
Dynamic Meta-level Access Control in SQL

Steve Barker

Dept Computer Science
King’s College London

Strand, WC2R 2LS, U.K
steve.barker@dcs.kcl.ac.uk

Abstract. Standard SQL is insufficiently expressive for representing many ac-
cess control policies that are needed in practice. Nevertheless, we show how rich
forms of access control policies can be defined within SQL when small amounts
of contextual information are available to query evaluators. Rather than the stan-
dard, relational structure perspective that has been adopted for fine-grained access
control, we consider instead the representation of dynamic fine-grained access
control (DFMAC) policy requirements at the access policy level. We also show
how DFMAC policies may be represented in SQL and we give some performance
results for an implementation of our approach.

1 Introduction

SQL only permits limited forms of DAC (GRANT-REVOKE) and RBAC policies to
be represented and only at coarse levels of granularity. A consequence of this limited
expressive power is that many access control policy requirements, that need to be em-
ployed in practice, cannot be adequately represented in SQL. Of course, views can
sometimes be used, in conjunction with SQL’s sublanguages for DAC and RBAC rep-
resentation, to express access control requirements. However, this combined approach
does not provide a complete solution to the problem of SQL’s limited support for ac-
cess policy specification and it can introduce additional problems (e.g., the problem of a
mass proliferation of view definitions if a user-based view of access control is adopted).

The problem of SQL’s limited provision of language features for expressing access
control policies (henceforth referred to as the AC representation problem) has been
recognized ever since the first SQL standard was published. To address this problem,
the language constructs that have been included in SQL, for representing access con-
trol requirements, have been progressively extended. However, the AC representation
problem has, in a sense, become more acute because the gap between SQL’s sublan-
guage for access control specification and what database practitioners need has grown
wider. Moreover, we believe that the AC representation problem is a multi-faceted and
wide-ranging problem that will not be adequately solved by small extensions to SQL’s
sublanguages for access control. Different aspects of the problem have emerged over
time as it has become better understood and as applications of databases have changed.
For instance, interest in the AC representation problem has been recently rekindled as
a consequence of researchers investigating issues in database privacy; for that, vari-
ous approaches for representingfine-grained access control (FGAC)policies have been

proposed (see, for example, [13], [17] and [19]). However, these approaches simply
deal with a particular manifestation of the AC representation problem under standard
assumptions (e.g., that access control policy information is relatively static).

Aspects of the AC representation problem have also been recognized and addressed
by RDBMS vendors and relational database programmers. For example, Oracle’sVir-
tual Private Database (VPD)[15] allows programmers to define functions, which may
be written using PL/SQL, C or JAVA, to express access control requirements that are
not expressible in standard SQL. More generally, for all forms of RDBMSs, database
programmers will often write application programs to enhance SQL’s provision and to
thus enable richer forms of access control policies to be represented. However, neither
of these approaches is especially attractive. As many researchers have observed, access
control requirements must be expressed in high-level, declarative languages that have
well-defined semantics, that permit properties of policies to be proven for assurance
purposes, and that enable users to express access control requirements succinctly and
in a way that makes it possible for them to understand the consequences of making
changes to a policy. Conversely, it is inappropriate to use low-level languages that do
not have well-defined semantics, that embedad hocand often hard-coded represen-
tations of policies in applications, that compromise attempts at formal verification of
requirements, that make it difficult for security administrators to understand the con-
sequences of policy change, and that thus makes policy maintenance a difficult task.
Moreover, the programming-based approach requires that two languages (with very
different semantics) be used and often results in complex forms of SQL query being
executed inefficiently.

The work that we describe in this paper addresses an aspect of the AC representa-
tion problem that has not previously been considered in the context of SQL databases.
Specifically, we address the issue of providing support for representing, in SQL, for-
mally well-defined, dynamic fine-grained meta-level access control (DFMAC) poli-
cies for category-based access control models. By meta-level policy representations we
mean representations of closed access control policies, open access control policies, and
various forms of hybrid policies. As we allow for open policies, it follows that we admit
negative authorizations (for expressing denials of access) as well as positive authoriza-
tions in our representation. In our approach, the meta-policies that are applicable to
users can change dynamically and autonomously as a consequence of modifications to
a database. To accommodate changing policies, we make use of contextual information;
specifically, user identifiers and system clock time. By enabling DFMAC policies to be
represented and implemented in SQL, we preserve the semantics of SQL and we are
able to utilize existing RDBMS technology to implement DFMAC policies. Although
FGAC policies have previously been discussed in the access control literature, to the
best of our knowledge, no previous work has been described that is based on represent-
ing multiple forms of DFMAC policies directly in SQL. For our implementation, we
usequery rewriting[18]. Query rewriting for FGAC has recently been investigated by
several researchers (see, for example, [17], [13], and [19]); the novelty of our rewriter
stems from the focus we adopt on the exploitation of DFMAC information rather than
FGAC information.

The rest of the paper is organized in the following way. In Section 2, a number
of preliminary notions are described. In Section 3, we describe the general features
of category-based access control models to which our approach may be applied. In
Section 4, we describe policy representation in SQL. In Section 5, we explain how our
query modifier is used to rewrite SQL queries to enforce DFMAC policies. In Section 6,
we use a detailed example to explain more fully what is involved in our proposal. In
Section 7, we discuss a candidate implementation for our approach and we give perfor-
mance measures for this implementation. In Section 8, we discuss the related literature.
Finally, in Section 9, conclusions are drawn, and further work is suggested.

2 Preliminaries

In this section, we briefly describe some key technical issues, to make the paper self-
contained, to highlight the language that we propose for specification, and to explain
the theoretical foundations of our approach. We assume that the reader is familiar with
basic relational (SQL) terminology, like relation (table), attribute (column) and tuple
(row). Otherwise, we refer the reader to [10].

In our approach,tuple relational calculus (TRC)[10] is used for specifying DF-
MAC policy requirements. For that, a many-sorted first order language is used over an
alphabetΣ that includes:

– Countable sets of (uninterpreted) constants, variables, and n-ary relation symbols
(some of which have a fixed interpretation);

– A functionally complete set of connectives;
– The singleton set of quantifiers:{∃};
– The comparison operators:{=, <,≤, 6=, >,≥};
– The set of parenthetic symbols{(,), [,]} and the punctuation symbols ‘,’ and ‘.’.

Rather than restricting attention to a minimal set of connectives that are functionally
complete, we assume that policy specifiers will choose some subset of the22n

n-ary
connectives in 2-valued logic for representing DFMAC policies of interest.

The following sorts are of interest:

– A countable setU of user identifiers.
– A countable setC of category identifiers.
– A countable setA of namedactionse.g.,SELECT , INSERT , UPDATE, and

DELETE.
– A countable setT of table identifiers.
– A countable setΘ of time points.

By tables, we mean base tables and views. On times, we assume a one-dimensional,
linear, discrete view of time, with a beginning and no end point. That is, the model of
time that we choose is a total ordering of time points that is isomorphic to the natu-
ral numbers. Clock times are an important form of contextual information. The func-
tion $current time is used to generate the current system clock time, a structured
term from which more specific temporal information may be produced. For example,

$current time.year, $current time.month and$current time.day can be used to,
respectively, extract the current year, month and day from$current time. Our focus is
on user queries and hence theSELECT action. The extension of what we propose to
the case of update operations is straightforward.

A TRC query, expressed in terms ofΣ, is of the following general form

{τ1.A1, τ2.A2, . . . , τn.An : F(τ1, τ2, . . . , τn,
→

τn+1,
→

τn+2, . . . ,
→
τm)}

whereτ1, τ2, . . . , τn are tuple variables (not necessarily distinct),A1, A2, . . . , An

are attributes, and

F(τ1, τ2, . . . , τn,
→

τn+1, . . . ,
→
τm)

is a subformula of TRC, expressed in terms ofΣ, with τ1, τ2 . . . τn as free variables
in F and with bound variables

→
τn+1,

→
τn+2, . . . ,

→
τm.

In our approach, rewritten queries are formulated with respect to a pair(Q,Π)
whereQ is an SQL query submitted for evaluation by a useru andΠ is the DFMAC
policy information that is applicable tou at the time at whichu submits its query. For
query evaluation,Q andΠ are combined to generate a rewritten queryQ′.

The model of a DFMAC policyΠ, which we assume to be expressed in a lan-
guage as expressive as hierarchical programs [14], includes a set ofauthorizations. An
authorization, in turn, is expressed in terms ofpermissionsor denials, which may be ex-
pressed conditionally in terms of contextual information. A permission is expressed in
terms of a 2-place predicateper(a, o) wherea is an access privilege ando is a database
object (a table); the meaning ofper(a, o) is that thea access privilege may be exercised
on o. A denial is expressed in terms of a 2-place predicateden(a, o) wherea is an ac-
cess privilege,o is a database object (a table), andden(a, o) denotes that thea access
privilege cannot be exercised ono. An authorization is a tripleauth(u, a, o) with the
semantics that useru may exercise the access privilegea ono.

A Herbrand semantics [1] is applicable to the databases that we consider. In this
context, the intended model of a relational database∆ is the set of ground instances of
atoms from the Herbrand Base of∆, HB(∆), that are true in the unique least Herbrand
model of ∆. In our approach, the set of ground atomic consequences that a useru
may retrieve (i.e.,select) from a database∆ to which the DFMAC policyΠ applies is
expressed thus:

{A : A ∈ HB(∆) ∧ ∆ |= A ∧ authorized(u, select, A)}.

3 Category-based Access Control

In this section, we briefly discuss the essential features of a range of category-based
access control models to which our approach can be applied. We also briefly describe
goal-oriented access control for which DFMAC policies are applicable.

In contrast to DAC/GRANT-REVOKE models, a number of access control models
are based on the idea of categorizing users on some general criterion. In this context,
user-category assignment is adopted as a basis for access control. That is, users are as-
signed to categories and permissions are assigned to categories of users too. A user ac-
quires the permissions assigned to a category when the user is assigned to the category.

Assigning users and permissions to categories raises the level of abstraction (relative
to lower-level policies, like DAC policies) and reduces the number of permission and
denial assignments that need to be specified. The downside of the approach is that it is
often necessary to express that, for example, exceptions apply to certain users within a
general category. Hence, negative authorizations need to be specified as well as positive
authorizations. However, the need for conflict resolution strategies then arises.

Category-based access control models include groups (with discretionary assign-
ment of users to a group), sets of users categorized according to their security clearance
(as in MAC models [6]), sets of users that are categorized according to the job function
that they perform in an organization (as in RBAC models [11]), sets of users catago-
rized according to a discretely defined trust level, and sets of users that are categorized
according to the combination of an ascribed and action status (as in ASAC [4]).

Category-based access control models have a fairly common definition of an autho-
rization (u, a, o) and meta-policies are defined in terms of this general interpretation
of authorizations. In the case of closed meta-policies for category-based access control
models: permissions (each of which is a pair(a, o) wherea is an access privilege ando
is a database object) are assigned to a categoryc; a useru is assigned to a categoryc;
when the user is assigned to a categoryc the user may exercise a privilegea on object
o iff the permission(a, o) is assigned toc. For an open meta-policy the authorization
(u, a, o) holds iff u is assigned to categoryc and there is no denial of the permission
(a, o) to c. A variety of additional meta-policies may be defined in terms of the open
and closed meta-policies. For example, a “denials override” policy may be used to ex-
press that the authorization(u, a, o) holds iff u is assigned to categoryc, the permission
(a, o) is assigned toc and there is no denial of the permission(a, o) to c category users.

DFMAC polices are required to provide fine-grained access control where “fine-
grained” information is interpreted as fine-grained at the meta-policy level rather than at
the level of data. That is, DFMAC policies are applicable when security administrators
want to be able to specify that a particular meta-policy (a closed policy, an open policy,
a hybrid policy, etc) is to apply to different categories of users in different contexts.
The different contexts may be temporally-based (e.g., an open policy is to apply on
weekdays but not weekends) or they may be location-based or the policy that applies
may depend on the contents of the database.

DFMAC policies are especially important when goal-oriented access control re-
quirements need to be represented. In goal-oriented access control, organizational and
individual goals may change as a consequence of the occurrence of events and this, in
turn, may cause access control policy requirements to change. For example, an orga-
nization may wish to restrict access to information on “special offers” to the category
of preferred customers, but may need to change dynamically and autonomously this
policy constraint to allow access to all customers if sales figures are “poor”.

4 Access Policy Representation

For the representation of our approach, we use four base tables; each of the tables has
a fixed purpose. We use a table namedcategoryto record which users of a DBMS are
assigned to which categories and we use a table namedpolicy to store meta-level ac-

cess control information that our query rewrite procedure uses at runtime to evaluate a
user’s access request. We also use a table namedpca (shorthand for permission cate-
gory assignment) and a table namedca (shorthand for denial category assignment) to,
respectively, store tuples that represent the permissions and denials that apply to cate-
gories of users that may request to perform some action on some database object. The
category, policy, pca anddca tables may include conditions that must be satisfied in
order for a category, policy, permission or denial to apply. The query rewrite procedure
also uses this information at runtime in the evaluation of a user’s access request.

The four tables and brief details of their intended semantics may be described thus:

– category(userID, catID,CCu) : 〈u, c, ccu〉 ∈ category iff u ∈ U , c ∈ C andu
satisfies theccu condition for assignment to the categoryc.

– policy(catID, action, objectID, PCt) : 〈c, a, t, p〉 ∈ policy iff c ∈ C, a ∈ A,
t ∈ T , andp is a boolean condition defined in terms ofpca, dca, or other tables in
the database.

– pca(catID, action, objectID, pca condition) : 〈c, a, t, qpca〉 ∈ pca iff c ∈ C,
a ∈ A, t ∈ T , qpca is a boolean condition, and the permission(a, t) applies toc
users ifqpca is true.

– dca(catID, action, objectID, dca condition) : 〈c, a, t, qdca〉 ∈ dca iff c ∈ C,
a ∈ A, t ∈ T , qdca is a boolean condition, and the denial(a, t) applies toc users if
qdca is true.

The set of authorizationsAUT H that is defined by a DFMAC policy is expressed
in terms of the core set of tables that are described above. For example, we have for a
closed DFMAC policy (expressed using TRC and ignoringPCt conditions):

AUT H = {〈t1.userid, t2.action, t3.objectid〉 : category(t1)
∧ t1.ccu ∧ [policy(t2) ∧ t1.catid = t2.catid

∧ ∃t3[pca(t3) ∧ t3.catid = t1.catid
∧ t3.catid = t2.catid ∧ t3.pca condition]]}.

A number of points should be noted. We envisage access policy information being
represented in TRC before being transferred into SQL for implementation. Any number
of meta-level policies can be expressed in the same way as the closed policy informa-
tion that is represented above. When a categoryc of users can access information about
all of the attributes in a tablet then the subset of the rows in the table that ac category
user can access is expressed as a value ofPCt. When only a subset of the attributes of
a base table is accessible to a category of users then access to this data is via a viewv.
However, the subset of tuples accessible to the category of users viav is also defined
as a value ofPCt. We make the simplifying assumption that(catID, objectID) is the
primary key forpolicy. In practice, an extra attribute (e.g.,policyID) would be used to
allow for multiple DFMAC policies to apply to different categories of users, for differ-
ent actions on different objects when different forms of contextual information apply.
Access control information in the form of certificates can also be naturally accommo-
dated in our approach. Notice too that we represent DFMAC policy information at the
meta-level leveland at the level of permissions and denials. That is, conditions on the
meta-level policy that applies at any instance of time may be specified incategory and

policy and conditions that define when permissions and denials are applicable are ex-
pressed inpca anddca, respectively. The values that are admitted forCCu, PCt, pca
anddca are boolean expressions that are formulated using SQL and are automatically
appended to a user’s SQL query in the process of query modification.

5 Query Modification

Recall that an SQL query is of the following basic form:

SELECT A1, . . . , Am

FROM t1, . . . , tn
WHERE Q;

Here,A1, . . . , Am are attributes that define the structure of the required result relation
andt1, . . . , tn are the tables on which the conditionQ is evaluated. Of course, an SQL
SELECT statement can be expressed in terms of other constructs (e.g., aggregate
functions) but these elements are not important in the discussion that follows.

In our approach, the query modifier automatically appends references to thecategory
andpolicy tables to a user’s query when the user submits the query to an RDBMS for
evaluation. The user has a uniqueuserID, which is accessible to the query modifier as
soon as a user has been authenticated (a range of different authentication methods may
be used). In order for the user’s query to be performed, the user must be authorized, ac-
cording to the information stored incategory andpolicy, to access each of thet1 . . . tn
tables (or views) that are referred to inQ; otherwise, the user’s query will automatically
fail. The reason for this should be clear: the join ofti, . . . , tn, ti ./ · · · ./ tn, cannot be
performed for useru if access to someti (1 ≤ i ≤ n) is not authorized foru.1 For a user
that submits a queryQ, theCCu condition (if any) is appended toQ. For a user that
is permitted to access eachti (1 ≤ i ≤ n) table that is referred to inQ, the condition
on accessingti is appended to the query as a conjunctPCti

(1 ≤ i ≤ n) wherePCti

denotes the condition frompolicy that holds onu’s access toti as a consequence ofu’s
assignment to a categoryc. Hence, the rewritten query is of the following general form
(whereti(1 ≤ i ≤ n) is the table name forti):

SELECT A1, . . . , Am

FROM t1, . . . , tn, category, policy
WHERE Q
AND category.userID = $userID
AND category.categoryID = policy.categoryID
AND category.CCu

AND (policy.objectID = t1 AND PCt1

. . .
AND policy.objectID = tn AND PCtn

;

A queryQ is rewritten with respect to a DFMAC policyΠ to generate a queryQ′

for evaluation. If the tablest1, . . . , tn are interpreted as sets of tuples then forQ′ to

1 cf. the null-based semantics used in [13].

succeed for useru we require thatt1 ∪ . . . ∪ tn |= Q and(u, select, ti) ∈ AUT H,
∀ti such thatti ∈ {t1 . . . tn}. It should also be noted thatQ′ v Q holds wherev is a
query containment operator [1].

When an SQL query is expressed as a collection ofn (n ∈ N) nested subqueries
Q1, . . . , Qn in the form

Q1(Q2(Q3(Q4 . . . (Qn))))

then the rewritten query (ignoring theCCu condition) is of the form

Q1 AND C1(Q2 AND C2(Q3 AND C3(Q4 AND C4 . . . (Qn AND Cn))))

whereCi (1 ≤ i ≤ n) is the conjunction ofPCti
conditions that apply toQi.

When an SQL query is expressed in terms of the union of two subqueries (Q1 ∪Q2),
or difference (Q1 − Q2) or interersection (Q1 ∩ Q2) then, respectively, the rewritten
queries are of the formQ1 AND C1 ∪ Q2 AND C2, Q1 AND C1 − Q2 AND C2

andQ1 AND C1 ∩ Q2 AND C2 whereCi (i ∈ {1, 2}) is the conjunction ofPCti

conditions that apply toQi.
Next, we consider various forms of meta-level specification that may be represented

in SQL and that are useful for representing DFMAC policy requirements. Recall that
these different meta-policies are stored in thepolicy table as values of the attributePCt

and are defined in terms ofpca anddca.
The condition for a closed policy on tableti may represented, as a value forPCti ,

in a fragmentα of SQL, thus:

EXISTS(SELECT ∗ FROM pca
WHERE policy.catID = pca.catID AND pca.action = “select′′

AND pca.object = policy.objectID AND pca condition).

If the conjunction of conditions for a closed policy to apply are true then a useru
assigned to categoryc will be authorized to select the requested tuples from a tablet
(wheret is theobjectID) iff c category users are recorded inpca as being permitted
to exercise the select privilege ont and the conditionpca condition on the permission
applicable toc category users oft evaluates to true at the time of the access request.

The policy condition for an open policy on tableti may be represented as a fragment
β of SQL and as a value forPCti , thus:

NOT EXISTS(SELECT ∗ FROM dca
WHERE policy.catID = dca.catID AND dca.action = “select′′

AND dca.object = policy.objectID AND dca condition).

In the case of an open policy, a useru assigned to categoryc will be authorized to
select the requested tuples from a tablet iff c category users are not currently recorded in
dca as being prohibited from exercising the select privilege ont. Here,t is theobjectID
and thedca condition must evaluate to true in order for the prohibition ont to apply
to c category users at the time of an access request.

Recall that one of our aims is to define complex policies in terms of more primi-
tive forms. For example, a “denials override” policy can be defined as the conjunction

α AND β. However, multiple forms of meta-policies can be similarly constructed using
the specification language that we admit. On that, policy authors will make use of a sub-
set of the22n

n-ary operators in 2-valued logic for specifying DFMAC policies. For in-
stance, a conditioned disjunction operator[c, α, β] (where[c, α, β] ≡ c∧¬φ1 ∨¬c∧ φ2)
may be used withc denotingsales > 1000 to specify that a closed policy applies when
sales are greater than 1000 and an open policy otherwise. Similarly,(c → φ1) ∧ (¬c →
φ2) ≡ (¬c ∨ φ1) ∧ (c ∨ φ2) can be used to express an IF-ELSE condition. Notice too
that by combining subconditions, conditions of arbitrary complexity may be generated
to enable expressive forms of policy algebras to be defined.

In addition to meta-level representation via thepolicy table, policy information that
applies to the permissions and denials of access, expressed viapca anddca, respec-
tively, are expressed as values ofpca condition anddca condition. As in the case of
the conditions that apply to meta-level information included inpolicy, the values of
pca condition anddca condition are boolean conditions expressed in SQL.

To conclude this section, we outline the 4-step procedure for the query rewrite
method that we use for DFMAC policy enforcement (see also Section 7):

Step 1: Rewrite a user’s queryQ to give the following modified queryQ1:

SELECT A1, . . . , Am

FROM t1, . . . , tn, category, policy
WHERE Q
AND category.userID = $userID
AND category.categoryID = policy.categoryID
AND category.CCu

AND policy.objectID = t1 AND PCt1

. . .
AND policy.objectID = tn AND PCtn

;

Step 2: ExpandQ1 by PCti
(∀i ∈ {1 . . . n}) to giveQ2.

Step 3: ExpandQ2 by pca condition or dca condition to giveQ′.
Step 4: EvaluateQ′.

It should be clear from the rewrite method and previous discussion that a query
expansion approach is used by us. That is, if i is read as “expands to usingi” (where
i is some source of DFMAC information) then the rewrite sequence is

[Q c Q1, Q1 t Q2, Q2 m Q′]

wherec denotes the category condition,t denotes the table access conditions andm
denotes the meta-policy information. Moreover,Q ∧ c ∧ t ∧ m Q′.

6 DFMAC Policy Examples

Before we consider the implementation of the 4-step query modification procedure,
we provide a (quite general) example to illustrate our approach. Our example is based

on a variant of Date’ssupplier-part-projectdatabase [10] and includes the following
relational schemes:

supplier(s#, sname, status, scity),
part(p#, pname, color, unitcost, stock),
project(j#, jname, jcity),
spj(s#, p#, j#, qty).

Consider next the following DFMAC policy requirements onpart:

During the month of March (in any year), a closed access control policy on
the retrieval of part information is to apply to users that are categorized as
preferred but only if thestock is greater than 1000 units and the user has not
been suspended. At all other times, an open policy on retrieving information
from part applies topreferred users, but only if the stock level of an item is
less than 450 units and unit cost is greater than 0.9.

In TRC, the full expression of the policy information is:

{〈t1.p#, t1.pname, t1.color, t1.unitcost, t1.stock〉 :
part(t1) ∧ ∃t2[category(t2) ∧ t2.userid = $userid

∃t3[policy(t3) ∧ t2.policyid = t3.policyid ∧
[$currenttime.month = “march′′ ∧ t1.stock > 1000 ∧

∃t4[pca(t4) ∧ t3.catid = t4.catid ∧
t4.action = “select′′ ∧ t3.objectid = t4.objectid ∧
¬∃t5[suspended(t5) ∧ t5.userid = t2.userid]]] ∨

[$currenttime.month 6= “march′′ ∧
t1.stock < 450 ∧ t1.unitcost > 0.9 ∧

¬∃t6[dca(t6) ∧ t3.catid = t6.catid
t6.action = “select′′ ∧ t3.objectid = t6.objectid]]]}.

Notice that two exclusive disjuncts are required to express the DFMAC policy re-
quirements. For the closed policy, which applies in March, the TRC translates into the
following fragmentγ of SQL code:

$current time.month = “march′′ AND stock > 1000
AND EXISTS(SELECT ∗
FROM pca
WHERE policy.catID = pca.catID AND pca.action = “select′′

AND pca.object = policy.objectID AND pca condition)

where thepca condition is represented by the following fragmentδ of SQL code:

NOT EXISTS(SELECT ∗
FROM suspended
WHERE suspended.userID = category.userID).

That is, apreferred user is authorized in March to access tuples inpart where the
stock value is greater than 1000 if there is a permission to allowu access onpart and
u is not a suspended user. For the open policy, the required fragmentε of SQL code is
as follows:2

NOT $current time.month = “march′′

AND stock < 450 AND unitcost > 0.9
AND NOT EXISTS(SELECT ∗ FROM dca
WHERE policy.catID = dca.catID AND dca.action = “select′′

AND dca.object = policy.objectID).

ThePCpart value that is stored inpolicy is the disjunction of the fragmentsγ ∧ δ
andε; the SQL fragmentδ is stored inpca.

Next, consider the following queryQ for userκ with preferred status:

SELECT p#
FROM part
WHERE unitcost > 0.25

but wherepreferred users are only permitted to see a subset (view) ofpart such
thatunitcost ≥ 0.5 (thus making theunitcost > 0.25 condition redundant) and only
if these users are located in Europe (as recorded in a table namedregion).

It follows, from the discussion above, that the query rewriter that we use will gen-
erate the following modified form ofQ for κ:

SELECT p#
FROM part, category, policy
WHERE unitcost > 0.25
AND category.userID = $userID
AND category.categoryID = policy.categoryID
AND policy.objectID = “part′′ AND unitcost ≥ 0.5
AND EXISTS(SELECT ∗ FROM region

WHERE $userID = region.ID AND region.name = “europe′′)
AND $current time.month = “march′′ AND stock > 1000
AND EXISTS(SELECT ∗ FROM pca

WHERE policy.catID = pca.catID
AND pca.action = “select′′ AND pca.object = policy.objectID
AND NOT EXISTS (SELECT ∗

FROM suspended
WHERE suspended.userid = category.userid))

OR NOT $current time.month = “march′′

AND stock < 450 AND unitcost > 0.9
AND NOT EXISTS(SELECT ∗ FROM dca
WHERE policy.catID = dca.catID
AND dca.action = “select′′ AND dca.object = policy.objectID);

2 Notice that there is nodca condition value that is applicable.

Thus:

If κ submits its query on March 1st (at which pointκ haspreferred status and
is located in Europe) thenκ is authorized to access part numbers for all tuples
in part whereunitcost ≥ 0.5 but only ifstock values are greater than 1000
units and a permission holds forκ that is not overridden as a consequence ofκ
being a suspended user at the time ofκ’s access request. In contrast, if, on the
1st April (say),κ submits its query then it can access all part numbers where
unitcost > 0.9 provided thatstock level is less than 450 units andκ is not
explicitly prohibited from accessing this information.

For the example DFMAC policy requirements described above, the SQL query that
is generated is quite complex and requires that a number of subqueries be used. How-
ever, for many practical queries the rewritten form will be much simpler. For all ap-
proaches that are used for access control there is an overhead involved in checking
access constraints, and there will always be a trade-off between complex policy repre-
sentation and query efficiency. In the next section, we provide arguments to suggest that
many queries, that require the representation of some quite complex DFMAC policy re-
quirements, can be evaluated without significant enforcement overheads.

7 Practical Considerations

In this section, we describe the testing of an implementation of our approach and we
give some performance measures.

For the testing, we use large-scale versions of the tables that we previously de-
scribed. Specifically, we use thesupplier-part-projectsdatabase with (of the order of)
100000 tuples in each of thepart, supplier andproject tables and with (of the order
of) 500000 tuples in thespj table.

For implementation, we use PostgreSQL 8.3 [16]. We use rewrite rules to trans-
form a query tree for a user queryQ into a modified formQ′ that incorporates access
control information that may be stored incategory, policy, pca or dca. Our testing is
performed using a 1.9GHz AMD Athlon X2 Dual-Core machine (with a 128KB Level
1 data cache, a 512KB level 2 cache, and 1GB of memory) running Red Hat Linux 7.3.
The results are generated by using the PostgreSQLtiming function.

The principal purpose of our testing is to determine the extent to which the DF-
MAC policy information, which is added toQ to generateQ′, affects performance. No
effort was made to tune the implemented system (to avoid the results becoming set-up
specific). We perform our tests using data and queries for “expensive case” evaluation.
Hence, we also test the scalability of the approach.

An example of the type of query that we use is:retrieve all suppliers names for
suppliers that supply red parts to no project in London, to wit:

{〈t1.sname〉 : supplier(t1) ∧ ∃t2[part(t2) ∧ t2.color = “red′′ ∧
¬∃t3[project(t3) ∧ t3.jcity = “london′′ ∧ ∃t4[spj(t4) ∧ t1.s# = t4.s# ∧

t2.p# = t4.p# ∧ t3.j# = t4.j#]]]}

Various policy combinations were tested with various queries for a single user that
is assigned to a single category to whichSELECT access is defined inpolicy on
the tables in thesupplier-parts-projectsdatabase. We also performed some queries that
generate large numbers of tuples in intermediate tables in the process of query evalua-
tion. For example, we perform a query that involves computing the cartesian product of
three subsets of the tuples inpart (each subset having a cardinality of 100). The meta-
policy information, based on the example from Section 6, is stored inpolicy and thepca
conditions anddca conditions that are defined in terms ofsuspended are, respectively,
stored inpca anddca.

The key measure for our implementation is the overheads that are incurred as a
consequence of adding the DFMAC policy information in the process of query evalu-
ation. On that, we have observed typical extra overheads of the order of 10-15% (for
the majority of our test queries). For example, for the query above, the query evaluation
time (averaged over 10 runs) is 1.9s. In contrast, when the DFMAC policy informa-
tion, described in Section 6, is compiled into the query, the average time is 2.2s. (The
overheads involved in rewriting are negligible.) Similar results were generated for a
range of queries on thesupplier-part-projectdatabase. Nevertheless, a test of a hybrid
policy with an expensive subquery evaluation that involves accessing an instance of
suspended with 15000 tuples did push the DFMAC overhead up to 26% over the non-
DFMAC case. For the processing of this query (with| suspended | = 15000) the
computational overheads are pushed towards a bound of unacceptability. However, if
this type of query were performed frequently, in practice, on a table of similar cardi-
nality then the possibility of optimizing access tosuspended would be considered by a
DBA. Clearly, it is always possible to find worst case scenarios that incur high costs in
terms of processing DFMAC information. In all cases, a DBA must consider the trade-
off between automatic DFMAC policy enforcement and the computational overheads
that are incurred as a consequence of evaluating queries that are rewritten to incorporate
DFMAC policy information.

8 Related Work

In this section, we describe the literature that relates to our approach. We first describe
work from the access control community that is concerned with the specification of
flexible forms of access control information for protecting databases. Thereafter, we
consider how our approach relates to work that has been focused on the specific issue
of query rewriting on SQL databases for implementing FGAC policy requirements.

The importance of developing access control models, in terms of which flexible
forms of access control policies may be defined, has long been recognized. The work by
Bertino, Jajodia and Samarati [9] is especially significant in this respect. In [9], a well-
defined authorization model that permits a range of discretionary access policies to be
defined on relational databases is described. However, the emphasis in [9] is principally
on discretionary policies rather than the range of DFMAC policies for category-based
access control models that we have considered. The importance of using contextual
information in access control for helping to protect databases is also well-known. For

example, the idea of utilizing temporal restrictions on access to information in databases
has been discussed by Bertino et al. [7], and an event-based approach for flexible ac-
cess to databases that is based on triggers has been presented in [8]. An extension of
the approach, which allows for the dynamic enabling and disabling of roles, has been
described in [12]. However, these approaches are not concerned with the direct repre-
sentation of DFMAC policies in SQL, they do not consider the range of category-based
models that we do, and they are not concerned with query modification. We also note
that an approach for the representation of flexible forms of access control policies for
deductive databases has been described [3, 2] as well as flexible specifications of access
control meta-policies when contextual factors like system clock times may be taken into
account [5]. However, the approaches that are described in [3],[2], and [5] are theoreti-
cal and cannot be naturally used with SQL databases (not least because query evaluation
with respect to policy specification is tied to the operational semantics that are used in
deductive databases and constraint databases).

On the issue of using query rewriting for access control, we discuss three recent
contributions to the literature: the work by Rizvi et al [17], Wang et al [19], and LeFevre
et al [13]. The work by Rizvi et al [17] has certain similarities with ours in that context
is taken into account when evaluating access requests. However, the key contribution of
Rizvi et al.’s work is to define validity rules that control access to data via parameterized
views. A user’s access request can be performed if and only if the access is consistent
with the validity rules that apply to the access; otherwise, the user’s query is rejected.
Rizvi et al.’s work is concerned with FGAC policies at the level of data whereas our
approach is focused on fine-grained access control from a policy-level perspective. It
should also be noted that Rizvi et al.’s concern is with developing what the authors call a
“non-Truman” approach to database access control. The issue of distinguishing queries
that users can execute from those that they cannot execute, to ensure that non-Truman
databases can be supported, is a different aspect of the AC representation problem than
we have addressed. Rizvi et al.’s motivation for non-Truman databases is what they
suggest to be possible misinterpretations of query answers that arise as a consequence
of security restrictions. However, it is not clear that such confusions are exhibited by
users. Moreover, Rizvi et al.’s work aims to resolve “inconsistencies” between what
a user “expects” and what a system returns (in terms of answers to a query). These
terms are not well defined by Rizvi et al and it is not clear that rejecting queries as
“inconsistent” is what users would “expect”. A number of more specific problems apply
to Rizvi et al’s approach. For example, legitimate forms of queries can be rejected and
the query validation problem is undecidable, in general, for the inference rules that are
proposed for identifying acceptable queries.

The work by Wang et al [19], is also concerned with FGAC for relational databases.
More specifically, Wang et al consider the problem of defining and demonstrating the
correctness of FGAC enforcement. In contrast, our approach is concerned with DF-
MAC policies. Moreover, our approach is correct in the sense that the set of atomic
consequences that are accessible by a user of an SQL database are those that SQL com-
putes to satisfy the definition of correctness that we specified in Section 2. That is,
the set of ground atomic consequences that a useru may retrieve (i.e.,select) from a
database∆ to which the DFMAC policyΠ applies is:

{A : A ∈ HB(∆) ∧ ∆ |= A ∧ authorized(u, select, A)}.

We have not considered the richer interpretation of correctness that Wang et al con-
sider, but that has not been the focus in this paper.

The work that we have described is perhaps closest is spirit to Lefevere et al.’s
work [13]. Like LeFevre et al., we make use of a high-level specification language for
representing policy requirements and we translate this specification into SQL for imple-
mentation. However, the specification language that we use is tuple relational calculus
(rather than P3P) and our concern is with access control policies for SQL database
in general (rather than privacy policies for Hippocratic databases). What is more, our
concern is with the representation and processing of very different types of meta-level
information because we do not interpret fine-grained access control at the data level
as LeFevre et al do. Instead, our concern has been to represent DFMAC policies. As
such, we address a different aspect of the AC representation problem (as we explained
in Section 1). The work in [13] is based on a nullification-based semantics (i.e., a null
value is substituted for a data value that should remain private); this semantics may be
appropriate in the privacy context, but is less obviously so in the DFMAC case.

In more general terms, it should be noted that our approach is focused on DF-
MAC policies for category-based access control models, specifically. By focusing on
category-based models, the potential problem of view proliferation is much more man-
ageable than it is when a user-based view is adopted (as in, for example, [17]). Nei-
ther [17] nor [13] identify well defined access control models to which their approaches
apply. Moreover, negative authorizations are not considered and so neither [17] nor [13]
discusses issues like policy overriding. It is also worth noting that, unlike [13], [17]
and [19], our concern is with dynamic and autonomouschanging of access control
policy requirements.

9 Conclusions and Further Work

The contributions that we have described in this paper can be summarized in the fol-
lowing way: we introduced an approach for dynamic, fine-grained access control policy
representation (in tuple relational calculus and SQL) that differs from related work in
terms of its focus; we demonstrated how DFMAC policy information may be used by
a query modifier for enforcing access control policy requirements; and we discussed an
implementation and performance results for a real application of the approach. The ap-
proach that we have described can be applied to various category-based access control
models and, as such, is quite general. As far as we are aware the particular aspect of
the AC representation problem that we have considered (the representation and imple-
mentation of DFMAC policy requirements) has not been previously addressed in the
literature on representations of access control policy requirements in SQL.

In future work, we intend to investigate yet finer grained DFMAC policy represen-
tations where, for example, DFMAC policies may be expressed on individual columns
within a table. We also want to consider extending our approach to accommodate ad-
ditional information of relevance to extended forms of DFMAC policies (e.g., DFMAC
policies that include specifications of obligations on users and constraints on policy

specifications). The efficient implementation of these forms of extended DFMAC poli-
cies in SQL is also a matter for further work as is an investigation of the feasibility of
combining DFMAC and FGAC policies proposed by other authors.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu.Foundations of Databases. Addison-
Wesley, 1995.

2. Steve Barker. Access control for deductive databases by logic programming. InICLP, pages
54–69, 2002.

3. Steve Barker. Protecting deductive databases from unauthorized retrieval and update re-
quests.Journal of Data and Knowledge Engineering, 23(3):231–285, 2002.

4. Steve Barker. Action-status access control. InSACMAT, pages 195–204, 2007.
5. Steve Barker and Peter Stuckey. Flexible access control policy specification with constraint

logic programming.ACM Trans. on Information and System Security, 6(4):501–546, 2003.
6. D. Elliot Bell and Leonard J. LaPadula. Secure computer system: Unified exposition and

multics interpretation.MITRE-2997, 1976.
7. Elisa Bertino, Carlo Bettini, Elena Ferrari, and Pierangela Samarati. An access control model

supporting periodicity constraints and temporal reasoning.ACM TODS, 23(3):231–285,
1998.

8. Elisa Bertino, Piero Bonatti, and Elena Ferrari. TRBAC: A temporal role-based access con-
trol model. InProc. 5th ACM Workshop on Role-Based Access Control, pages 21–30, 2000.

9. Elisa Bertino, Sushil Jajodia, and Pierangela Samarati. A flexible authorization mechanism
for relational data management systems.ACM Trans. Inf. Syst., 17(2):101–140, 1999.

10. C. Date.An Introduction to Database Systems. Addison-Wesley, 2003.
11. David F. Ferraiolo, Ravi S. Sandhu, Serban I. Gavrila, D. Richard Kuhn, and Ramaswamy

Chandramouli. Proposed nist standard for role-based access control.ACM Trans. Inf. Syst.
Secur., 4(3):224–274, 2001.

12. James Joshi, Elisa Bertino, Usman Latif, and Arif Ghafoor. A generalized temporal role-
based access control model.IEEE Trans. Knowl. Data Eng., 17(1):4–23, 2005.

13. Kristen LeFevre, Rakesh Agrawal, Vuk Ercegovac, Raghu Ramakrishnan, Yirong Xu, and
David J. DeWitt. Limiting disclosure in hippocratic databases. InVLDB, pages 108–119,
2004.

14. J. Lloyd.Foundations of Logic Programming. Springer-Verlag, 1987.
15. Oracle. Oracle 11g. http://www.oracle.com.
16. PostgreSQL 8.3: User Manual. http://www.postgresql.org/docs/.
17. Shariq Rizvi, Alberto O. Mendelzon, S. Sudarshan, and Prasan Roy. Extending query rewrit-

ing techniques for fine-grained access control. InSIGMOD Conference, pages 551–562,
2004.

18. Michael Stonebraker and Eugene Wong. Access control in a relational data base management
system by query modification. InProc. 1974 Annual Conf. (ACM/CSC-ER), pages 180–186,
1974.

19. Qihua Wang, Ting Yu, Ninghui Li, Jorge Lobo, Elisa Bertino, Keith Irwin, and Ji-Won Byun.
On the correctness criteria of fine-grained access control in relational databases. InVLDB,
pages 555–566, 2007.

