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Abstract. The database server is a crucial bottleneck in traditional inference con-
trol architecture, as it enforces highly computation-intensive auditing for all users
who query the protected database. As a result, most auditing methods, though rig-
orously studied, can never be implemented in practice for protecting largescale
real-world database systems. To shift this paradigm, we propose a new infer-
ence control architecture that will entrust inference control to each users plat-
form, provided that the platform is equipped with trusted computing technology.
The trusted computing technology is designed to attest the state of a users plat-
form to the database server, so as to assure the server that inference control could
be enforced as expected. A generic protocol is proposed to formalize the inter-
actions between the users platform and database server. Any existing inference
control technique can work with our protocol, for which the security properties
are formally proven. Since each user’s platform enforces inference control for its
own queries, our solution avoids the bottleneck.
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1 Introduction

Inference problem The inference problem has been a long standing issue in database
security that was first studied in statistical databases [2, 13] and then extended to mul-
tilevel databases and general-purpose databases [21]. The inference problem can be
referred to as the concern that one can infer (sensitive) information beyond one’s priv-
ileges from the data to which one is granted access. The inference problem cannot be
solved by traditional access control, as the disclosure of sensitive information is not
derived from unauthorized accesses but from authorized ones. The existence of various
inference vulnerabilities is due to the inevitable interconnections between sensitive data
that are protected from and non-sensitive data that are provided in users’ accesses.
Figure 1 shows a simple example that helps to illustrate the inference problem. The
employee table contains age and salary information for a group of employees. To pro-
tect individuals’ salary information, the following access rule is enforeddle the
database server can answer queries about sums of salaries over multiple employees,
any query about a single employee’s salary is illegitimate, and thus should be denied
With this access control enforced, however, employee A's salary can still be easily de-



[ NAME | AGE | SALARY |

A 28 2800
B 29 3100
C 30 3200
D 31 3600
E 32 3000
F 33 3200

Fig. 1. Employee table

rived from the following legitimate querieg andg, provided that A is the only em-
ployee whose age is 28:

q1 : select sum(SALARY) from EMPLOYEE where AGE 28 and AGE< 32
go : select sSum(SALARY) from EMPLOYEE where AGE 29 and AGE< 32

Inference control Inference poses a serious threat to the confidentiality of database
systems. Extensive research has been conducted on inference control to mitigate the
threat. Inference control techniques can be classified into four categories [2]: conceptual-
modeling, data perturbation, output perturbation, and query restrictiorcartoeptual-
modeling approacke.g., [8,15,17]) investigates the inference problem from a high level
perspective, presenting frameworks for inference control. The proposed frameworks are
sometimes too general for practical implementation. @ag perturbation approach
(e.g., [23,29,32,38,53,56,57]) typically replicates the original database and generates
a perturbed database with noise for users to access. This approach suffers from a severe
bias problem due to the noise that is added into data; therefore, it is not suitable for
dynamic databases. In contrast, th&put perturbation approacke.g., [1, 3, 14, 22]
does not add noise, but performs certain manipulations over database queries such
as rounding the query replies up or down. Though the output-perturbation based ap-
proach is immune to the bias problem, it may suffer from having null query sets, in
which case useful information is disclosed. The last category igtieey restriction
approach which can be further classified into five sub-categories: query-set-size con-
trol (e.qg., [16, 44]), query-set-overlap control (e.g., [18]), auditing (e.g., [6, 9, 24]), par-
titioning (e.g., [7, 45, 60]), and cell suppression (e.g., [10, 36, 41]). A comparison of
these methods is given in [2] from various aspects including degree of security, query
processing overhead, and suitability for dynamic databases.
Auditing Auditing is an important query restriction-based approach. Traditional audit-
ing works on the server side. The server keeps a log of all users’ queries and, whenever
a new query arrives on the server side, checks for possible inference vulnerabilities
against the new query as well as the past queries asked by the same user. Since the con-
trol decision is made based upon a user’s whole access history, auditing has the potential
to achieve better security. Furthermore, auditing provides users with unperturbed query
results as long as no inference vulnerability is detected. Due to these features, auditing
has triggered intensive research in database security from the 1970s [24,43] through the
1980s [4-6,9] and 1990s [11, 34, 58] to the 21st century [27, 30, 31, 33,54, 55, 59].
Unfortunately, auditing faces enormous difficulty in practical deployment, mainly
due to the excessive computational overhead it requires to check for inference vulnera-



bilities from the accumulated query log. Audit Exgelg] is a typical example. It was
shown that it takes Audit Expe®(n?) time to process a new SUM query [9], where

n is the number of database entities or records, @hahn?) time to process a set of

m queries. While this workload could be improved to some extent in certain specific
situations (e.g., for range queries [6]), the auditing complexity is significantly higher in
more general cases. Noting that Audit Expert protects only real-valued attributes from
being inferred exactly, Kleinberg et al. [27] studied the auditing of boolean attributes
and proved intractable results. Li et al. [31] concluded that the problem of protecting
bounded real or integer attributes from being inferred within accurate-enough intervals
has much higher complexities than that of Audit Expert.

The high complexity in auditing results in low system scalability. The database
server can only afford a small number of users querying simultaneously. For this reason,
auditing is not deemed to be a practical inference control method for real world database
systems [2].

Inference control with trusted computing To resolve the impracticality problem, we
propose a new architecture for inference control (especially auditing) with trusted com-
puting. The new architecture entrusts the enforcement of inference control to individual
users’ computer platforms. In this new architecture, the database server is responsible
for the enforcement of traditional access control, while each user’s platform is em-
powered to handle inference control based on their own query logs in a decentralized
manner. Since the computation-intensive task of auditing is amortized to all users, the
database server is no longer a bottleneck. As a result, our architecture can potentially
be used for protecting large-scale database systems.

Since the inference control is enforced on the user side, it is crucial to ensure that
the enforcement is conducted exactly as expected by the database server, without any
interference or manipulation. This requires that each user’s platform is in a trusted state
when the inference control is enforced. A typical solution to attain this is to equip
each user’s machine with a TCG-compliant trusted platform module (TPM) [52] that
establishes a hardware-based chain of trust from booting to OS loading to application
execution. In our architecture, TPM is used to protect the execution environment of in-
ference control and attest the trusted state of a user’s platform to the remote database
server when inference control is enforced. A generic protocol is proposed to formalize
the interactions between the user’s platform and the database server. Any existing in-
ference control technique can work with our protocol, for which the security properties
are formally proven.

Paper organization The rest of this paper is organized as follows. In Section 2, we
propose a new architecture for shifting the inference control paradigm. In Section 3, we
present a protocol to enable inference control to be executed on the users’ side using
standard TPM commands. In Section 4, we discuss some extensions to our solution.
Finally, Section 5 concludes this paper.

! Audit Expert is a classic auditing method. It maintains a binary matrix whose columns repre-
sent specific linear combinations of database entities (records) and whose rows represent user
queries that have already been answered. Audit Expert transforms the matrix by elementary
row operations to a standard form and concludes that exact inference exists if at least one row
contains all zeros except in one column.



2 Architecture

Traditional architecture  The traditional architecture for inference control is illus-
trated in Figure 2(a), where both access control and inference control are enforced at
the database server side. In this architecture, the access control module (ACM) imple-
ments access control functionality, while the inference control module (ICM) executes
a designated inference control algorithm (e.g., Audit Expert) and acts as an extra line
of defense in protecting the database. Upon receiving a new query from a user, ACM
first decides whether the user is a legitimate user with respect to the queried data. This
can be done by checking an access control database (AC database), which contains ac-
cess control rules and policy. If the user is legitimate, the database server further checks
with ICM to determine whether the query will lead to any information disclosure. ICM
assesses the query against the inference control (IC) policy as well as the user’s past
queries (collected in the query log) by executing the designated inference control algo-
rithm. The response to the query is returned to the user only if ACM decides that the
user has the proper access right and if ICM concludes that no information disclosure
would occur under the inference control policy. In this architecture, the IC policy is an
essential component that stipulates what is necessary for the execution of the inference
control algorithm, e.g., protection attributes, objectives, and constraints. The query log
is maintained by the server, which accumulates all queries asked by each user.

New architecture Since the enforcement of inference control is computationally in-
tensive, it may bottleneck the database server in the traditional architecture. To solve
this problem, we propose a new architecture, shown in Figure 2(b), for inference con-
trol. The basic idea is to offload the inference control function to individual users. More
specifically, ICM resides at the user side instead of on the server side. ICM maintains
a query log by accumulating the queries issued by the user. To query the database, the
user contacts ICM by issuing a query, then ICM checks with ACM at the server side
to see whether the user has the right to access the data. ACM checks the user’s request
against the access rules and policy. If the user is granted access, ACM returns the query
response, together with the IC polfgyo ICM. Then, ICM executes the inference con-

trol algorithm by checking the query against its query log and IC policy. ICM releases
the response to the user only if the query would lead to no information disclosure un-
der the IC policy. In this architecture, ICM on the user side acts as an extension of the
database server in inference control.

Role of trusted computing A challenging issue in our new architecture is that the
database server may lose its control over ICM, and that the user may compromise ICM
S0 as to bypass inference control. To address this issue, certain kind of assurance must
be given to the database server that ICM will be executed as expected, free of user's
interference and manipulation. This kind of assurance is achieved by virtue of trusted
computing. In Figure 3, a user’s machine is equipped with a TCG-compliant TPM [52]
and possibly other trusted hardware. A trusted platform can be built based on TPM at
the hardware layer, as well as a secure kernel in the OS kernel space and ICM in the
application space.

2 The IC policy can be delivered to the user each time it is modified by the server; otherwise, it
can be kept at the user’s platform safely (protected by TPM).
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Fig. 2. Inference control architectures

The hardware, underpinning and cooperating with the secure kernel, provides nec-
essary security functions to ICM, from basic cryptographic functions to sealed storage,
platform attestation, and a protected running environment. TPM protects the integrity
of the components in the platform, including the secure kernel and ICM, through its
integrity measuring, storing, and reporting mechanisms. More importantly, the running
state of the protected platform can be conveyed to the remote database server by virtue
of the platform attestation mechanism of TPM, so that the server can decide whether
the protected platform runs in a sufficiently trusted state. The protected platform run-
ning in a trusted state ensures that ICM performs inference control as expected, free of
user’s interference or manipulation. This platform architecture can be considered as an
open system in the sense that the host accommodates both protected applications and
unprotected applications.

The involvement of TPM in inference control can be considered yet another appli-
cation of trusted computing [35]. Other security applications that have been rigorously
studied in recent years include digital rights management [20], remote access control
enforcement [39, 42], server-side user privacy protection [26], server privacy protec-
tion [48], secure auction [37], and integrity measurement [40], to name a few. The
objective of these applications is to enable a server to extend its control over data dis-
tributed to client sides, or protect users’ privacy on the server side, while our major
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concern is to securely decentralize the enforcement of inference control so as to resolve
the efficiency and scalability problems inherent in inference control. For simplicity rea-
sons, we assume prior knowledge about TPM. Interested readers are referred to [35] for
a brief review of TPM.

Interactions between ACM and ICM In our new architecture, ACM enforces the
access control mechanism over the database, and it represents the database server by
interacting with all users. On the other hand, ICM is responsible for enforcing inference
control according to the IC policy specified by the database server, and it also acts as
an interface of the user side interacting with the database server. ICM is an application
protected by TPM, which is inextricably bound to the user host.

¢=I=0 -

1 ID, User Query

2 Attestation Challenge

3 Autestation Response

4 Query Reponse, IC policy

Fig. 4. Interactions between ACM and ICM

The interactions between ICM (having access to TPM) and ACM are illustrated in
Figure 4. It is assumed that the user has certain identification information (e.g., user
password) to identify itself to ACM. When ICM sends the user’s identification infor-
mation together with a user query to ACM (database server), ACM enforces access con-
trol and formulates a response to the user’s query if the user query is authorized. Before
ACM delivers the query’s response, it first sends an attestation challenge to ICM. Based
on the attestation response from ICM, ACM can decide whether the user’s platform is
in a trusted state. If so, it releases the query’s response as well as the IC policy to ICM
for the enforcement of inference control. A detailed protocol is given in the next section
to formalize the interactions between ACM and ICM.



3 Protocol

In this section, we present a protocol for the interactions between ACM and ICM. The
protocol enables ICM at the user side to enforce the inference control prescribed by
the database server. The designing of the protocol assumes the use of version 1.2 TPM
command set [51] and data structure [50].

3.1 Overview

Shifting inference control from the database server to users’ hosts incurs new security
threats that do not exist in the traditional architecture. We enumerate the new security
threats and explain the basic ideas to mitigate these threats. The fundamental assump-
tion is that the TPM is perfectly secure in the sense that the functions of TPM cannot be
compromised. We note that there may exist some attacks that modify or crash the pro-
tected applications at user side after they have been attested by server. Attacks of these
kinds are not specific to our system, but generic to all applications of trusted computing
technology. A simple solution suggested by [39] is that the server frequently challenges
the user’s platform so as to detect and thwart these types of attacks.

Integrity of ICM  Since ICM resides in the user’s host, a malicious user clearly has

a motivation to alter the designated function of the protected platform, especially ICM,
S0 as to bypass the inference control. Since TPM is inextricably bound to the user’s
host, we can use its integrity measuring, storage, and reporting mechanisms to detect
any compromise of the integrity of the user’s platform, including ICM.

Integrity of query log Since the enforcement of inference control depends on the
query log (which is maintained by ICM in the user’s host), any unauthorized modi-
fication including deletion of the query log would render inference control baseless.
To thwart this threat, a straightforward solution is to let ICM hold a secret key for ei-
ther MACing or signing the query log, with the secret key stored in the sealed storage
of TPM. However, this introduces an extra key for ICM to manage. We instead use a
different method by associating the integrity digest of the query log with the key for
protecting the confidentiality of query responses.

Authenticity of IC policy The IC policy regulates how inference control is enforced.
While in transit or in storage, the IC policy is subject to malicious alteration. It is
extremely important to ensure that the IC policy enforced by ICM in the user’s host

is indeed dispatched by the database server and has not been tampered with. This is
achieved by assuming that ACM holds a digital signature key @éificas, skacar)-

Before disseminating the IC policy to the user, ACM signs the IC policy so that ICM
can check whether the policy has been compromised either in transit or in storage. This
also enables ICM to verify the source of the IC policy.

Confidentiality of secrets maintained by ICM In some cases, ICM needs to maintain
some secret keys so as to protect the database server’s data on the user side. To prevent
malicious users from reading the secrets, ICM needs help from TPM to store these
secrets in the sealed storage provided by TPM.

Confidentiality of query responses Before ICM determines whether it is safe to
release query responses, the user should be kept from reading the responses, whether
they are in transit or in store. While in store, the query responses can be protected using



secret keys maintained by ICM (as described above). To achieve the confidentiality of
query responses in transit, a secure channel between ICM and ACM is established. More
specifically, ICM asks TPM to generate an ephemeral asymmetric encryption key pair,
where the public key is certified by TPM and the private key is stored in its protected
storage. The public key can be used by ACM to encrypt the query responses, which will
be sent to ICM. Upon receiving the encrypted message, ICM asks TPM for decryption
operation in a secure software environment. Note that in this solution, TPM acts as a
certifying party; there is no need to resort to external certification mechanisms.

As stated earlier, we novelly integrate the integrity protection of a query log into
the confidentiality protection of query responses. This is explained as follows. When
requesting that TPM perform the decryption operation, the invoking entity (i.e., ICM)
is required to provide a piece of authorization data, which is normally derived from a
password that is provided by the user who invokes ICM. In our solution, however, the
piece of authorization data is derived by ICM not only from the user’'s password but
also from a content digest of the query log. As a result, if the integrity of the query log
is compromised, the authorization data will be refuted by TPM so that the private key
cannot be accessed for the decryption operation. We must point out that this content
digest is not intended to enhance the secrecy of the authorization data, which depends
totally on the strength of the user’'s password.

Protected execution environment A protected execution environment is needed for
the running of ICM; otherwise, the OS kernel or other applications running in parallel
on the user’s host may access the code and data within the ICM application domain.
Though a TPM-enabled platform can be configured as a restricted system (in which
only a small set of protected applications such as ICM can run) or an open system
but with all applications being protected by TPM, neither of the systems is practical.
While the impracticality of the restricted system is obvious, it is challenging for TPM
to perform platform attestation in an open system. The reason is that the attestation
would involve a large set of application integrity metrics and that the database server
must know in advance all the applications that run on each user’s platform.

A more practical solution is that the user host remains open, but it is partitioned
into a protected domain and an unprotected domain. The protected domain consists of
a restricted set of protected applications such as ICM, while the unprotected domain in-
cludes other application softwares that do not need to be protected. Although the current
TPM functionalities specified by the Trusted Computing Group (TCG) do not suffice
to support this solution, more efforts have been made to establish the protected envi-
ronment as desired. For example, the Intel's LaGrande Technology (LT) [28] incorpo-
rates an additional set of hardware and software components around the TCG-compliant
TPM, which provides a protected execution environment that is sufficient for our solu-
tion. Without further complicating our presentation, it is reasonable to assume in our
protocol that TPM (possibly together with other trusted hardware) enables ICM to run
in isolation, free from interference by other applications running in parallel. Moreover,
the application data that ICM uses in its execution domain will be automatically erased
as long as ICM exits its execution.



3.2 Steps

We present our protocol in five steps, where the first four steps correspond to the four
stages of interactions shown in Figure 4, and the last step represents the enforcement
of inference control over the query response and the IC policy that ICM receives from
ACM in the last stage of interaction. The following notation will be used in our presen-
tation. LetE,x(.) and D,(.) denote the encryption operation with public kely and
the decryption operation with private key, respectively. Leenc(k,.) anddec(k, .)
denote encryption and decryption with symmetric keyespectively. Leb(.) denote
amessage-aware digital signature scheme with private key. Let SH A1(.) denote
SHA-1 hash function. Led — B : m representd sending message to B.
Step1 ICM — ACM: idy, q
To issue query, the user invokes ICM to send user identification informatidn
together withy to ACM on the database server side. Without specifying the composition
of the identification information, we simply assume th#t suffices to enable ACM to
identify the user and enforce access control.
Step 2 Upon receiving a query request from the user, ACM checks whether the user
has the requested right to access the data in the query; if so, ACM challenges the user’s
platform for remote attestation. This step consists of three sub-steps.

Step 2.1 ACM: identi fy(idy)

ACM identifies the user by executingenti fy(idy ), the deployed identification
function.

Step 2.2 ACM: ac(idy)

ACM executes the access control algorithnjid;; ) to determine whether the user
has the permission to access the data in the query. If the user is not authorized, ACM
aborts the protocol; otherwise, it continues with step 2.3.

Step 2.3 ACM — ICM: nacu

ACM generates a random nonag -, and sends it to ICM. The nonce is used to
thwart replay attacks in the following platform attestation.
Step 3 The platform attestation is performed in this step. Before the start of this step,
ICM has in possession a public ke¥ ¢, generated by TPM in the last query session.
This will be clear shortly (in steps 5.7 and 58)

Step 3.1 ICM — TPM: TPM_CertifyKey

ICM first invokes a standard TPM command TEG&rtifyKey for TPM to certify
pkioa.- The TPMCertifyKey command instructs TPM to generate a signature on a
public key using its attestation identity key (AIK). The operation of key certification
can be bound to a specific state of the underlying platform. The input parameters of
TPM_CertifyKey include the key to be certified, externally supplied data of 20 bytes,
and the Platform Configuration Registers (PCRs), whose contents are bound to the cer-
tification operation. The externally supplied data is calculated f&#hA1(nacar),
and the PCRs contain the integrity measurement metrics for the protected platform in-
cluding the booting procedure, the OS, and ICM.

3 In the case that the user queries the database server for the first time, there will be two extra
sub-steps prior to step 3.1 that enable ICM to genepaie ;. The two extra sub-steps are
the same as steps 5.7 and 5.8, with the only exception that the user’s query log is empty at this
point.



Step 3.2 TPM — ICM: TPM,Certify,Info, OTPM = SS/CTPM (SHAl(pk']CIW)
|ISHAL(naca)||im)

In response, TPM outputs a TP®ertify_Info data structure, as well as a signa-
ture signed on the public keykrcoar, the noncer 4¢ 5, and the integrity measurement
metricsim of the platform. Here TPMCertify_Info contains information regarding the
usage of the public keyk s, the PCRs involved in signing, and a digest of the public
key. Note thatskrpjs (resp.pkrpas) denotes the private (resp. public) AIK of TPM.
For the sake of simplicity, an atomic quantity. is used to represent the integrity mea-
surement metrics of the protected platform. It is interesting to notesthal, serves
as not only certification ofk;c /s, but also platform integrity reporting afn.

Step 3.3ICM — ACM: TPM _Key, TPM Certify_Info, orpar, TPM.AIK credential

In response to the attestation challenge, ICM sends ‘K] TPM Certify_Info,
orpuM, andthe relevant TPM AIK credential to ACM on the server side. Here Kyl
is a data structure that is generated in the last query session; it contains the public key
pkrca and other related information, as will be explained in step 5.8.

Step 4 ACM verifies the attestation response and sends a query response as well as the
IC policy to ICM for the enforcement of inference control.

Step 4.1 ACM: verify(orpr)

Upon receiving the attestation response, ACM first verifies the signatipe,
using public keypkrp s and the corresponding certificate information.

Step 4.2 ACM: wvalidate(im)

Then, ACM verifies whetherm (contained in TPMCertify_Info) represents a trusted
state of the user’s platform as expected. In particular, it verifies whether ICM is running
as expected. We use an atomic functiaiidate(.) to denote this process.

Step4.3ACM — ICM: ¢, = Eokronm (k), €9 = enck(d), ocacM = Sskacu (51H€2H
IC pO|ICy ||q||pl€101\4), pkACM

If step 4.1 or 4.2 fails, the protocol aborts. Otherwise, ACM generates a secret key
k for symmetric key encryption. It encrypksusing the public keyk; ¢y, yieldinge;.
Then, it encrypts the query respons@singk, yielding 5. After formulating the I1C
policy that is to be enforced by the user, ACM signs the IC pokg¢ygs, queryq, and
pkroa using its private key, yielding digital signatuse -y, . Finally, ACM sendsg,,
€2, 0 ac M, @ndpk 4oy (including this public key's certificate) to ICM.

Step 5 ICM enforces inference control over the query response and IC policy in a
protected execution environment supported by TPM.

Step 5.1 ICM: verify(cacar)

Upon receiving the query response, ICM verifies the signature,;. If the signa-
ture is genuine, it proceeds to the next step.

Step 5.2 ICM — TPM: TPM_LoadKey?2

ICM issues TPM command TPMoadKey?2 to TPM so as to load the private key
skrca to TPM. The input parameters taken by TRMadKey?2 include a TPMKEY
structure and authorization data. The TREY structure specifies the clear public key
pkrca and the wrapped private ke, (Which can be unwrapped by TPM), as well
as information on PCR values bound to the key pair. The authorization data is computed
from the user’s password and the digest of the query $3@:A1(passwor{|digest-of-
query-log). Please refer to steps 5.7 and 5.8 for the exact composition ofKIFP¥Y!



why the authorization data is computed in such way, and how digest-of-query-log is
obtained.

Step 5.3 TPM — ICM: k = Dgp, s (€1)

Once TPM decides that the protected user platform is in a trusted state, and that the
authorization data matches that specified when the ICM key pair was generated (see
step 5.7), TPM unwrapsk;cas, Uses it to decrypt;, and returng to ICM.

Step 5.4 ICM: d = decg(e2)

ICM decryptsss using keyk to get the query responge

Step 5.5 ICM: in fcon(qq, @, IC policy)

ICM enforces inference control basedgn @ and the IC policy, where, denotes
the current query as well as its respongk and( denotes the set of past queries as well
as their responses (obtained from the query log). For reasons of generality, we assume
that the query responses are used in inference control, though they are not absolutely
necessary for data independent algorithms such as Audit Expert. ICM relvieathe
user ifin fcon(.) arbitrates thay is safe, leading to no information disclosure through
inference; otherwise, ICM refuses to reled@sand proceeds to step 5.7.

Step 5.6 ICM: Q = Q U {qq4}

ICM updates the query lo@ by addingg,. Note thatQ) remains unchanged if;
causes inference.

Step 5.7 ICM — TPM: TPM_CreatWrapKey

In this step, ICM invokes TPM command TRBreatWrapKey to instruct TPM to
generate an asymmetric key péik;car, skioar) and to wrap the private keskroag .

The input parameters of this command include (i) the handle of a wrapping key that can
perform key wrapping, (ii) the authorization data necessary to access the wrapping key,
(i) a set of PCRs whose contents are bound to the wrapping operation, and (iv) the
information about the key to be generated (e.qg., key length, key algorithm, key usage).

The piece of authorization data is a SHA-1 hash value (20 bytes) that is required
for unwrapping the wrapped data. In our scenario, the piece of authorization data is
derived from the user’s password and the content digest of the user’s query log; that is,
S H Al(passwortldigest-of-query-log), where digest-of-query-log is obtained by ap-
plying a one way function to the whole set of the user’s queries accumulated in the
user’s query log. If the user’s query ldg is maliciously modified later, the authoriza-
tion data calculated for unwrapping operation in the next query session will be refuted
by TPM and, as a resultk;; cannot be accessed by ICM.

The key pair generated by TREMreatWrapKey is bound to a state of the platform.
The binding is achieved by specifying a set of PCRs whose contents are bound to the
wrapping operation. In our case, the PCRs record the integrity measurement metrics of
the protected platform. This binding ensures {3&t ;) cannot be unwrapped unless
the user’s platform is in a trusted state.

Step 5.8 TPM — ICM: TPM_Key

Finally, TPM returns to ICM a TPMKey data structure, which contains public
key pkrcas, and the corresponding private key;cas encrypted by a wrapping key.
TPM_Key also contains a field TPMuth_DataUsage, which can take one of the fol-
lowing three values:

(i) TPM_Auth_Never, (ii) TPM Auth_Always, and (iii) TPMAuth_Priv_Use Only



The first case allows the invoking party to load the private key without submission of
any authorization data, while the second and third cases associate authorization data
with the public/private key pair and the private key only, respectively. In our case, it
suffices to indicate TPM to set TPMuth_DataUsage to TPMAuth_Priv_Use Only.

3.3 Security

Given that the security services provided by TPM, the protected execution environment
on top of TPM, and the cryptographic primitives we employed are secure (in a sense that
these services are not compromised), it does not seem difficult to verify that our protocol
meets the security requirements as posed by the security threats listed in Section 3.1.
While mitigating these threats is a focus in our protocol design, the security of our
protocol demands a formal analysis.

Under the assumption that the underlying TPM is perfect, our protocol can essen-
tially be considered as an authentication protocol between ICM and ACM, aiming to
satisfy the requirement thAICM validates the security state of ICM before sending out
any query respons&he security of our protocol can be formally proven using the rank
function [46], a specialized theorem-proving method for establishing the correctness
of authentication protocols based on communicating sequential processes (CSP) [47].
This will eliminate typical attacks such as replay attacks and masquerade attacks that
are targeted at our authentication protocol.

To perform the proof, the rank function approach requires modeling the following
three components: (1) the protocol, (2) the environment (attacker), and (3) the secu-
rity requirements on the protocol. In particular, first, the protocol is captured as a CSP
process in terms of the behavior of each system party; second, the environment is also
described as a CSP process. It is considered to be an unreliable medium that can lose,
reorder, and duplicate messages. The particular behavior captured within the medium
is precisely the behavior that the protocol is designed to overcome; third, the secu-
rity requirements on the protocol are expressedaispecifications on the observable
behaviors of the overall system. When these components are modeled, one can use
well-established proof techniques to verify whether the protocol satisfies its security
requirements. For limit of space, we omit the detailed proof.

4 Extensions

Defending against collusion attack A typical attack against inference control systems

is collusion attack A collusion attack involves several users formingodiusion group

and combining their query logs so as to infer some sensitive information that cannot
be derived from any individual query log. The collusion attack is inherently difficult to
mitigate, and presents as a serious inhibitor in the practical use of inference control [2].
We must point out that there seems no technique can prevent a user from purposely
recording his/her queries (as well as query responses) and using them in collusion with
other users. What we can achieve is to restrict malevolent users from directly using the
query logs that are maintained by ICMs for collusion. This requirectmdidential-

ity of query logto be maintained against any programs other than ICM. To attain this



requirement, the query log can be encrypted by ICM using a secret key, which can be
stored in and retrieved from the sealed storage of TPM by ICM only (using_Eei

and TPMUnseal commands). Note that in this case, the authorization data for unwrap-
ping operations must be changedtfy A1(passworg{digest of encrypted query log) in

our protocol.

In certain cases, the database server may be able to “blacklist” some collusion
groups of suspicious users who may collude using certain out-of-band information (e.g.,
the users from the same network domain). To further mitigate the collusion attack, in-
ference control should be enforced based on queries from all users in a collusion group
rather than from each individual user. While such control can be easily enforced with
a central query log in the traditional architecture, it is not as easy to combine many
users’ query logs in our new architecture. A possible solution is to extend the new ar-
chitecture such that the database server manages a central query log as in the traditional
architecture. When any user in a collusion group issues a query, the server sends to the
user’s ICM the queries from all other users in the same collusion group. ICM can then
enforce inference control based on the combination of its own queries and the queries
it receives. To maintain the confidentiality of the query log, the queries should be sent
from ACM to ICM in an encrypted form, which can be as easily done in our protocol as
encrypting the query responses. Upon receiving them, ICM may keep these queries in
its execution domain and delete them after use. Alternatively, ICM can add these queries
to its query log such that the query log contains queries from a collusion group instead
of from an individual user (this would substantially decrease the number of queries sent
each time by the database server).

User using multiple hosts Our protocol is essentially designed for the scenario in
which a user is bound to a single host. This can be seen that each user’s query log is
maintained at the user’s host and the user’s host accumulates the queries issued from
that particular host. If a user is allowed to use multiple hosts to query the database, the
query logs maintained at different hosts may not be readily available to the current host
where inference control is enforced. A convenient solution is to let the database server
maintain a central query log that collects user queries at the discretion of user identity
in conjunction with host identify When a user issues some queries from a host, the
queries previously issued by the user from all other hosts are passed by ACM to the
current user host for the enforcement of inference control.

Database update Database update (e.g., deletion of some records) may necessitate
updating the user’s query log on the user’s side. To facilitate updating, the database
server may manage a central query log as discussed above. In case of database update,
the database server can determine the set of queries that are affected by the update pro-
cess. When a user queries the database, the database server first checks for the affected
gueries that belong to the user; it then informs the user to update its query log so that
the inference control will be enforced upon the latest query log.

4 The TPM bound to a user’s host can be used to unambiguously identify the host.



5 Conclusions

This paper proposed a new inference control architecture and an inference control pro-
tocol upon it. While traditional inference control is enforced by a database server for
all its users, our solution entrusts each user’s host to enforce inference control for itself,
provided that the user’s host is equipped with trusted computing technology. By decen-
tralizing the highly computation-intensive task of inference control, our solution enjoys
much better system scalability, and is thus suitable for supporting a large number of
users in real world database systems. In comparison, the traditional inference control
configuration can only support a small number of users due to the bottleneck of enforc-
ing inference control for all users on the server side. In this sense, our solution removes
the crucial impediment in traditional inference control configuration and identifies a
new paradigm for the practical implementation of inference control.

Our solution relies on the adoption of widely available trusted computing technol-
ogy, which is envisioned to be ubiquitous in several years. This trusted computing tech-
nology is utilized by the database server to attest users’ platforms so that the inference
control can be enforced on the user side as expected by the database server. The secu-
rity properties of our solution are formally proven with the rank function approach. Our
solution can work with any existing inference control technique; even a hybrid system
of mixing our solution (for some users whose platforms are TPM equipped) with tra-
ditional inference control (for those users who may not implement trusted computing)
can be easily set up. An interesting future direction is to implement our solution with
various existing inference control techniques in some real world settings.
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