routing information is advertised
by broadcasting the route setup packets periodically or on demand depending on the
protocol used. These packets indicate which mobile nodes are accessible from which
others and the average cost associated with the path towardsa destination. When a node
receives a data packet, it chooses the path which has the lowest average forwarding
cost and forwards the packet to the neighbor on this path to befurther forwarded to-
wards the destination. During this process, a node also evaluates the packet forwarding
performance of the neighbor node. By measuring this the nodeessentially evaluates an
interaction score for the neighbor. The details of this process and other routing processes
is explained in section 4 and section 5.2.

3 Trust metric

As mentioned earlier in section 2 the trust ofNr on Ne in contextc depends on three
factors –Ne’s properties, recommendation aboutNe (alternatively,Ne’s rating) from
another nodeNk, andNr ’s interaction with Ne. We assume that each of these three fac-
tors is expressed in terms of a numeric value in the range[−1,1]. A negative value for
the component is used to indicate thetrust-negative type for the component, whereas
a positive value for the component is used to indicate thetrust-positive type of the
component. A 0 (zero) value for the component indicatestrust-neutral. The final trust
value, denoted byv(Nr −→ Ne), is calculated as an average of these component val-
ues. Eventuallyv(Nr −→ Ne) falls in the range[−1,1]. A trustee node is completely
trusted (or distrusted) if the value of the trust relationship is 1 (-1). If the value is in the
range(0,1) the node issemi-trustworthy; if the value is in the range(−1,0) the node is
semi-untrustworthy. The 0 value represents trust neutrality, that is the trustee is equally
trustworthy as untrustworthy.

3.1 Computingproperties

In our approach trust is used as a reliability metric of a neighbor node for proper han-
dling and forwarding the packet to the destination. A nodeNi is a neighbor of nodeN j

if Ni is within the range of a beacon message fromN j. A node becomes more reliable
when it has relatively more resources (in terms of signal strength, signal stability, less
propensity to corrupt data etc.). Higher values of these attributes show that it is more
capable of handling and forwarding a packet in a reliable manner. This motivates us to
measure the node properties quantitatively and include that measure as a factor to eval-
uate trustworthiness of a node. We focus on two properties ofa node – signal strength,
and stability factor. A node maintains a property table,PT = 〈Node id,SSavg,SF〉 for
each neighbor node where the properties of the neighbor is kept along with the corre-
sponding id. The table is updated after each time-windowwin.

Measuring signal strength In each time-windowwin, a node periodically sends a link
layer beacon message to its neighbors. When the neighbor node receives such a beacon
message, the extended device driver interface of the receiving node measures the signal
strength at which the beacon was received. In our approach weuse thereceive signal
strength indicator (RSSI) unit to measure the signal strength. RSSI is the IEEE 802.11
standard for measuring radio frequency (RF) energy sent by the circuitry on a wireless
network interface card (W-NIC). It is a numeric integer value with an allowable range of
0 to 255. However, for the sake of our model we give a transformation to this recorded
signal strength value by dividing it by 255. This scales the received signal strength
value within the range[0,1]. We require this transformation as the final value of the
component ‘properties’ lies within[−1,1]. At the end of each time-window, we take the
average of these values. This transformed average signal strength value is then stored
under the columnSSavg in the tablePT corresponding to the neighbor. All these signal
strength values within the time-windowwin is kept in a separate temporary property
table,PT Node id

tmp = 〈SS,SB〉 whereSB is thestability bit explained next.

Measuring stability factor The stability factor indicates the stability of a node. Higher
the stability more reliable is the node to forward a packet. We derive the stability factor
using signal strength. The reason is as follows: if a node is locationally unstable, it will
have a varying signal strength. Alternatively, if the average signal strength of a node
is fairly constant over few time-windows, the link with the node can be considered as
stable. Therefore, after storing the strength of received signal, saySScurrent , in PT Node id

tmp ,
it is compared with the value present inSSavg of PT . If SScurrent < SSavg then theSB is
set to 0, otherwise the default value 1 is kept. At the end of time-window, the stability
factorSF is calculated as,

SF =
number of bits set to 1 under SB
Total number of bits under SB

At the beginning of each time window the temporary property tablePT Node id
tmp is set to

its default values. The default value forSS is 0 and forSB is 1.

Measuring properties Theproperties component of the nodeNe is then computed as

Nr PNe = α∗ SSavg +(1−α)∗ SF (2)

where α ∈ (0,1) is a fraction used as the relative importance weight to the signal
strength property.

3.2 Computingrecommendation

Each trust-aware node agrees to provide a ‘recommendation’about its neighbors upon
receiving arecommendation request from a source node. LetNr requestNk for a recom-
mendation about a nodeNe. The source nodeNr sends this recommendation request by
sending a special message RECREQ containing the nodeid of the target node (in this
caseNe). The nodeNr can choose this recommender using athreshold trust valueTthr.
That is, ifv(Nr −→ Nk)≥ Tthr then onlyNr sends a RECREQ message toNk. If Nk has
a trust relationship withNe, thenNk replies by sending a message RECRESPONSE
containing the pair〈node id,V 〉 whereV = v(Nk −→ Ne). The nodeNr then scales this
recommendation with the trust value that it has onNk. Averaging all such recommen-
dation received gives the ‘recommendation’ (or, rating) ofNe. Formally, if Nr receives
m recommendations aboutNe, then

Nr RNe =
1
m

m

∑
k=1

{v(Nr −→ Nk)× v(Nk −→ Ne)} (3)

The trusterNr maintains a list, calledrecommendation list, RL = (node id, list) for
each trustee where structure of each item in the list is (nodeid, recommendationvalue).

3.3 Computing interaction

Interaction is modeled as cumulative effect of events encountered by a truster nodeNr

regardingNe. We classify interaction in two categories –packet forwarding interaction

– when the truster considers the behavior of the trustee as a packet forwarder, andrating
interaction – when the truster considers the behavior of the trustee as a recommender.
Every event in each of these categories has binary outcome; either the trusterNr has
trust-positive event or a trust-negative event depending whether the event contributes
toward a trust-positive interaction or a trust-negative interaction.

Evaluating packet forwarding interaction To evaluate packet forwarding interac-
tion, the trusterNr checks the outcome of each packet forwarded toNe within the
specific time windowwin. Each packet forwarded correctly towards the destination is
considered as a trust-positive event. Each dropped packet gives rise to a trust-negative
event. The nodeNr measures the number of forwarded packet byNe as follows:Nr

forwards packets toNe and with every such packetNr sends an ECHO message with
a time-to-live (TTL) = 2. Each reply received byNr denotes correct forwarding of
the packet byNe to the next memberNk in the path.Nr keeps this information in
a tableIT = 〈Node id,PFCp,PFCn,RCp,RCn〉 wherePFCp denotes the counter for
trust-positive packet forwarding interaction within the window andPFCn counts the
trust-negative packet forwarding interactions.RCp andRCn are rating counters used for
counting the results of rating interactions. All these fields has default value 0. Whenever
a packet is dropped the counterPFCn is increased by 1 and for each received reply the
counterPFCp is increased. Formally,packet forwarding interaction, denoted byIp f of

Nr aboutNe within the windowwin is defined as the ratioPFCp−PFCn
PFCp+PFCn

.

Evaluating rating interaction The rating interaction is evaluated in a similar man-
ner. We assume that each node agrees to provide a ‘trust recommendation’ about its
neighbors upon receiving arecommendation request from a source node. We also as-
sume that for each neighbor, the truster keeps a list of nodeids of the nodes who have
provided recommendation for that neighbor. Whenever the truster has a ‘packet for-
warding interaction’ with the neighbor node and the result of that interaction matches
with the recommendation, that is the truster has positive (negative) experience and the
recommendation is also positive (negative), it increases theRCp in IT of all such rec-
ommenders by 1. If there is a mismatch between the outcome andthe recommendation,
the truster increases theRCn counter by 1 for those recommenders. For example, let
the trusteeNe has provided “positive” recommendations for the nodesNi,N j,Nk to the
trusterNr. Therefore, in the recommender listRL, Ne appears in the list against each of
these nodes. LetNr have trust-positive packet forwarding interaction withNi, N j and
trust-negative packet forwarding interactionNk. Then in the interaction tableIT , for the
nodeNe, the counterRCp is increased twice andRCn once. At the end of time window

win therating interaction, denoted byIr of Nr aboutNe is defined as the ratioRCp−RCn
RCp+RCn

.

Evaluating interaction Theinteraction component of the nodeNe is evaluated as

Nr INe = β∗ Ip f +(1−β)∗ Ir (4)

whereβ ∈ (0,1) is a fraction used as the relative importance weight to the packet for-
warding interaction.

3.4 Computation of final trust value

After computing values of the components we evaluate the trust value for the trusteeNe

as the average of the components. Formally,

v(Nr −→ Ne) =
Nr PNe +Nr RNe +Nr INe

3
(5)

These information are kept in a trust table,T T = 〈nodeid, properties, recommendation,
interaction, trustvalue, cost〉. After each windowwin this table is updated with new
values which are kept and used in the next time window. All other tables are set to
their corresponding default values. Next section describes the modified distance vector
routing algorithm which finds the path with minimum average cost for forwarding a
packet to the destination.

4 Data path discovery

To select the most trustworthy path, each node evaluates anddynamically updates the
trust components between itself and current neighbors. It then calculates the trust value
of the neighbors by the process described in section 3. Thesevalues are used to calculate
the forwarding cost between two neighbors, using the equation 1 in section 2.1. The path
with the minimum average forwarding cost is preferred and the adjacent node on this
path is trusted to forward the packets toward the destination.

4.1 Route discovery

Our algorithm is based on a “rumor” about paths from neighbors. This is incomplete
information. We thus choose to use the average and standard deviation of the running
sum of cost in our route discovery protocol. This formula does not require the complete
path information yet can correctly evaluate the path’s reliability like the one with the
complete path information. The average and standard deviation of running sum are
computed as follows: let, a random variableX take on the valuesx1, . . . ,xn andx be the
latest value. We use the following equations:

AV G = (x+
n

∑
i=1

xi)/(n+1) (6)

SD =

√

n
n

∑
i=1

x2
i − (

n

∑
i=1

xi)2/n(n−1) (7)

When a node receives a route information message from a neighbor nodeNk, it updates
the forwarding cost on the path towards nodeN j (where nodeNk is chosen as the next
hop) by adding the current cost between itself andNk and calculate the updated average
cost using equation 6. It then re-evaluates the path to choose the optimal route to the
destination. This process compares among all possible candidate routes and chooses the
path that has the minimal average cost. If more than one candidate paths have same min-
imum average cost or have a difference of cost less than a given thresholdη, the routing
algorithm selects the path that has the least standard deviation as an optimal path. The

Algorithm 1 Route Discovery in Pervasive Computing
Description: Route Discovery procedure simplifies the modified Distance Vector algo-
rithm.
Input: destinationN j, reachable from nodeNk
Output: : The routing table of a given source node S
Initialization:
Initialize cost to all nodesN j known to S to∞
Calculate the trust between S and its immediate adjacent node Nk in S’s neighbor list
Add all immediate adjacent nodes to the routing table
for all nodeNk in the neighbor listdo

compute trust between S andNk (equation 5)
compute average costDS(Nk, Nk) (equation 6)
compute running sumDT (S, Nk)
compute running sum of squaresDT 2(S, Nk)

end for
Iteration:
Wait until S detects change from its immediate linkNk or receives a routing packet from its
neighbor /* This packet contains the information about the destination nodeN j */
if S detects change in its immediate linkthen

Update the cost and propagate the change to all neighbors
else

if N j is a destination that S has never seen beforethen
Compute routing cost toN j
Compute running sum, running sum of squares, and hop count toN j
Add N j and its routing parameters into the routing table

end if
if N j is already in the routing tablethen

Compute the routing cost toN j
Update the routing table if new cost is better than the current cost in the routing table
Announce the new routing table to neighbors

end if
end if

standard deviation is calculated using the equation 7. Algorithm 1 gives the protocol
used in generating the routing table. It consists of two phases: table initialization and
iteration. The table initialization phase establishes paths to all immediate neighbors
known to the source S. For each neighborNk, node S keeps track of hop count, aver-
age cost (calculated from equation 5), running sum of cost (DT (S, Nk)), and running
sum of square of cost (DT 2(S, Nk)). These cost parameters are used for calculating the
average cost and standard deviation according to the equation 6 and equation 7. The
iteration phase is only triggered upon receiving the routing packets or upon changing of
an immediate link with its neighbor.

In the first case, if the destination nodeN j in the received packet is not known by
node S, it will addN j to the routing table and compute the routing cost toN j by adding
its trust between itself and its neighbor node who has sent the routing information ofN j

to S. The routing cost to the destinationN j is computed as:

DS(N j, Nk) =
v(S −→ Nk)+ DT(Nk, N j)

hop cnt(Nk, N j)+1
(8)

where NodeNk is the sender of the routing information andDT (Nk,N j) is the forward-
ing cost fromNk to N j. If S already knows the destination nodeN j, it recomputes the
routing cost toN j and compares this value with the existing value. If the new cost is
less or more stable1 than the current cost, the cost to the destinationN j is updated. If
the trust value between node S and its immediate neighborNk has changed, S has to
recompute the routing cost to all destinationsN j whereNk is the next hop. The above
equation 8 is used to recomputing the new routing cost. Then Scompares the new cost
to the current cost that S has in its routing table. If the new cost is less or more stable
than the current cost, the cost to the destinationN j is updated.

5 Analysis

5.1 Security analysis

The trust-based approach to routing is intended to minimizethe effect of malicious
nodes in the network. We discuss how the proposed scheme can reduce this effect. A
malicious node can subvert the network in two ways:

Dropping packets A malicious node on a path can deliberately drop the legitimate
packets. Suppose a nodeNi is sending a packet toN j through the neighborNm who
is malicious and drops packets arbitrarily. With every dropof packet,Ni increases the
‘trust-negative packet forwarding counter’PFCn corresponding to the nodeNm in the
interaction table. Note, in our schemeNi cannot differentiate between a deliberate drop
of packet and a packet drop due to valid reasons (like broken link or downtime of a
node). However for a malicious node, number of dropped packets will be high compare
to number of forwarded packets. This will lower the ratioPFCp−PFCn

PFCp+PFCn
and consequently

Ni’s trust onNm will be low. Even if Nm keeps oscillating packet drop behavior, the
above ratio will be close to zero and does not helpNm to increase its trust. Also note
that Nm cannot foolNi by dropping the actual data packet but forwarding the ECHO
message toN j. BecauseN j will not reply to the ECHO message unless it receives the
corresponding data packet.

Providing false recommendation A malicious nodeNm can disrupt the proper func-
tioning of the scheme by providing false recommendation about a node. Suppose the
malicious nodeNm provides a “positive” rating about nodesNk, Nl where both of them
are malicious nodes. Every timeNi encounters a trust-negative packet forwarding event

1 This is used in the case when the new cost is equal to the the current cost or has a slight
difference. The path that has less standard deviation is said to be more stable path.

with any of them,Ni increases the ‘trust-negative rating counter’RCn of Nm which low-
ers the ratioRCp−RCn

RCp+RCn
. Therefore, even ifNm behaves properly in the context of packet

forwarding, it cannot subvert the system by falsely ‘campaigning’ for some other mali-
cious nodes in the network. This also reduces the effect of collusion of malicious nodes
to disrupt reliable routing. Similar action prevents the problem of ‘badmouthing’ i.e.,
whenNm provides false ‘negative’ rating about a ‘good’ node. This is possible because
the trust of the benign node is not dependent just on rating provided byNm, but involves
other parameters on whichNm cannot have any control.

The above discussions show that the proposed trust-based routing scheme can re-
duce the effect of malicious nodes – working as individual oras a part of collusion, in
attacks like arbitrary packet drops, false data injection and badmouthing.

5.2 Complexity analysis

As mentioned earlier, a typical device in a pervasive computing environment has rel-
atively low resources in terms of storage and power. However, it needs to do some
computations to evaluate the trust and cost. It also needs tostore some values for a spe-
cific duration. In this section we analyze the computation, communication, and storage
complexity of our protocol.

Computation complexity In our approach the run-time complexity of the routing algo-
rithm is not affected to a great extent. Our scheme only changes the metric of computing
the administrative distance between nodes in the pervasivecomputing environment. It
requires two additional computations for the running sum and the standard deviation.
These additional computations do not change the big-O complexity of running time of
the routing protocol as they are proportional to the size of the network. However, our
approach requires additional methods in order to evaluate the trust between nodes. All
these computations are simple arithmetic computations andhave linear bounds. Conse-
quently these do not add much to the computation overhead of the proposed protocol.

Communication complexity A node maintains view of connectivity and trust rela-
tionship by periodically transmitting a beacon packet. This packet carries the node in-
formation including sequence number, hardware address, hardware protocol, and trust
recommendation upon request. According to this scheme, there are 3 types of the bea-
con message – announcement, recommendation request, and recommendation reply.
When a node receives a beacon message, it identifies the sender, measures the strength
of the beacon signal (section 3.1), collects the trust information and recalculates the
trust value of the sender. If the beacon message is a recommendation reply and the
trustee is recognized by the receiver, it recomputes the trust value of the trustee with
this recommendation information about the trustee. If the beacon message is a recom-
mendation request message, and the trustee is recognized bythe receiver, it prepares the
trust value of the trustee and sends it to the requester with the next beacon message. We
have estimated that a message 256 bits (32 bytes) long is sufficient to carry the beacon
message. In the following discussion we show that routing tables in our protocol require

only 154 bits for each record. Therefore, for a small network(say, with 50 nodes), the
nodes pass a routing table which is of size less than 1KB.

Storage complexity In our protocol each node has to maintain a certain number of
tables. In this section we discuss the storage overhead thatis required to store these
tables. For each neighbor, a truster node needs to maintain the following tables and list:
PT (properties table),PT node id

tmp (temporary property table),IT (interaction table),TT
(trust table), and the listRL. In any table the nodeid field takes 32 bits to store the
address. We express the values ofSSavg in PT , SS in PT node id

tmp , andProperties, Rec-
ommendation, Interactions, Trust in T T using 16 bits in which the most significant bit
is the sign bit, the next bit expresses the exponent, and the rest 14 bits expresses the
fraction. We need only 1 bit to express the exponent as all these numbers are within
[−1,1]. Also, we get the precision of 1/214 for trust related values. In the interaction
tableIT we use 8 bits to express each counter. The signaling factor isalso expressed
using 8 bits. However, we use 32 bits to represent thecost in T T as it is not bounded.
Since the cost is always positive, we use first 16 bits for the exponent and the last 16
bits for the fraction. This gives the precision of 1/216 for the cost value which is ac-
curate enough for the environment. The figure 3(a) shows the structure of the tables
stored for each neighbor. From the figure we see that the tables PT, IT,TT require

PFCpNode_id PFCn RCp RCnIT

32 8 8 8 8

Node_id
Reco_val

Node_id

Reco_val

Node_id

Reco_val

Node_id
RL

32
32 32 32

16 1616

Node_id Prop. Recom. Interact. Trust Cost

32 16 16 16 16 32

TT

Node_id SSavg SF

32 16 8

PT PT
Node_id
tmp

Node_id

SS SB

16 8

32

(a) Tables maintained for each neighbor

Destination Win# NH_id Costavg #Hops Sum2

32 8 32 32 8 32

RT

(b) Routing table of the node

Fig. 3. Storage structure of the tables maintained in each node

56,64 and 128 bits respectively for each record. Each of these tables is maintained for
all the neighbors. If a node hasm neighbors, then it requiresm×228 bits. To store each
signal and stability information we need 24 bits. If we assume that a node receivess
signals within a window, then for each neighbor it needs 32+ s× 24 bits to store the
signal. Hence for allm neighbors the node requiresm.(32+ s.24) bits. For the recom-

mendation listRL each record requires 48 bits and we assume at mostk (k ≤ m) rec-
ommenders recommend a neighbor. Therefore for each neighbor it requires 32+k×48
bits and hence form neighborsm.(32+ k.48) bits. Note, we have not considered the
pointer size here as it depends on the implementation. Hencefor each neighbor a node
requires 228+(32+ 24.s)+ (32+ k.48) = 292+ 24.s + 48.k bits and for allm neigh-
bors total storage required ism.(292+24.s+48.k) bits. This storage is not significant
if we assume that each node in the pervasive computing environment interacts with a
small number of neighbors. For example, in a pervasive computing environment topol-
ogy where each node interacts with at most 20 neighbors and atmost 100 signals are
received within a time windowwin, then maximum number of bits required to store the
trust information is(292+24×100+48×20)×20= 3652×20= 73040 bits≈ 9KB.

Each node also stores a routing table whose structure is shown in the figure 3(b).
TheWin# field keeps the last window number. #Hops stores the number of hops to the
destination. NHid field stores the address of the next hop towards destination. Costavg

and∑2 fields store the cost metrics which are used in the route selection protocol. We
also need the metric∑ for route selection. However we do not store this information in
the routing table as it can be derived fromCostavg and #Hops. Each record of this table
requires 154 bits and hence size of the routing table for eachnode in the topology is
O(154n) wheren is the number of nodes in the network. In our example if we assume
a small network with 50 nodes then each node require maximum 154×50 bits which is
≈ 0.9KB. Therefore all together a node requires only 10KB storage space to store the
information related to trust-based routing.

The above analyses show that our protocol is light-weight interms of trust evalua-
tion, feedback management, message passing, and storage, thereby making it suitable
for pervasive computing environment.

6 Conclusion & future work

In this work, we address the problem of reliable delivery of event data in pervasive com-
puting environments to appropriate action points in order to support obligation policies.
The problem is modeled as a routing problem. We present a trust-based approach to
routing. Each node measures trustworthiness of its neighbor based on the neighbor’s
properties like signal strength and signal stability, a neighbor’s behavior in forwarding
packets from the node as well as in recommending other nodes,and a neighbor’s rat-
ing by other neighbors. We represent each link in the networkas a trust relationship
with a numeric value between[−1,1]. This trust metric reflects reliability of a node as
a packet forwarder. We have proposed a cost metric, which is inversely related to the
trust metric, for each link in the network. We next adapt the distance vector routing
algorithm for routing in pervasive computing environments. The modified algorithm
uses the cost value assigned to each link to find the minimum average cost path from
source to destination. We have discussed how our protocol can reduce the effect of ma-
licious nodes. We have also shown that the scheme does not enhance the computation,
communication, and storage overhead to any significant extent.

A lot of work still remains to be done. The proposed scheme is generic in nature.
We need to modify specific ad hoc routing protocols using our metrics and compare the

results to evaluate the performance of the proposed scheme.We plan to run simulation
experiments to compare the routing results with existing adhoc routing protocols. We
are also looking for other node properties like remaining battery power to extend the
‘properties’ parameter of the trust metric.

References

1. Balfanz, D., Smetters, D., Stewart, P., Wong, H.: Talkingto Strangers: Authentication in
Adhoc Wireless Networks. In: Symposium on Network and Distributed Systems Security
(NDSS ’02), San Diego, California, USA (February 2002)

2. Chiang, C.C., Wu, H.K., Liu, W., Gerla, M.: Routing in Clustered Multihop, Mobile Wire-
less Networks with Fading Channel. In: 5th IEEE Singapore International Conference on
Networks (SICON’97), Kent Ridge, Singapore (April 1997) 197–211

3. Corson, M.S., Ephremides, A.: A Distributed Routing Algorithm for Mobile Wireless Net-
works. Wireless Networks1(1) (February 1995) 61–82

4. Gafni, E., Bertsekas, D.: Distributed Algorithms for Geneerating Loop-free Routes in Net-
work with Frequently Changing Topology. IEEE Transaction and Communication29(1)
(1981) 11–15

5. Gerla, M., Tsai, J.T.: Multicluster, Mobile, MultimediaRadio Network. Wireless Networks
1(3) (1995) 255–265

6. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On-Demand Routing Protocol for
Ad Hoc Networks. In: Proceedings of the 8th Annual International Conference on Mobile
Computing and Networking (MobiCom’02), Atlanta, Georgia,USA (September 2002)

7. Papadimitratos, P., Haas, Z.: Secure Data Transmission in Mobile Ad Hoc Networks. In:
ACM Workshop on Wireless Security (WiSe’03), San Diego, California, USA (September
2003)

8. Perkins, C.E., Bhagwat, P.: Highly Dynamic Destination-Sequenced Distance Vector
(DSDV) for Mobile Computers. In: Conference on Communication Architectures, Proto-
cols and Applications (SIGCOMM’94), London, UK (August 1994) 234–244

9. Toh, C.K.: A Novel Distributed Routing Protocol To Support Ad hoc Mobile Computing.
In: IEEE 15th Annual International Phoenix Conference on Computers and Communication
(IPCCC’96), Phoenix, AZ, USA (1996) 480–486

10. Zhou, L., Haas, Z.J.: Securing Ad Hoc Networks. IEEE Network 13(6) (1999) 24–30
11. Zouridaki, C., Mark, B.L., Hejmo, M., Thomas, R.K.: A Quantitative Trust Establishment

Framework for Reliable Data Packet Delivery in MANETs. In: Proceedings of the 3rd ACM
Workshop on Security of Ad Hoc and Sensor Networks (SASN’05), Alexandria, VA, USA,
ACM Press (November 2005) 1–10

12. Awerbuch, B., Holmer, D., Nita-Rotaru, C., Rubens, H.: An On-Demand Secure Rout-
ing Protocol Resilient to Byzantine Failures. In: In ACM Workshop on Wireless Security
(WiSe’02), Atlanta, GA, USA (September 2002) 21–30

13. Dube, R., Rais, C.D., Wang, K.Y., Tripathi, S.K.: SignalStability-Based Adaptive Rout-
ing (SSA) for Ad Hoc Mobile Networks,. IEEE Personal Communications Magazine4(1)
(February 1997) 36–45

14. Yi, S., Naldurg, P., Kravets, R.: Security-Aware Ad Hoc Routing for Wireless Networks. In:
Proceedings of the 2nd ACM Symposium on Mobile Ad Hoc Networking and Computing
(MobiHOC 2001), Long Beach, CA (October 2001) 299–302

15. Ray, I., Chakraborty, S.: A Vector Model of Trust for Developing Trustworthy Systems.
In: Proceedings of the 9th European Symposium of Research inComputer Security (ES-
ORICS’04). Volume 3193 of Lecture Notes in Computer Science., Sophia Antipolis, France,
Springer-Verlag (September 2004) 260–275

