
Securing Workflows with XACML, RDF and BPEL

Vijayant Dhankhar1, Saket Kaushik2, and Duminda Wijesekera3

1Department of Computer Science, George Mason University, Fairfax, VA 22030,
U.S.A, dhankhar@gmail.com

2Oracle Corporation, Redwood City, CA 94065, U.S.A, saket.kaushik@oracle.com
3Department of Computer Science, George Mason University, Fairfax, VA 22030,

U.S.A, dwijesek@gmu.edu

No Institute Given

Abstract. The XACML is the access controller of the World Wide Web (WWW).
The current reference implementation has a single policy decision point and a pol-
icy enforcement point. If XACML policies are used to control workflow among
cooperating web services, such as those envisioned in more contemporary lan-
guages like (BPEL), it requires coordination to be policy compliant. We propose
the necessary enhancements required to do so by passingcontextual information
that are needed for the requester to evaluate an access control decision as opposed
to the standard four decision values ofpermit, deny, indeterminate to make a deci-
sionandan unforeseeable error occurred during evaluation. Proposed contextual
information is sufficient to coordinate and if necessary synchronize among coor-
dinating policy enforcement points distributed among the WWW. We show how
the contextual information can be constructed and verified using the Resource
Description Framework (RDF) and the coordination implemented using BPEL.

1 Introduction
In service-oriented architectures, workflows are increasingly being used to provide a
single point of access for composite services constructed from multiple sub services.
In order to provide a single authority to make yes/no decisions for workflow requests,
the individual mechanisms that control the components involved in authorizing the flow
should cooperate, requiring distributed evaluationandenforcement of the access control
decision. Because XACML is the access control language for web services [21], there
is a need for distributed accesses controllers using XACML to coordinate in providing
secure flow control.

In XACML parlance, a policy based access control decision will be evaluated by
(possibly) several so calledpolicy decision points (PDPs)[21] collectively; as well as
enforced collectively at (possibly) severalpolicy enforcement points (PEPs)[21]. This
approach has additional advantages, most prominently for the requester, the single ser-
vice access point provides a service specified by a single access control policy. If imple-
mented, a single access control policy retained at the mother service and be evaluated
and enforced distributively by the sub-services. However, current XACML standard
and reference implementation [26] lack the desired syntax and enforcement mecha-
nisms for such an access controller. In this paper we supply the necessary extensions to

current XACML standard and reference implementation to be able to evaluate and en-
force XACML policies in afully-distributedmanner. We enhance our previous [11, 12]
work in achieving this objective in this paper by passing sufficient contextual informa-
tion between XCAML PDPs and PEPs so that the passed information contain sufficient
information to control the distrbuted usage of resources such as flow control ans synhro-
nization. Such techniques can be used in more contemporary workflow languages like
BPEL.

 − V1 & V5

Valve 5

 − V3 & V4

 − V1 & V2

Possible Paths:

Reservoir

 C1

 C2 C3

Valve 1

Valve 2Valve 3

Valve 4 City A

Fig. 1: Use Case

For example, consider a hypothesized process of transferring water from aReser-
voir to aCity A, enabled through Web Service invocations as shown in Figure 1. In this
scenario, for water transfer to take place, the requestor must possess the required au-
thorizationand the action of opening a valve must be approved by the three companies
(C1, C2andC3) that maintain the grid of water pipelines that connect the reservoir to
the city A. In addition, the access controller must check if another request to transfer
water is underway or not. This is a necessary environmental constraint because water
pipelines have a safety limit as to the amount of pressure they can withstand. As long as
there exists a continuous channel fromReservoirto City A, the water pressure is within
safe limits and requestor is authorized, this transfer should be allowed.

Also once the transfer is allowed, it should be run transactionally, i.e. if the down-
stream valve (Valve 2- policy enforcement point) fails to open due to unforseen failure
then the upstream valve (Valve 1- policy enforcement point) should close, otherwise
there is a possibility for an intervening pipeline to burst – another environmental con-
straint to be metduring the transfer.

We propose that coordinating access controllers share more thanpermit or deny
decisions in requesting access to resources controlled by sub-services. Our proposal,
described in detail, proposes that they enhance thepermitordenydecision by providing
somecontextin which the requester can evaluate the decision. Proposed context infor-

2

mation provides the requirements that must be ensured prior to starting the resource
usage, the conditions that must be satisfied during the usage and those that must be
specified when the requester relinquishes the usage, thereby providing a context for full
usage control[27].

We propose using theResource Description Framework (RDF)[6] for this purpose
of describing thecontext, because RDF can be used to specify a completeontology
for the resource usage, including but not limited to exclusivity (i.e. such as writing
privileges). We show a snippet of our implementation.

Lastly, the distributed policy enforcement points need to address the control de-
pendencies that exists between policy enforcement points that must exist to ensure the
flow. We show how this can be done using theBusiness Process Execution Language
(BPEL)[19]. As of this writing we have a preliminary implementation of this.

The significance of this proposal are three fold: Firstly, it can convey synchroniza-
tion requirements beyond exclusive usage and options. Secondly, it can be customized
to the operational interfaces provided by the resource, and therefore go beyond the tra-
ditional read, write, executepermissions. Lastly, we show how the current collection of
semantic web languages and their runtimes (namely, XACML, RDF and BPEL) can be
used to implement our proposal. Parts of this proposal have been implemented, and our
ongoing work concentrates in making our rudimentary implementation more generic.

The rest of the paper is written as follows. Section 2 describes the current XACML
reference implementation. Section 3 provides an overview of RDF. Section 4 describes
the enhancements needed to fully distribute the XACML implementation. Section 5
describes some architectural enhancements we are proposing to the existing XACML
reference implementation in order to achieve full distribution. Section 6 describes re-
lated work and Section 7 has our concluding comments.

2 The XACML Reference Implementation

access
requester 2.Access request service

obligations

environmentsubjectsPAP

PDP

PEP

PIP

resourcecontext
handler

1. Policy

3. Request

4. atrb query

5a sub. atrbs

6. Attributes

5b. env. atrbs

5c. resource atrbs

7. Resource

8a. target, atrb, resource

9. decision

11a. Obligations

10. Response

Fig. 2: XACML Architecture

3

The current XACML specification has three main entities as shown in Figure 2. As
shown, it has the following main components in addition to auxiliary components.

1. Policy Administration Point (PAP): Entity that creates policies or policy sets.
2. Policy Decision Points (PDP): Entity that evaluates applicable policy and renders

an authorization decision. The answer given by the PDP is one of (1)permit, (2)
deny, (3) insufficient information to decideor (4) error, implying some unforseen
error occurred in the execution.

3. Policy Enforcement Point (PEP): Entity that performs access control by enforcing
authorization decisions.

Figure 2 shows the dataflow of the XACML reference implementation. First, the
PAP creates a policy. At request time, an access request arrives at the PEP (flow 1),
and is sent to the context handler (flow 2). The context handler determines resources to
be accessed and attributes of the requester, resource and the environment, collects all
required attributes and forwards them to the PDP (flows 3,4,5,6,7,8). PDP then acquires
the policy from PAP (flow 1), evaluates the relevant policy and relays the decision (flows
9, 10) to the PEP through the context handler, which proceeds to enforce the authoriza-
tion decision.

The policy syntax (XML) includes language constructs to identify theresource,
the action (to be performed on the resource), thesubject, andconstraintson the ac-
cess. In XACML parlance, this collection of entities is called atarget. The request syn-
tax (XML) identifies the resource, the action, the subject. The decision engine (PDP)
matchesthe incoming request to available policies to discover all applicable policies.
If more than one policy is applicable, then the PDP uses apolicy-combination algo-
rithm [21] to determine the evaluation result. In essence, the combination algorithm
states how to combine the result of each applicable policy.

3 RDF Overview
RDF [7, 6, 15] specify meta-information aboutresources, i.e., entities that can be uniquely
identified, andbinary relationsbetween them so that they can be “machine processed”.
Such meta information about resources are specified in RDF using binary properties
between resources. RDF does so by using the syntax oftriples where the subject (the
first component of the triple) is related by the property (the second component of the
triple) to the object (the third component). An RDF schema can be extended further
by specifying binary properties between nodes and triples. This process, carried out
recursively, is referred to asreification. RDF(S) or RDF Schema is RDFs vocabu-
lary description language. It has syntax to describe concepts and resources through
meta-classes such asrdfs:Class,rdf:type,etc., and relationships between resources
throughrdf:property. These meta classes are used to specify properties of user de-
fined schema. Details of RDF/RDF(S) syntax and vocabulary descriptions can be found
in [6]. This syntax is readily usable in XACML framework because of the inherent abil-
ity of RDF to captureattribute-valuepairs in its syntax. Attributes arenamed-properties
of nodes and their values can be (atomic) data (text, string, integer, etc.) or other nodes.

Multiple RDF triples form a graph (connected or disconnected),i.e., if the object of
a triple is the subject of another triple, then the two triples are merged together retaining

4

the common object only once (with one incoming edge and one outgoing edge) [16].
Since RDF expresses binary relationships, RDF triples and graphs can be interpreted by
machine languages andqueriedusing languages like RDQL, SPARQL,etc.[8, 18, 25,
24, 9, 22] (on the lines of SQL). In addition, due to an XML-based syntax,XSLT Rules
can also be specified to query and interpret RDF data. In this work, we make use of
these provisions to effectively utilize RDF-based information for enforcing distributed
access control decisions.

4 Requirements for Distributing XACML
As described in Section 2, the PDP issues one of four decisions of permit, deny, inap-
plicable policy or an error condition. Although these may adequately reflect the case
of a centralized policy evaluation and enforcement, it it inadequate in the case of dis-
tributed flow control. For example, consider the three regions C1, C2 and C3 controlled
by three independent XACML engines that individually emit one ofpermit, deny, in-
applicable policyor error, and these decisions are collected by a centralized PDP to
give the final decision. The last two decisions from either component should result in
denial of permissions for the transfer request of water. For example, if the request to
transfer 2000 gallons of water per minute to city A from the reservoir as drawn in Fig-
ure 1, and the master PDP request the slave PDP’s governing regions C1 and C2 for a
subsequent request to transfer water, then they must come back with a reply saying the
amount of water they are willing to transfer and what other conditions must be satisfied
in order to grant this request. For example, PDP governing region C1 may say that it
can grant this request by openingValve 1andValve 2, and closingValve 5provided
that Valve 3is closed. Simultaneously, the PDP governing region C2 may say that it
is willing to grant the request provided thatValve 3andValve 4are open andvalve 2
is closed. Consequently, the master PDP must now decide on which path it chooses,
provide that all pre-requisite conditions can be met. Otherwise, it has toDenythis re-
quest. Consequently, there is a need for the secondary PDPs to convey to the master
PDP the pre-requisite state information for the former to grant the request, the state that
it expects the concerned resources to maintain while the granted resources are being
used and the post-requisite state of the resources that it expects the resources to be in
when the requestor relinquishes the use of the resource. Because the granted permission
or denial are conditional upon these state information, we call it thedecision context.
Consequently, the decision is valid only if the context is satisfied during the enforcement
process, consequently providing support for usage control [27]. Furthermore, thisdeci-
sion contextof how PDP reached a policy decision has to be made available toPEP’s
for the correct enforcement of thePDP’s Decision. As stated in Section 2, the preferred
syntax to state properties of resources on the WEB is RDF, we provide a preliminary
definition for thedecision contextusing RDF as follows, and refine it in Section 5.

Definition 1 (preliminary definition of decision context) The decision context con-
sist of a triple of RDF statements, referred to as pre-context, during-context and post-
context.

The decision contextis different thanobligationsas the latter imposes future re-
quirements on that the PEP must adhere to. The XACML specification specifies an

5

obligationas an action performed by the PEP in conjunction with the enforcement of
an authorization decision. This definition separates the enforcement action from obli-
gation processing. Such a system where the enforcement is distributed should be able
to maintain transactional semantics based on thedecision context.

Another important aspect of the decision context is that if the decision is not going
to be valid during the enforcement of the decision, the actions of the PEP should be
rolled back. In the previous example if Valve 1 fails to enforce the policy decision (fails
to open), the decision context (both Valve 1 and Valve 2 should open) is invalid and
hence Valve 2 must also be closed (rolled back). This transactional semantics based on
the decision context should be adhered to byPEP’sexecution.

5 Architecture and Design

In order to enforce distributed access control using XACML, we propose having a sep-
arate PDP at everysite that need to evaluate a local access control policy. Then these
local policies communicate their decisions with the encompassing context to the master
PDP that collects all such decisions and renders the final access control decision to the
external requestor. This arrangement can be repeated recursively, creating a hieararchy
of PDPs that are arranged in a tree structure. Consequently, the arrangement applicable
to our example scenario is given in the left hand side of Figure 3. For the example given
in Figure 1, because the web services are arranged so that the top level service depends
upon sub-services C1, and C2, and C1 depends on C2. Consequently, the PDPs given
in the left hand side of Figure 3 inherits the same hierarchical structure. Consequently,
the corresponding policy enforcement points of these services C1, C2 and C3 should
be coordinated in the same hierarchical manner. The right hand side Figure 3 is there
to show that the latter coordination can be specified and enforced using theBusiness
Process execution Language (BPEL)and will be explained shortly. Accordingly, these
PEPs need to agree to enforce the decision within the decision context that all PDPs
will pass along with the decision.

 Open Water Transfer

(PEP)

(PEP)

Valve 2

Valve 1
Master PDP

PDP (C3)

PDP (C2)PDP (C1)

Decision: Permit

 Decision: Permit

Decision: Permit

Open Valve 1

Open Valve 2

Decision: Deny

RequestorContext:

Context: Open Valve 1

 Context: Open Valve 2

 BPEL
 Process

PEP
Coordinator

Transactional

Fig. 3: Architecture and Design

6

5.1 Context

Because the decision context expresses constraints under which permissions can be
granted to acquire resources, we express them as RDF statements. Because the request
to the resource has three constraints, these are a triple of RDF constraints, referred to
as the pre-context, during-context and the post-context, as defined in Definition 1. (We
provide an example, soon after we show how thedecision contextis used).

In order to use this context elements, we alter the access control policies and make
thedecision contextconditionals in the access control policies. We do so by using the
〈Conditional〉 in XACML policies. Furthermore, in order to express and evaluate the
enriched policies, we have enriched the XACML runtime. In order to minimize the
alteration, we pass thedesign contextas aMetaBooleantype in XACML, so that it
the XACML runtime allows us to use our own evaluator, for which we use and RDF
evaluation engine. We formally define theMetaBooleantype in XACML as follows.

1 <xs:element name="MetaBoolean" type="xacml:MetaBoolean"/>
2 <xs:complexType name="MetaBooleanType">
3 <xs:sequence>

4 <xs:element ref="xacml:Context" minOccurs="0" maxOccurs="unbounded"/>

5 </xs:sequence>

6 <xs:attribute name="eval" type="http://www.w3.org/2001/XMLSchema#boolean" use="required"/>

7 </xs:complexType>

Type 1: MetaBoolean Type

In order to give examples of thedecision contextand its embedding as a conditional
in the access control policy as aMetaBooleantype, consider the case where a request
to transfer 3000 gallons of water is received by the master PDP in Figure 1. In response
to the request, the PDP retrieves the appropriate policy, given asPolicy 1.

As shown, the top level policy expressing Company 1’s (i.e. the one that governs
region c1) in line 1 says that it consists of a policy set. Although the target of this policy
is omitted for brevity, it has a set of rules starting in line 8. For brevity we show only one
rule, the one starting in line 8 and ends in line 14. Line 1 says that these rules are to be
applied in thedenial override, meaning that if any component rule evaluates to a denial,
then the resulting decision returned to the calling PDP will be a denial. The reason being
that a synchronous delivery succeeds only if all of its requirements succeed.

In line 8 of the described rule, Policy 1 calls for an evaluation of (c1:policy-check-
valve-1) and in line 17 has a Policy reference to Company 2’s (c2) policy for open-
ing Valve 2 (c2:policy-check-valve-2). Thec2:policy-check-valve-2listing is shown in
Policy 2.

The intended effect of Policy 1 and Policy 2 taken together is that it will ask the
PDP governing C2 to evaluate Policy 2 and send back the resulting decision along with
its decision context. Then our enhanced XACML runtime will combine the decisions
by using thepolicy-combining-algorithm:deny-overridesalgorithm before returning the
Decision to the PEP Coordinator.

1 <PolicySet PolicySetId="c1:policyset-check-reservoir-city:a" PolicyCombiningAlgId="policy -combining-algorithm:deny-
overrides">

2 <Target>

3

4 </Target>

5 <Policy PolicyId="c1:policy-check -valve-1" RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">

6 <Target/>

7 <Rule RuleId="c1:valve -1-scheduling-check" Effect="Permit">

8

7

9 <Condition>

10 <Apply FunctionId="c1:function:schedeule-valve-1">

11 </Apply>

12 </Condition>

13 </Rule>

14

15 </Policy>

16 <PolicyIdReference>c2:policy-check -valve-2</PolicyIdReference>

17</PolicySet>

Policy 1: Top-Level C1 PolicySet

1 <Policy PolicyId="c2:policy-check -valve-2" RuleCombiningAlgId="rule-combining-algorithm:deny-overrides">

2 <Target/>

3 <Rule RuleId="c2:valve -2-scheduling-check" Effect="Permit">

4

5 <Condition>

6 <Apply FunctionId="c2:function:schedule-valve2">

7 </Apply>

8 </Condition>

9 </Rule>

10

11 </Policy>

Policy 2: C2’s Check for Valve-2

We now provide examples ofdecision contextsreturned by the evaluators of these
two policies.

1 <MetaBoolean eval="true">
2 <Context>

3 <PreContext>

4 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

5 <rdf:Description rdf:about="http://gmu/valve1">

6 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

7 <gmu:ID>Valve1</gmu:ID>

8 </rdf:Description>

9 </rdf:RDF>

10 </PreContext>

11 <DuringContext>

12 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

13 <rdf:Description rdf:about="http://gmu/valve1">

14 <gmu:capacity xml:lang="http://www.w3.org/2001/XMLSchema#int">1000</gmu:capacity>

15 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">open</gmu:state>

16 <gmu:ID>Valve1</gmu:ID>

17 </rdf:Description>

18 </rdf:RDF>

19 </DuringContext>

20 <PostContext>

21 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

22 <rdf:Description rdf:about="http://gmu/valve1">

23 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

24 <gmu:ID>Valve1</gmu:ID>

25 </rdf:Description>

26 </rdf:RDF>

27 </PostContext>

28 </Context>

29</MetaBoolean>

MetaBoolean 1: Generated by valve-1-scheduling-check

Thedecision contextreturned by the evaluation of Policy 1 is given inMetaboolean
1. As the listing shows, the evaluation returned istrue conditional upon the the pre-
context, during-context and post-context given between lines (3-13), (14-25) and (26-
36). As shown, all three of them refer to an RDF descriptions in lines 8, 19 and 31. The
three lines immediately following the references to RDF descriptions, namely (9-10),
(20-22) and (32-33) describe the threedecision contexts. The pre-context in lines 9-10

8

says that thestateproperty ofvalve 1must be closed. The during-context in lines (20-
21) says that the thestate propertyof valve 1must be open and further state that the
capacityproperty of the valve must be set to 1000 gallons per minute. It is conceivable
that the RDF semantics of a valve is such that other properties such as the time duration
that it remains open should also be specified. Note that these properties can be specified
using RDF polices for the individual resources that are pertinent for the requests to
be completely specified so that the PEP can enforce the permission. The post context
contained in lines (32-33) say thatcloseproperty of thevalvemust be closed.

Similarly, Metaboolean 2given below states thedecision contextreturned by the
PDP that governs region C2 to the master PDP. As previously explained, if Rulec2:valve-
2-scheduling-checkevaluates topermitthe functionc2:function-schedule-valve-2within
the conditional returns adecision contextthat requiresvalve 2to be closed prior to
granting the requests and it be opened during the usage at the rate of 1000 gallons per
minute.

1 <MetaBoolean eval="true">
2 <Context>

3 <PreContext>

4 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

5 <rdf:Description rdf:about="http://gmu/valve2">

6 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

7 <gmu:ID>Valve2</gmu:ID>

8 </rdf:Description>

9 </rdf:RDF>

10 </PreContext>

11 <DuringContext>

12 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

13 <rdf:Description rdf:about="http://gmu/valve2">

14 <gmu:capacity xml:lang="http://www.w3.org/2001/XMLSchema#int">1000</gmu:capacity>

15 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">open</gmu:state>

16 <gmu:ID>Valve2</gmu:ID>

17 </rdf:Description>

18 <rdf:Description rdf:about="http://gmu/valve5">

19 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

20 <gmu:ID>Valve5</gmu:ID>

21 </rdf:Description>

22 </rdf:RDF>

23 </DuringContext>

24 <PostContext>

25 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

26 <rdf:Description rdf:about="http://gmu/valve2">

27 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

28 <gmu:ID>Valve2</gmu:ID>

29 </rdf:Description>

30 </rdf:RDF>

31 </PostContext>

32 </Context>

33</MetaBoolean>

MetaBoolean 2: Generated by Rule valve-2-scheduling-check

There are two pertinent issues here. The first is that either C1 or C2 can consult
its own policy and decide how to internally schedule water flow and control their own
rates. Secondly they can consult their own scheduling rates so that the resource usage
adheres to its own semantics of operations. Our ongoing work addresses these two
issues. We now describe the Policy evaluation process used by a master PDP to evaluate
an XACML request, upon receipt ofdecision contexts.

5.2 Evaluating the Decision Context

As shown the decision context consists of pre-context, during-context and post-context.
Consequently, every child PDP sends its decision context to its parents PDP as a re-
sponse to a distributed request.

9

The parent PDP then collects all decision context of its children and combine them
to determine if the collected decision context ate consistent. In order to do so, the PDP
evaluation collects allpre contexts, during contexts andpost contexts separately, and
if all of them are determined to be consistent, then evaluate the design context to be
consistent. Conversely, if either of them is found to be inconsistent, then the design
context is determined to be inconsistent. Conversely, if any of the design context are
determined to beIndeterminate, then the design context is said to be indeterminate.

The consistency of the decision context are determined using an RDF rule evalu-
ation engine. The rules supplied to this engine define which contexts are consistent.
The RDF rules state which combination of RDF property instances imply falsehood.
This process, we refer to asdecision context unificationis performed in a hierarchical
manner as shown in Figure 4

Union Graph

Ontology

RDF Graph 2RDF Graph 1

RDF Graph
Combined

Base Assertions

(Rules)

Reasoner

Fig. 4: Context Unification

In order for the process to work, we construct an OWL Ontology and feed it to
an RDF reasoner. The Ontology defines the model and specifies the restrictions on the
model. A brief snippet of the ontology used to reason about the water system is shown
in the listingValve Ontology

1 <owl:Class rdf:ID="Valve">

2 <owl:Restriction>

3 <owl:onProperty rdf:resource="state"/>

4 <owl:cardinality>1</owl:cardinality>

5 </owl:Restriction>

6 </owl:Class>

7

8 <owl:DatatypeProperty rdf:ID="capacity">

9 <rdfs:range>

10 <rdfs:Datatype>

11 <xsp:base rdf:resource="&xsd;int"/>

12 <xsp:minInclusive rdf:datatype="&xsd;int">0</xsp:minInclusive>

13 <xsp:maxInclusive rdf:datatype="&xsd;int">4000</xsp:maxInclusive>

14 </rdfs:Datatype>

15 </rdfs:range>

16 </owl:DatatypeProperty>

Valve Ontology

The important facts stated in thevalve ontologyare as follows:

10

1. Cardinality of state of a valve is one.
2. for valve 1 the capacity can not be more than 4000 gallons/min.

1 [rule-conflict:
2 (?v1 <http://www.gmu.edu/xacml/rdf#MUST_VALVE_CLOSE> ?bag1)

3 (?bag1 ?m ?v2)

4 (?v3 <http://www.gmu.edu/xacml/rdf#MUST_VALVE_OPEN> ?bag2)

5 (?bag2 ?m ?v2)

6 (?m rdf:type rdfs:ContainerMembershipProperty)

7 ->

8 (?v1 <http://www.gmu.edu/xacml/rdf#conflict> ?v3)

9]

Valve Conflict Rule

In additon to the ontology, there can be user specified rules that must not be violated.
These rules could capture other business/state requirements not captured by the ontol-
ogy. The listingValve Conflict Rule states that the same valve can not be open and
closed at the same time.

If theContext Unificationleads to a conflict (based on the OWL/RDF Rules) the pol-
icy evaluation results in anIndeterminate result. For example, if theMetaBoolean
1 specified in the< DuringContext> that Valve 5 must be open then this would be in
conflict with< DuringContext> of MetaBoolean 2 because the Ontology has cardi-
nality restriction on thestateresource of Valve. In the running example, there are not
conflicts after theContext Unification. The Master PDP thus evaluates the request and
the decision is sent back to thePEP Coordinator. This is shown in the listingDecision
1.

1 <Response>

2 <Result ResourceId="water:3000">

3 <Decision>Permit</Decision>

4 <Status>

5 <StatusCode Value="urn:oasis:names:tc:xacml:1.0:status:ok"/>

6 </Status>

7 <Context>

8 <PreContext>

9 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

10 <rdf:Description rdf:about="http://gmu/valve1">

11 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

12 <gmu:ID>Valve1</gmu:ID>

13 </rdf:Description>

14 <rdf:Description rdf:about="http://gmu/valve2">

15 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

16 <gmu:ID>Valve2</gmu:ID>

17 </rdf:Description>

18 </rdf:RDF>

19 </PreContext>

20 <DuringContext>

21 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

22 <rdf:Description rdf:about="http://gmu/valve1">

23 <gmu:capacity xml:lang="http://www.w3.org/2001/XMLSchema#int">1000</gmu:capacity>

24 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">open</gmu:state>

25 <gmu:ID>Valve1</gmu:ID>

26 </rdf:Description>

27 <rdf:Description rdf:about="http://gmu/valve2">

28 <gmu:capacity xml:lang="http://www.w3.org/2001/XMLSchema#int">1000</gmu:capacity>

29 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">open</gmu:state>

30 <gmu:ID>Valve2</gmu:ID>

31 </rdf:Description>

32 <rdf:Description rdf:about="http://gmu/valve5">

33 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

34 <gmu:ID>Valve5</gmu:ID>

35 </rdf:Description>

36 </rdf:RDF>

37 </DuringContext>

38 <PostContext>

39 <rdf:RDF xmlns:rdfs="http://www.gmu.edu/xacml/owl/ontology/#" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax -ns#" xmlns:gmu="http://www.gmu.edu/xacml/rdf#">

40 <rdf:Description rdf:about="http://gmu/valve1">

41 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

11

42 <gmu:ID>Valve1</gmu:ID>

43 </rdf:Description>

44 <rdf:Description rdf:about="http://gmu/valve2">

45 <gmu:state xml:lang="http://www.w3.org/2001/XMLSchema#string">close</gmu:state>

46 <gmu:ID>Valve2</gmu:ID>

47 </rdf:Description>

48 </rdf:RDF>

49 </PostContext>

50 </Context>

51 </Result>

52 </Response>

Decision 1: Permit under Top-Level PolicySet

5.3 The Decision enforcement process

The XACML specification places no restrictions on the policy enforcement point (PEP).
Our additions require PEP to be able to execute PDP decisions transactionally. In or-
der to do that we have the PEP associated with master PDP, referred to as the PEP
coordinator, that communicates and with slave PEPs (i.e. PEP that correspond to slave
PDPs).

Transactional
Actions

Pre Check

Valid

Transaction Start

During
Enforcement
Check

Post Check

Transaction Commit

Valid

Valid

Transaction
Rollback

Invalid

Invalid

Invalid

Complete

Fig. 5: Context Evaluation within PEP

Finally, because the decision was permitted only if thedecision contextis valid, it
becomes the responsibility of the PEP to ensure that the policy decisions are enforced
in thedecision context. In order to do so, The PEP coordinator also needs to be able to
understand the RDF model specified by the PDP Decision and follow the state transi-
tion specified in Figure 5. This implies that it should be able to monitor the state of the

12

control system and abort if global state is in conflict with thedecision context. The al-
gorithm used by our PEP coordinator is given in Algorithm?? in the Appendix Section.
As shown in the Figure 5, the

1. PreContext: Is checked for consistency before the start of the Transactional actions
of PEP. Only when the pre check is valid that the decision holds.

2. DuringContext: If the decision holds (pre check passes), the PEP makes sure that
during enforcement context of the decision is valid throughout the execution of the
transactional actions of PEP. If at any point during enforcement context becomes
invalid then PEP needs to roll back the transactional actions.

3. PostContext: Finally post check context verifies that post conditions of the deci-
sion hold. If it isn’t valid then PEP needs to roll back the transactional actions.

The BPEL workflow engine is adequate to provide the above mentioned behavior
of coordinated PEPs. Because BPEL natively does not understand RDF, we use a RDF
Interpreter Web Service for that domain to synthesize the RDF generated by the PDP.

<recieve>
Transfer Req

<invoke>
PDP Service

<flow>

<invoke>
OpenValve1

<invoke>
OpenValve2

while (task!=done)

<faultHandler>

<invoke>
RDF Interpre
−ter Service

<scope>

<recieve>

<invoke>

During Check

During Check

<invoke>
Pre Check

<invoke>
Post Check

<invoke> <invoke>

CloseValve1 CloseValve2

<invoke>

Notification
Request

Non Successful Exections
are treated as Faults

NOTE

Fig. 6: BPEL PEP Coordinator

The construction of BPEL workflow is shown in Figure 6.

13

6 Related Work

Bertinoet al.[4] propose an extension to BPEL [19] for expressing RBAC-like [23] au-
thorization requirements (called RBACWS BPEL) for BPEL workflows. The authors
propose to encode RBAC requirements in XACML syntax (much like the XACML-
RBAC profile [20]) and depend upon the BPEL engine to enforce this specification.
However, the authors do not consider a use case for distributive access control require-
ments as introduced in this paper and consequently they cannot support practical access
control requirements, such as those requiring separation duty principle etc, because as
far as we know existing XACML runtimes do not support them. We enhance XACML
syntax with contextual information and implement a fully-distributed access controller
to enforce practical access control use-cases.

FlexFlow [10] is another general purpose modeling language for capturing work-
flow representations in tree structure and expressing/enforcing access control require-
ments on the work-flow. Flex flow is based syntactically onFAF [14] (locally stratified
Horn-clause programs). However, the work is semantic-web agnostic, and consequently
authors ignore real-life scenarios such as those programmable using BPEL. The main
disadvantage of using FlexFlow for BPEL security is the simplifying assumptions made
in the design that do not take into account thedistributed-nessof the access decision
evaluation and enforcement.

Atluri, Huanget al. [2] consider a related security problem of multi-level secure
work-flow systems, where work-flows at a higher security label should not be depen-
dent upon work-flows at a lower security label. The authors identify dependencies in
the work-flows into different categories, thus identifying security issues (i.e., high to
low dependency) and prevent them. This work is orthogonal to our domain, where we
aim to secure any workflow based on the security policy – enforcing it throughout the
workflow, including at distributed Web Services that are the part of the secured work-
flow.

Bertino, Ferrari and Atluri in [5] present a logical language for generic workflows
that can be broken down to a sequence of tasks. The main aim of this work is to be
able to express RBAC-like authorization constraints and enforce them for workflows.
However, this work does not consider the runtime issues like policy enforcement dis-
tribution, exclusive usage etc that require more complex control algorithms between
enforcement points. In this aspect, our work provides a complete end to end security
cover for workflows. Because we use XACML based policies for expressing security
requirements, we can utilize earlier extensions like thelock manager enhancementsby
Dhankharet al. [11] to enforce RBAC-like authorization constraints.

Several query languages have been proposed for querying RDF meta-data [8, 22,
24, 9, 25],etc.These query languages have been used to implement RDF reference im-
plementations like Jena [17], Redland [3], ICSForth Suite [1],etc.In this work we use
Jena RDF API and reference implementation for integrating XACML with BPEL. The
choice is purely due to the free availability of this API and reference implementation.

Dhankharet al.have extended reference XACML implementation [26] with exten-
sions to enforce exclusive use [11] and distributed policy evaluation [12] within a nested
transaction tree framework. This paper extends their work tofully distributeevaluation
and enforcement of XACML policies. In that sense we extend their work to include

14

distributed policy enforcement, including conflict management during policy enforce-
ment.

Fox in [13] provides several examples where contextual information is necessary
for decision evaluation. Though we don’t consider context at the level of granularity
as described by Fox, but, it is a validation of our claim that decisions are arrived in a
particular context and valid only within a related context.

7 Conclusion

Following our previous work, we are in the process of fully decentralizing the XACML
reference implementation. That is, we would like to have the XACML reference im-
plementation be able to evaluate and enforce policies that refers to resources available
anywhere on the world-wide web. That entails the policy decision point (PDP) to be able
reach the appropriate policy and access governing authority of the referenced resource
and be able to seek and obtain the permissions for the requestor.

During our research and development process, we realized that in such a decentral-
ized system, the resource owners may impose condition that the requestor has to adhere
to in order to use the resource as requested. They have been nameddecision context
because the PDPs decisions are to be evaluated under these conditions. They are passed
on to the request originators PDP and are passed back to the policy enforcement points.

Thedecision contextwe designed have been specified using RDF and OWL, that
specify how the resource can be used. In addition, other rules that constitute consistent
use is also passed to a PDP. The PDP then evaluates if the request is permitted, and if
so under which amalgamated request and passes that information to a master PEP, that
distributes them over to all other PEPs.

We have also realized that our PEP coordination can be specified and enforced using
BPEL. Our initial experiments in implementing the stated examples have resulted a
reasonable performance. Our ongoing work addresses the process of auto-generating
all decision contextand passing and enforcing them using a BPEL process in a more
general context.

References

1. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The ICS-
FORTH RDFSuite: Managing voluminous rdf description bases. InSecond International
Workshop on the Semantic Web (SemWeb’2001), May 2001.

2. V. Atluri, W. Huang, and E. Bertino. A semantic-based execution model for multilevel secure
workflows. Journal of Computer Security, 8(1), 2000.

3. D. Beckett. The design and implementation of the Redland RDF application framework. In
Tenth International World Wide Web Conference, (WWW10), May 2001.

4. E. Bertino, J. Crampton, and F. Paci. Access control and authorization constraints for WS-
BPEL. In IEEE International Conference on Web Services (ICWS 2006), pages 275–284,
2006.

5. E. Bertino, E. Ferrari, and V. Atluri. A flexible model supporting the specification and en-
forcement of role-based authorization in workflow management systems. InACM Workshop
on Role-Based Access Control, pages 1–12, 1997.

6. D. Brickley and R. Guha. Resource Description Framework (RDF) Schema Specification
1.0: RDF schema. W3C workding Draft, 2003.

15

7. D. Brickley, R. Guha, and B. McBride. RDF vocabulary description language 1.0: RDF
schema. W3C Recommendation, February 2004.

8. J. Broekstra and A. Kampman. SeRQL, a second generation RDF query language. InSWAD-
Europe Workshop on Semantic Web Storage andRetrieval, Amsterdam, Nov 2004.

9. L. Chen, A. Gupta, and M. E. Kurul. A semantic-aware RDF query algebra. In12th Inter-
national Conference on Management of Data (COMAD), Hyderabad, Dec 2005.

10. S. Chen, D. Wijesekera, and S. Jajodia. Flexflow: A flexible flow control policy specification
framework. In17th Annual IFIP WG 11.3 Working Conference on Data and Applications
Security (DBSec 2003), pages 358–371, 2003.

11. V. Dhankhar, S. Kaushik, and D. Wijesekera. XACML policies for exclusive resource us-
age. In21st Annual IFIP WG 11.3 Working Conference on Data and Applications Security
(DBSec 07), 2007.

12. V. Dhankhar, S. Kaushik, D. Wijesekera, and A. Nerode. Evaluating distributed XACML
policies. In2007 ACM Workshop on Secure Web Services (SWS 2007), November 2007.

13. M. S. Fox.Knowledge Representation for Decision Support Systems. Elsevier, 1985.
14. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple

access control policies.ACM Transactions on Database Systems, 26(2):214–260, 2001.
15. S. Kaushik, C. Farkas, D. Wijesekera, and P. Ammann. An algebra for composing ontolo-

gies. InInternational Conference on Formal Ontology in Information Systems (FOIS’06),
November 2006.

16. G. Klyne, J. J. Carroll, and B. McBride. Resource description framework (RDF): Concepts
and abstract syntax. W3C Recommendation, 2004.

17. B. McBride. Jena: Implementing the rdf model and syntax specification. InSecond Interna-
tional Workshop on the Semantic Web (SemWeb’2001), May 2001.

18. L. Miller, A. Seaborne, and A. Reggiori. Three implementations of SquishQL, a simple RDF
query language. InInternational Semantic Web Conference (ISWC), pages 399–403, 2002.

19. OASIS. Business process execution language for web services, May 2003.
20. OASIS. XACML profile for role based access control (rbac). http://docs.oasis-

open.org/xacml/cd-xacml-rbac-profile-01.pdf, Feb 2004.
21. OASIS. Extensible access control markup language, Feb 2005.
22. E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.

http:/www.w3.org/TR/rdf-sparql-query, Apr, 2005.
23. R. Sandhu, D. Ferraiolo, and R. K. D. The NIST model for role based access control: To-

wards a unified standard. In5th ACM Workshop on Role Based Access Control, July 2000.
24. A. Seaborne. A query language for RDF. http:/www.w3.org/Submission/2004/SUBM-

RDQL-20040109, 2004.
25. M. Sintek and S. Decker. Triple, an RDF query, inference and transformation language. In

Deductive databases and knowledge management (DDLP), 2001.
26. Sun Microsystems. Sun’s XACML implementation.

http://sunxacml.sourceforge.net/index.html, July 2004.
27. X. Zhang, J. Park, F. Parisi-Presicce, and R. Sandhu. A logical specification for usage control.

In SACMAT ’04: Proceedings of the ninth ACM symposium on Access control models and
technologies, pages 1–10, New York, NY, USA, 2004. ACM.

16

