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Abstract. Today’s computer systems face sophisticated intrusions during which
multiple vulnerabilities can be combined for reaching an attack goal. The overall
security of a network system cannot simply be determined based on the num-
ber of vulnerabilities. To quantitatively assess the security of networked systems,
one must first understand which and how vulnerabilities can be combined for an
attack. Such an understanding becomes possible with recent advances in model-
ing the composition of vulnerabilities asattack graphs. Based on our experiences
with attack graph analysis, we explore different concepts and issues on a metric
to quantify potential attacks. To accomplish this, we present anattack resistance
metric for assessing and comparing the security of different network configura-
tions. This paper describes the metric at an abstract level as two composition
operators with features for expressing additional constraints. We consider two
concrete cases. The first case assumes the domain of attack resistance to be real
number and the second case represents resistances as a set of initial security con-
ditions. We show that the proposed metric satisfies desired properties and that it
adheres to common sense. At the same time, it generalizes a previously proposed
metric that is also based on attack graphs. It is our belief that the proposed met-
ric will lead to novel quantitative approaches to vulnerability analysis, network
hardening, and attack responses.

1 Introduction

Today’s networked computer systems constitute the core component of informa-
tion technology infrastructures in enterprises and in critical infrastructures, such
as power grids, financial data systems, and emergency communication systems.
Protecting such systems against malicious intrusions is crucial to the economy
and to our national security. Having a standard way for measuring various as-



pects of network security will bring together users, vendors, and labs in speci-
fying, implementing, and evaluating the requirements and features of network
security products. However, in spite of various efforts in standardizing security
metric, a widely-accepted metric for network security is still largely unavailable.
This is partly due to the fact that most researchers are still adopting a qualita-
tive and imprecise view toward the evaluation of network security. For example,
typical issues addressed in current research may ask following questions. Are
all critical resources in a network secure (topological vulnerability analysis)?
Can a network be hardened to secure the given resources (network hardening)?
How to stop an ongoing intrusion from compromising given resources (attack
response)?

The qualitative nature of these questions reflect the current focus on the
qualitative, rather than quantitative, study of network security. This focus im-
plies the inherent impreciseness in many research results and also indicates the
need for more research efforts on security metrics. However, the lack of research
on quantitative aspects of network security is natural. Assessing the overall se-
curity of a network requires a thorough understanding of the interplay between
host vulnerabilities. That is, which and how vulnerabilities can be combined
for an attack. Such an understanding is difficult to obtain with existing secu-
rity tools, such as vulnerability scanners and intrusion detection systems. These
tools typically focus on identifying individual vulnerabilities or attacks, and are
usually unaware of the relationships among vulnerabilities or attacks.

Recent advances in modeling compositions of vulnerabilities usingattack
graphs(a review of related work will be given in the next section) indicate that
the research has progressed to a point where the quantitative study of network
security is critical and, at the same time, possible. Attack graphs supplement
vulnerability scanners with the missing information about relationships among
vulnerabilities. Analyzing the correlated vulnerabilities thus provides a clear
picture about what attacks might happen in a network and about their conse-
quences. Attack graphs thus allow us to consider potential attacks in a particular
contextrelevant to the given network. The current work is based on our past ex-
periences with attack graph analysis [12, 15, 16, 21, 29–32] and a practical tool,
the Topological Vulnerability Analysis (TVA) system, with the capability of
modeling more than 37,000 vulnerabilities taken from 24 information sources
including X-Force, Bugtraq, CVE, CERT, Nessus, and Snort [12]. The presence
of such a powerful tool demonstrates the practicality of using attack graphs as
the basis for measuring network security.

Instead of measuring individual vulnerabilities and then wondering about
their combined effect, this paper measures the overall security of a network us-
ing the context provided by an attack graph. Such a capability will enable us



to answer important questions like (but not limited to): How much effort and
time will it take to compromise a critical resource under each possible network
configuration? Answers to such questions will allow system administrators to
choose the optimal configuration that is the most resistant to potential attacks.
More specifically, we propose anattack resistancemetric for assessing and com-
paring the security of different network configurations. The metric is based on
intuitive properties derived from common sense. For example, our metric will
indicate reduced security when more attack paths exist, whereas it indicates in-
creased security for longer and more difficult paths. To make the metric broadly
applicable, we first describe it at an abstract level as two composition operators
with functions that allow for expressing additional dependency relationship be-
tween resistances. We then consider two concrete cases. The first assumes the
domain of attack resistance to be real number and the second represents resis-
tances as sets of initial security conditions. For the first case, we propose to use
operators that are analogous to the ones used in computing the resistance of a
series and parallel circuit. We study additional issues that arise due to the unique
properties of attack graphs. For the second case, we show that a previously pro-
posed metric [21] is equivalent to our metric under certain conditions.

The rest of the paper is organized as follows. Section 2 outlines a framework
for defining security metrics using attack graphs. Section 3 presents the attack
resistance metric. Section 4 reviews related work. Finally, Section 5 concludes
the paper.

2 A Framework for Defining Security Metrics Using Attack
Graphs

This section first reviews the attack graph model and then discusses intuitions
behind the proposed metric.

2.1 Attack Graph Model

We adopt the attack graph model used in the Topological Vulnerability Analysis
tool [12], which is one of the most advanced utilities for generating and analyz-
ing attack graphs. This attack graph model is similar in nature to the earlier ones
based on modified model checking [26], but it avoids the potential combinatorial
explosion faced by the latter. More specifically, it makes amonotonicity assump-
tion stating an attacker never relinquishes an obtained capability [1]. An attack
graph can thus record the dependency relationship between exploits instead of
recording all attack paths. The resulting attack graph has no duplicate vertices
and hence has a polynomial size in the number of vulnerabilities multiplied by
the number of connected pairs of hosts.



In our model, anAttack graphis a directed graph representing prior knowl-
edge about vulnerabilities, their dependencies, and network connectivity. The
vertices of an attack graph are divided into two categories, namely,exploitsand
security conditions(or simplyconditionswhen no confusion is possible). First,
exploits are actions taken by attackers on one or more hosts in order to take
advantage of existing vulnerabilities. We denote an exploit as a predicate. For
example, an exploit involving three hosts can be denoted usingv(hs, hm, hd),
which indicates an exploitation of the vulnerabilityv on the destination hosthd,
initiated from the source hosths, through an intermediate hosthm. Similarly,
we write v(hs, hd) or v(h), respectively, for exploits involving two hosts (no
intermediate host) or one (local) host.

Second, a security condition is a property of the system or network that is
relevant to some exploits. A condition is relevant to an exploit if it is either re-
quired for executing the exploit or satisfied by executing the exploit. We also
use a predicate to represent a condition involving one or more hosts. For exam-
ple, c(hs, hd) indicates a security-related conditionc involving the source host
hs and the destination hosthd. Similarly, a condition that only involves a single
host can be written asc(h). Examples of security conditions include the exis-
tence of a vulnerability, the existence of network connectivity or trust relation-
ship between two hosts. It is worth noting that an attack graph usually includes
exploits and conditions corresponding to normal services or functionality. Such
services are included because they may help attackers in escalating their priv-
ileges when combined with other exploits, although they are not intended for
that purpose. On the other hand, this fact also implies that not all exploits can be
removed in hardening a network, so measuring the relative security of different
configurations becomes important.

Directed edges in an attack graph inter-connect exploits with conditions. No
edge directly goes between two exploits or between two conditions. First, an
edge from a condition to an exploit denotes therequire relation, which means
the exploit cannot be executed unless the condition is satisfied. Second, an edge
pointing from an exploit to a condition denotes theimply relation, which means
executing the exploit will satisfy the condition. For example, an exploit typically
requires at least two conditions, that is the existence of the vulnerability (which
could be a normal service) on the destination host and the network connectivity
between the two hosts. We formally characterize attack graphs in Definition 1.

Definition 1. Given a set of exploitsE , a set of conditionsC, and two relations
require ⊆ C ×E andimply ⊆ E ×C, anattack graph G is the directed graph
G(E ∪ C, require ∪ imply) (E ∪ C is the vertex set andrequire ∪ imply the
edge set).



One important semantics of attack graphs is that the require relation is
conjunctive, whereas the imply relation is disjunctive. More precisely, an ex-
ploit cannot be realized untilall of its required conditions have been satisfied,
whereas a condition is satisfied ifanyof the realized exploits implies that condi-
tion. Sometimes only exploits in an attack graph are of interest, we thus remove
conditions to obtain anexploit dependency graph. However, in such a graph,
edges between exploits may represent both the conjunctive and disjunctive rela-
tionship. For example, in an attack graph, if two exploitse1 ande2 both imply
the same conditionc1, which is required by another exploite3, thene3 can be
executed after executing eithere1 or e2 (sincec1 will be satisfied by any of
them). On the other hand, ife1 implies c1, e2 implies a different conditionc2,
and bothc1 andc2 are required bye3, thene3 cannot be executed before both
e1 ande2 are. We shall need this observation later in the paper.

2.2 Motivating Example

To build intuitions about properties that a security metric should satisfy, we con-
sider the well-known attack scenario as shown on the left hand side of Figure 1
(notice that this is an overly simplified example for illustration purposes, and
our metric and techniques are intended for more complicated cases where re-
sults cannot be obtained through observations). In this attack graph, exploits are
depicted in ovals and conditions in clear text. The critical condition that needs to
be guarded is shown in a shaded oval. The attack graph basically indicates that
an attacker on host 0 can obtain user privilege on host 1, either using an SSH
buffer overflow attack or through the trust relationship established by uploading
the .rhost file through FTP. The attacker can use the latter trick to obtain user
privilege on host 2, either directly from host 0 or using host 1 as an intermediate
stepping stone. The attacking goal, that is the root privilege on host 2, can then
be obtained using a local buffer overflow attack.

The right hand side of Figure 1 shows the exploit dependency graph. It is
worth noting that in this specific case only disjunctive dependency relation-
ship exists between exploits. For example, there are two alternative ways to
reach the exploitftp rhosts(1, 2) and similarly two ways to reach the exploit
local bof(2, 2). In general, the dependency relationship between exploits can
be both disjunctive and conjunctive, and the graph notation is thus not sufficient
to distinguish between the two. Later we shall introduce a special notation for
this purpose.

We make several observations in Figure 1. First, the two loops via exploit
ftp rhosts(2, 1) andsshd bof(2, 1) are both removed. These loops both allow
the attacker to obtain user privilege on host 1 for the second time, after the privi-
lege has already been obtained (otherwise the two exploits cannot be executed).
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Fig. 1. An Example of Attack Graph and Exploit Dependency Graph

An attacker can certainly make such redundant attacking effort at will, but a se-
curity metric should assume the most efficient attackers and indicate the security
of a network in the worst-case scenario. That is,a metric should never yield a
value that is greater than the smallest attacking effort required for reaching the
attack goal.

Second, the exploits in Figure 1 clearly have different difficulty in terms of
the time and effort required for their execution. For example, theftp rhosts and
rsh exploits both take advantage of normal services in a clever way, and they
usually do not require much time or effort if the attacker has the basic knowledge
about the attack (between the two type of exploits,rsh may be slightly easier
thanftp rhosts in the sense that the latter requires crafting the .rhost file). On
the other hand, both thesshd bof and thelocal bof are buffer overflow attacks,
which require significantly more knowledge and time than the previous two



because a buffer overflow attack usually requires brute force effort to determine
proper parameters. This example thus showsdifferent exploits have different
difficulties in terms of effort and time required for their execution.

Third, there are three possible attack paths (that is, sequences of attacks)
reaching the attack goal, as shown on the right hand side of Figure 1, the left path
(that is, the one throughftp rhosts(0, 2) andrsh(0, 2)) requires the smallest
amount of effort. The middle path requires slightly more effort since it involves
both host 1 and host 2. The right path demands the most effort because it requires
an additional buffer overflow attacksshd bof(0, 1). Recall the above argument
that security should be measured as the smallest effort required to reach the goal.
It seems that the left path is a good candidate to be used as the measure of over-
all security. However, it is important to notice that when multiple paths coexist
in an attack graph, reaching the attack goal is actually easier than if only one of
these paths exists (even if the path requires the smallest amount of effort). Intu-
itively, more attack opportunities mean less security, because attackers will have
a better chance to reach the attack goal. In this specific case, even though the
middle and the right paths are more difficult than the left one, they nevertheless
represent possibilities for attacks and thus they do reduce the overall security of
the network. That is,multiple attack paths together are less secure than any of
the paths alone.

Finally, assuming the middle attack path is followed by an attacker, it can be
argued that the exploitftp rhosts(1, 2) may be slightly easier than its prede-
cessorftp rhosts(0, 1). To launch the same type of attack for the second time,
the attacker will benefit from his/her experiences and tools that have been accu-
mulated while launching the attack for the first time. It is, however, not possible
to add an edge between these two exploits in attack graph, because the exploit
ftp rhosts(1, 2) does not directly depend onftp rhosts(0, 1) (with rsh(0, 1)
in the middle). This implies that an additional relation is needed to encode such
dependency relationship between exploits, which is different from theimply or
require relations already encoded in attack graphs. In another word,executing
an exploit may change the difficulty of executing another exploit, even if the two
do not directly depend on each other in the attack graph.

The above requirements are largely common sense that should be satisfied
by a security metric. The rest of the paper proposes a security metric based on
the attack graph model by taking these requirements into consideration.

3 An Attack Resistance Metric

This section proposes an attack resistance metric based on the attack graph
model. We first discuss the metric in a generic form. We then discuss two con-



crete cases to illustrate the metric in more details. We address various issues
encountered while computing the metric from a given attack graph.

3.1 A Generic Framework

We propose to measure theattack resistanceof a network configuration as the
composition of measures of individual exploits. Ideally, the resistance of each
type of exploits in terms of effort and time should be represented as a total or-
der, such as using real numbers (the next section considers how individual resis-
tances can be combined when attack resistance is represented as a real number).
Unfortunately, although clearly desired, the information and resources required
by this ideal situation are limited [17]. It is, however, usually possible to es-
timate an approximate ordering or a partial ordering on the domain of attack
resistance. We shall also consider another case where the resistance of individ-
ual exploit is simply the set of initial conditions (that is, conditions not implied
by other exploits).

Different applications may define the attack resistance of individual exploits
in significantly different ways. To make our metric broadly applicable, we de-
scribe the metric in a generic form while leaving the individual measures unin-
terpreted. Central to the model are two types of composition operators, denoted
as⊕ and⊗. The two operators correspond to the disjunctive and conjunctive de-
pendency relationship between exploits in an attack graph, respectively. Based
on the intuitive properties mentioned in Section 2.2, the two operators should
satisfy thatr1⊕ r2 is no greater thanr1 or r2, whereasr1⊗ r2 is no less thanr1

andr2, with respect to a given ordering on the domain of attack resistance.
In addition to the two composition operators, we introduce a functionR()

that maps a set of exploits to another exploit and its resistance value. The func-
tion is intended to capture a special kind of dependency relationship between
exploits. That is, executing some exploits may affect the resistance value of an-
other exploit, even though the latter cannot be executed yet. In most cases, this
effect will be to assign a lower resistance value to the affected exploit. For exam-
ple, exploits involving the same vulnerability should be related together using
this function such that successfully exploiting one instance of the vulnerability
reduces the resistance of others due to the attacker’s accumulated experiences
and tools. We shall also show that this function is useful in handling the non-tree
structure of attack graphs. We summarize the model in Definition 2.

Definition 2. Given an attack graphG(E ∪ C, require ∪ imply) with attack
goalsg ⊆ C, the attack resistance metric is composed of

– A total functionr() : E → D,



– a total functionR() : E → D,
– an operator⊕ : D ×D → D,
– an operator⊗ : D ×D → D, and
– a functionR() : E → E ×D.

We call the setD thedomain of resistance,r(e) the individual resistance
(or simply resistance) of an exploite, R(e) thecumulative resistanceof e.

The main tasks in implementing this metric for a specific application is to
populate the individual resistance by defining the functionr(), to determine
suitable operators⊕ and⊗, to capture additional dependency relationships be-
tween exploits using the functionR, and finally to decide how the cumulative
resistance functionR() should be computed based on these information. The
cumulative resistance of each attack goal then provides a quantitative measure
as how likely that attack goal can be achieved, or equivalently, how vulnerable
the corresponding resource is under a given network configuration.

3.2 Attack Resistance As Real Numbers

We now consider a concrete case where the domain of resistanceD is the non-
negative real number. Analogous to the resistance of a series and parallel circuit,
we define⊕ as the reciprocal of the sum of the reciprocal of individual resis-
tance values. That is, 1

r1⊕r2
= 1

r1
+ 1

r2
. The operator⊗ is simply addition. Recall

our discussions about the relative difficulty of different type of exploits in Sec-
tion 2.2. Suppose we assign the value10 to be the resistance of eachsshd bof
and local bof , the value2 and1 to eachftp rhosts andrsh exploit, respec-
tively, as depicted on the left hand side of Figure 2. The cumulative resistances
can then be computed as follows, wherer() stands for the individual resistance
andR() the cumulative resistance (we shall not consider the functionR for the
time being). The final results are shown in the right hand side of Figure 2.

– R(rsh(0, 1)) = r(ftp rhosts(0, 1)) + r(rsh(0, 1)) = 2 + 1 = 3
– R(ftp rhosts(1, 2)) = 1/(1/R(rsh(0, 1)) + 1/r(sshd bof(0, 1)))+

r(ftp rhosts(1, 2)) = 1/(1/3 + 1/10) + 2 ≈ 4.3
– R(rsh(1, 2)) = R(ftp rhosts(1, 2)) + r(rsh(1, 2)) ≈ 4.3 + 1 = 5.3
– R(rsh(0, 2)) = r(ftp rhosts(0, 2)) + r(rsh(0, 2)) = 2 + 1 = 3
– R(local bof(2, 2)) = 1/(1/R(rsh(0, 2)) + 1/R(rsh(1, 2)))+

r(local bof(2, 2)) = 1/(1/3 + 1/5.3) + 10 ≈ 11.9

According to our discussions in Section 2.2, the cumulative resistance of the
whole network should be smaller than the cumulative resistance of each possi-
ble attack path. The cumulative resistance for each attack path reaching the goal
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Fig. 2. An Example of Attack Resistance in Real Number

can be computed by simply adding (that is, the⊗ operator) individual resis-
tance values along the path. The results for the three attack paths in Figure 2
are13, 16, and23, from left to right. Clearly, the accumulative resistance of
the whole network,11.9, is indeed smaller than any of the three values, satis-
fying the intuitive requirements given in Section 2.2. We may also notice that
the composition (using the operator⊕) of these three resistance values is about
5.5, which is less than the computed resistance11.9. This reflects the fact that
the three paths are not disjoint. The value5.4 is computed under the implicit as-
sumption that the three paths are disjoint, which is not the case here. Intuitively,
having common exploits among different paths may increase the overall attack
resistance, because the attacker must execute these exploits no matter what path
they follow. Our metric naturally takes into consideration the overlapping por-
tion of the paths. Above discussions also indicate that cumulative resistances
can be computed in a breadth-first manner, which takes timeO(| E |2).

The functionR Next we consider the functionR, that is the effect of executed
exploits on the individual resistance of other exploits. The previous example is
not sufficient for this purpose. Instead, we consider the abstract example given
in the left hand side of Figure 3, where the dotted lines represent the following
facts. Between exploit 1 and exploit 2, executing one will change the other’s



individual resistance from the original valuex to a new valuey. Similar re-
lationships exist between exploit 2 and exploit 3, and between exploit 1 and
exploit 6. Notice the special notation between exploits 2, 5, and 7, which de-
notes the conjunctive relationship between exploits 2 and 5. That is, exploit 7
cannot be executed unless both exploit 2 and 5 are already executed (this may
happen when exploit 2 and exploit 5 both imply different conditions, and both
conditions are required by the exploit 7).

Dependency Between Individual Resistances Dealing With the Non-Tree Structure
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Fig. 3. Examples of the FunctionR

The left hand side of Figure 3 shows three possibilities in dealing with the
functionR. First, the effect ofR(6) = (1, y) (that is, executing exploit 6 will
change the individual resistance of exploit 1 asr(1) = y) can be safely ignored,
because exploit 6 can never be executed before executing exploit 1. On the other
hand, the individual resistancer(6) can now simply be changed fromx to y, be-
cause any execution of exploit 6 implies that exploit 1 has already been executed
(which in turn implies a change inr(6)). Second, there is no naturally induced
order between the execution of the exploit 1 and that of exploit 2, so they can
be executed in any order. Intuitively, these two exploitsmeetat exploit 6 in the
sense that we combine these two resistance values in the same formula when
we computeR(6) = 1/(1/(r(1) + r(4)) + 1/r(2)) + r(6). At that point, the
last composition operator used is⊕ (that is, the exploit 4 and exploit 2 are dis-
junctive). We can then conclude that any minimal attack path (that is, an attack
path with no proper subsets being a valid attack path) including exploit 6 will
include either exploit 1 or exploit 2, but not both. The effect ofR(1) = (2, y)
andR(2) = (1, y) can thus be ignored.

Third, when exploit 2 and exploit 3 meet at exploit 7 (when we compute
R(7) = r(2) + r(3) + r(5) + r(7)), the last composition operator we use is
⊗. This reflects the fact that the exploits 2 and 3 must both be executed in or-
der to reach exploit 7, although the executions can be in any order. If exploit
2 is executed before exploit 3, then we haver(2) = x andr(3) = y; if ex-



ploit 3 is first executed, we haver(3) = x andr(2) = y. However, we can
never haver(2) = r(3) = y because a change only happens after an execution.
In this case, we compute the cumulative resistance of exploit 7 for both cases:
r(2) = x, r(3) = y andr(3) = x, r(2) = y. We then choose the smaller result
as the cumulative resistance of exploit 7. This choice ensures that the computed
cumulative resistance will be no greater than the cumulative resistance com-
puted by following any attack path leading to exploit 7. The above discussion
covers all possible cases, because when two exploits eventually meet (that is,
their resistances are combined), they must meet either at one of themselves (the
case of the exploit 1 and exploit 6), or at a different exploit.

The Non-Tree Structure of Attack GraphsUnlike the nice tree structure in the
attack graph in Figure 1, it can be noticed that on the left hand side of Figure 3
both exploit 6 and exploit 7 depend on exploit 2, and the graph is not a tree. This
is relevant because the cumulative resistance of this network should be different
from another network where exploit 6 and exploit 7 depend on two different
exploits. This issue, however, can be easily handled using the functionR as fol-
lows. We split exploit 2 into two identical copies, say, exploit 2a and exploit 2b,
as shown on the right hand side of Figure 3. We then need the constraint that
the resistance of these two exploits will never be added in computing a cumula-
tive resistance, because they actually represent a single exploit. This constraint
can be easily modeled asR(2a) = (2b, 0) andR(2b) = (2a, 0). We can now
compute the metric as usual since the exploit dependency graph becomes a tree.

3.3 Attack Resistance As Sets of Initial Conditions

We consider another concrete case where each exploit’s individual attack re-
sistance is the set of initial conditions (that is, conditions not implied by any
exploit) required by that exploit. This measure can be easily obtained from the
attack graph itself. The attack resistance in terms of the set of initial conditions
has a very different meaning from the attack resistance discussed in the previous
section. Here the resistance indicates conditions that must be satisfied before an
intrusion is possible, instead of the effort and time spent during the actual in-
trusion. A weakest-adversary metric was recently proposed based on the set of
initial conditions [21]. Different network configurations can be ordered based
on their relative security, if a subset relationship exists between the sets of ini-
tial conditions required for reaching attack goals in the two attack graphs. We
show that this metric is equivalent to a special case of our metric by using the
set of initial conditions as individual resistance.

Figure 4 shows two network configurations that are comparable based on
initial conditions [21]. The left hand side depicts an attack scenario similar to the



one in Figure 1 but only involves two hosts. The right hand side shows a different
scenario where the attacker is forced by a firewall to exploit the sendmail buffer
overflow vulnerability on a third host as an intermediate step. It can be observed
that in both cases the goal requires all the exploits to be executed, that is all the
dependency relationship is conjunctive. We use set union as the operator⊗ (we
do not need the⊕ operator in this case). The cumulative resistance of the exploit
local bof(2) is thus simply the collection of all initial conditions in both cases.
Clearly, the resistance in the first case is a proper subset of the resistance in the
second case, and hence the second case has more resistance to potential attacks.
This result is the same as reported previously [21].
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Fig. 4. Two Comparable Network Configurations

4 Related Work

An overview of various issues relevant to security metric is recently given in the
proceedings of the 2001 Workshop on Information Security System Scoring and
Ranking [2]. The efforts by NIST on standardizing security metric are reflected
in the Technology Assessment: Methods for Measuring the Level of Computer
Security [18] and more recently in the Security Metric Guide for Information
Technology Systems [27], which describes the current state of practice of se-
curity metrics, such as that required by the Federal Information Security Man-
agement Act (FISMA). Another overview of many aspects of network security
metric is given in [10].

Closest to our work, Dacier et. al describe intuitive properties derived from
common sense, which should be satisfied by any security metric [7, 8, 19]. They
suggest to assess the difficulty of attacks in terms of time and effort spent by



attackers. They assume an exponential distribution for an attacker’s success rate
over time. Based on this Markov model, they propose to use the MTTF (Mean
Time to Failure) to measure the security of a network. They discuss simple cases
of combining such measures but do not study the general case. We borrow some
of the intuitive properties stated by them, but we use a different way for com-
bining individual measures into the overall attack resistance and we consider a
more general case represented by attack graphs.

Our approach of using additional functions for modeling the effect of exe-
cuted exploits on the resistance value of other exploits is inspired by the work
by Balzarotti et. al [3]. However, their work focuses on computing the mini-
mum effort required for executing each exploit, whereas our work computes
the overall security of a network with respect to given critical resources. Also,
their work does not take into account the kind of dependency that we model
using additional functions. Such dependency reduces the difficulty of executing
an exploit while not directly enabling it to be exploitable. The work by Pamula
et. al introduces a metric based on attack graph [21], in this paper we show that
their metric is a special case of ours under certain conditions.

A qualitative measurement of the risk of a network is given based on vari-
ous forms of the exploitability (that is, whether it is possible to compromise the
network) [4]. Another series of work compares software for their relative vulner-
abilities to attacks using a fixed set of dimensions, namely,attack surface[11,
20, 13]. The work by Mehta et. al borrows Google’s PageRank methodology to
rank exploits in an attack graph [14]. Their technique is especially suitable for
threat models of worms or other malicious software that spread in a random way
in a large network. Our metric has a different threat model, that is attackers have
memory and are rational, so in most cases they will not follow a random model.

Metrics for other perspectives of security, especially trust in distributed sys-
tems, are relevant to our research. For example, Beth et. al proposed a metric
for measuring the trust in an identity established through overlapping chains of
certificates [5]. The way they combine values of trust in each certificate into
an overall value of trust proves to be useful in our study. Similarly, the design
principles given by Reiter et. al are intended for developing metric of trust, but
we found these principles applicable to our study as well [24]. The formal logic
language introduced for measuring risks in trust delegation in the RT framework
inspires us to describe our metric using abstract operators [6].

To obtain attack graphs, topological vulnerability analysis evaluates poten-
tial multi-step intrusions based on knowledge about vulnerabilities [7, 9, 19, 22,
33, 28]. Such analyses can be either forward starting from the initial state [22,
28] or backward from the goal state [25, 26]. Model checking was first used to
analyze whether a given goal state is reachable from the initial state [23, 25]



and later used to enumerate all possible sequences of attacks between the two
states [26]. To avoid the exponential explosion in the number of such explicit
attack sequences, a more compact representation of attack graphs was proposed
based on themonotonicity assumptionsaying an attacker never needs to relin-
quish any obtained capability [1]. On the attack response front, attack graphs
have been used for the correlation of attacks, the hypotheses of alerts missed by
IDSs, and the prediction of possible future attacks [29, 30].

5 Conclusion

Presently, qualitative and imprecise arguments are usually the basis for making
decisions in securing a network. These arguments can mislead the decision mak-
ing and as a result cause the reconfigured network to be in fact less secure. This
paper described a novel attack graph-based attack resistance metric for measur-
ing the relative security of network configurations. The main components of our
metric are two composition operators for computing the cumulative attack re-
sistance from given individual resistances. An additional function allowed the
metric to take into consideration the dependency between individual attack re-
sistances. We demonstrated the metric through two concrete cases. First, attack
resistance was modeled as a real number, and the case was analogous to com-
puting the resistance of a series-parallel circuit. We showed that the proposed
metric satisfied intuitive requirements mentioned in the literature. Second, at-
tack resistance was defined as the set of initial conditions required by each ex-
ploit. We showed that our metric in this case resembled the weakest-adversary
metric previously proposed. It is our belief that the proposed metric will lead to
novel quantitative approaches to vulnerability analysis, network hardening, and
attack response.
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