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Abstract. Contingency tables are widely used in many fields to analyze the re-
lationship or infer the association between two or more variables. Indeed, due
to their simplicity and ease, they are one of the first methods used to analyze
gathered data. Typically, the construction of contingency tables from source data
is considered straightforward since all data is supposed to be aggregated at a
single party. However, in many cases, the collected data may actually be feder-
ated among different parties. Privacy and security concerns may restrict the data
owners from free sharing of the raw data. However, construction of the global
contingency tables would still be of immense interest. In this paper, we propose
techniques for enabling secure construction of contingency tables from both hori-
zontally and vertically partitioned data. Our methods are efficient and secure. We
also examine cases where the constructed contingency table may itself leak too
much information and discuss potential solutions.

1 Introduction

Contingency tables have been widely used in a number of application domains, includ-
ing social science [11] , epidemiology [8] , experimental studies of economics [9], etc.
Simply put, a contingency table is a table of frequency counts (i.e., Figure 2), which is
often used to analyze the relationship or infer the association between two or more vari-
ables. The construction of contingency tables from a source data is considered straight-
forward - i.e., in the two variable case, listing all the levels of one variable as rows and
the levels of the other variables as columns in a table, then finding the joint frequency
for each cell. The underlying assumption of such computation is that the original data
is centralized at one site or owned by a single party.

However, there are many situations where we may want to construct contingency
tables from multiple data sources and/or ownerships. For example, in the health care
domain, each hospital holds its patients’ medical records. Consider a scenario where
doctors are trying to find out the relationship between a certain rare disease and the ef-
fectiveness of different treatments. Given the small number of instances, it is beneficial
for all the hospitals to start with constructing contingency tables from their combined
medical records. However, in these circumstances, the privacy of the patients is a ma-
jor concern, which may prevent the eventual collaboration between hospitals. Similar
conflicts have been observed in other domains, such as financial services, telecommu-
nications, and government agencies ([3], [6]). Therefore, how to solve such problems in
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a privacy-preserving way is an emerging issue. In this regard, privacy-preserving data
mining is a very closely related area, and the work in this area is quite relevant.

During the past years, privacy-preserving data mining [24] has attracted much at-
tention from the research community since the seminal papers by Agrawal and Srikant
[2] and Lindell and Pinkas [18]. Primarily the focus has been on creating privacy-
preserving variants of different data mining tasks. Two main solution approaches have
been followed. In the randomization approach, “noise” is added to the data before the
data mining process, and then reconstruction techniques are used to mitigate the im-
pact of the noise from the data mining results[2, 1, 10, 22]. However, there is some de-
bate about the security properties of such algorithms[17, 15]. On the other had, crypto-
graphic solutions following the secure multiparty computation framework ([25], [14],
[13]) aim to achieve ”perfect” privacy and limit disclosure only to information that can
be inferred from each participant’s own input and the results. Given that the general
method for secure multiparty computations does not scale well to large dataset prob-
lems, a number of efficient methods (i.e., secure sum, secure size of set intersection,
secure scalar product, etc.) have been developed ([7], [12]). These methods demon-
strate provable privacy on individual information and bounds on information released.
Another important fact is their applicability - we can use them as primitive tools to de-
velop secure solutions for some specific applications. We follow this approach for our
work.

In this paper, we present solutions to construct a general n-way contingency tables
from distributed data in a privacy-preserving way. Two solutions are presented. The first
solution assumes that the data is horizontally partitioned between parties, where differ-
ent data objects with the same attributes are owned by each party. For this approach,
we follow the underlying idea of secure sum protocol discussed in [7]. The second one
focuses on the vertically partitioned data, in which different attributes for the same set
of data objects are owned by each party. This solution is based on the secure scalar
protocol [12]). In the horizontal partition case, we assume that there are three or more
parties involved. Clearly, in the two-party case, one can first construct its local contin-
gency table. Subtraction of the local table from the global contingency table reveals the
other party’s contingency table. Therefore much of the information we try to protect is
revealed even though we follow a completely secure protocol to compute the global re-
sult. Clearly, at least three parties are necessary for security. There is no such constraint
for the vertically partitioned case.

The remainder of this paper is organized as follows. We first formally define the
problem in Section 2. In Section 3 we present the proposed algorithms for secure con-
tingency tables computation. The solutions are presented for horizontally partitioned
data as well as vertically partitioned data. Along with the algorithms, a detailed compu-
tation cost analysis and security analysis is provided. Finally, Section 4 concludes the
paper and provides directions for future work.

2 Problem Definition

Consider data such as shown in Figure 1, where Aj denotes the jth attribute, Ri denotes
the ith record, and vij denotes the value of the jth attribute for the ith record. We
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A1 A2 ... An

R1 v11 v12 ... v1n

R2 v21 v22 ... v2n

... ... ... ... ...
Rm vm1 vm2 ... vmn

Fig. 1. Categorical Data Table

assume that each attribute is categorical. Therefore, each value vij is a nominal value.
In itself, this table is sufficient to construct a contingency table which can be used
for information processing, like extraction of association rules or statistical analysis.
However, consider that several parties collectively gather this data. Thus, each party
independently possesses only part of the data – either several rows or several columns.
Due to privacy/security concerns, the parties are not willing to release their raw data to
the other parties or to any outside third party. However, they may wish to perform global
data analysis using contingency tables or even be willing to allow a third party to do
such analysis as long as it only gets the data analysis results as opposed to the raw data.
Though the parties could compute their local contingency tables, clearly these could be
very different from the global table and thus lead to quite inaccurate results. Therefore,
they wish to compute the global contingency table in a privacy-preserving fashion. We
denote this as the problem of Secure Integration. Specifically, this problem can be
divided as Secure Horizontal Integration, where each party owns several rows, and
Secure Vertical Integration, where each party owns several columns.

In this paper, we assume that all attributes are categorical – thus all values are nom-
inal. In general, it is easily possible to discretize numerical data to form categorical
attributes as well. Now to compute the contingency table of Figure 1, we only need
to count the number of records having the same attributes values. Formally, assume
attribute Ai has di distinct values, denoted by {ai,1, ai,2, ..., ai,di}. Thus, the contin-
gency table resulting from the integral table in Figure 1 is a n-dimensional matrix
Cd1×d2...×dn , where cell cj1,j2,...,jn denotes the count of records in the table having
the value {a1,j1 , a2,j2 , ..., an,jn}. Obviously, the sum of all of the cells is the total num-
ber of records.

We now illustrate this with an example. Figure 2 shows data records on shopping
lists, along with its corresponding contingency table. The shopping list collects data
on two attributes, the drinks and fruits that are bought. Here, Drink has distinct values
”Beer” and ”Coke”, and Fruit has distinct values ”Apple” and ”Orange”. After counting
the records having the same values, we have its contingency table, which is a 2×2 table
shown on the right.

In the following, we will give the formal definition of contingency table and the
corresponding secure integration problems as well.

Definition 1 (Contingency Table). Given a dataset of m records and n attributes (as
shown in Figure 1), where the distinct values of attribute Ai are denoted by {ai,1, ai,2, ..., ai,di},
its contingency table is defined as a n-dimensional matrix Cd1×d2...×dn , where cell
cj1,j2,...,jn denotes the count of records having the value {a1,j1 , a2,j2 , ..., an,jn}.
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Drink Fruit
R1 Beer Apple
R2 Coke Apple
R3 Coke Orange
R4 Beer Apple

Beer Coke
Apple 2 1

Orange 0 1

Fig. 2. A Shopping List Table and its Contingency Table

Definition 2 (Construct Contingency Table on Horizontally Partitioned Data). The
global dataset (such as shown in Figure 1) is shared by many parties separately, each
of whom owns different set of data objects with the same set of attributes. The parties
want to construct the contingency table of the whole table together securely without
letting others know the detailed data they own.

Definition 3 (Construct Contingency Table on Vertically Partitioned Data). The
global dataset (such as shown in Figure 1) is shared by many parties separately, each
of whom owns different set of attributes but for the same set of data objects. The parties
want to construct the contingency table of the whole table together securely without
letting others know the detailed data they own.

The complete n-way contingency table can also be used to compute smaller contin-
gency tables (for example, a 2-way contingency table looking at the correlation of two
attributes) simply by summing up over the cells of all the other attributes. However, it
might be useful to directly compute the smaller contingency tables. This can easily be
done by using the same protocols but on a reduced subset of the data.

3 Secure Construction of Contingency Tables

As we have mentioned earlier, a contingency table is basically a table of counts. The
count in a cell with respect to two or more attribute values is computed as the total num-
ber of co-occurrences of these values in a dataset. This seems simple for the centralized
data. For computing the contingency tables from distributed data, a global view of the
data needs to be composed by combining all the individual data belonging to different
parties. However, these parties may not be willing to share/reveal their own data for
reasons discussed in Section 1. The proposed approaches in this section enable com-
putation of the contingency tables from the distributed data without requiring parties to
reveal any details about their own data.

In a distributed environment, different models for data partitioning have been pro-
posed (i.e.,[24], [16]). Here, we consider the two most common and practical models -
horizontal partitioning and vertical partitioning of data. In each case, we present secure
protocols for the general case of computing n-way contingency tables in a decentralized
manner. In the following, we describe each of the protocols in more detail and illustrate
them with examples.
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3.1 On Horizontally Partitioned Data

Algorithm In the horizontally partitioned data case, each party owns different set of
data objects with the same set of attributes. The protocol for secure computation of con-
tingency tables from horizontally partitioned data is depicted in Algorithm 1. This pro-
tocol is run by all k parties. We assume there are n attributes, namely, A1, A2, . . . , An,
in common for all the parties. Each attribute can take a number of distinct values, i.e.,
for Ai, these values are denoted by ai,1, ai,2, . . . , ai,di

, that is, there are a total of di

distinct values for Ai. Hence, the general contingency tables from such data can be
represented as n-way d1 × d2 × · · · × dn contingency table, denoted by CT .

Given that the data is horizontally partitioned among the parties, it is possible for
each party Pi first locally computes a n-way contingency table LCTi from its own data.
LCTi is equivalent to CT in dimension but only includes the count of the attribute
values co-occurring in the data owned by Pi. Then, the next step is to securely sum
the counts of the corresponding cells in all LCTi along each dimension. The spirit of
the performed secure operations follows that of the secure sum protocol presented in
[7]. The basic idea is to designate P1 as the master site. P1 generates a n-way matrix
of random numbers R, uniformly chosen from [0 . . . z − 1] (we assume that this is
the range in which all the cell count values fall). Then, for any given cell count c in
LCT1, P1 adds the corresponding random number r to it - (r+c) mod z , and sends its
therefore randomized local contingency table RCT1 to the next party, say P2. P2 will
learn nothing about the actual cell counts in LCT1. This is because P1 has uniformly at
random chosen r from range [0 . . . z − 1], and all of the randoms are different for each
cell. Therefore, for each cell, the number (r + c) mod z is also uniformly distributed
across the range.

From P2 to Pk−1, each party does the same operations as follows. Party Pi receives
RCTi−1 from Pi−1, and adds the cell counts in this randomized contingency table to
the corresponding cell counts in its local contingency table LCTi, resulting in RCTi.
Again, since all the cell values in RCTi−1 are uniformly distributed over the range
[0 . . . z − 1], Pi learns nothing from it. Then, Pi passes RCTi to next party Pi+1.

After receiving RCTk−1 from Pk−1, Pk performs the same sum mentioned above
and sends the resulting table RCTk back to P1. Finally, P1, knowing the random matrix
R, subtracts each corresponding r from the cell of RCTk to get the actual contingency
table CT .

Example In this section, we will give an example to illustrate Algorithm 1. The tables
on the left of Figures 3, 4 and 5 are patient treatment response tables possessed by
three different hospitals, where each record represents a patient and their identifications
are suppressed. The tables on the right are their associated contingency tables. For the
convenience of reading, we display 3-dimensional tables in a 2-dimensional way.

Now, we show how to employ Algorithm 1 to construct a contingency table on these
three separated tables. First, the holder of Figure 3 generates a random table. Suppose
it is as the table on the left of Figure 6. Then the holder of Figure 3 adds the random
data to his original data and passes the result to the holder of Figure 4. As the holder of
Figure 4 knows that the received data having been masked, he cannot figure out the real
table. Then according to the protocol, he adds his data to the received table and passes
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Algorithm 1 Secure Construction of Contingency Tables for Horizontally Partitioned
Data
Require: k parties P1, . . . , Pk.
Require: n attributes A1, . . . , An. For each attribute Ai, there is a set of distinct values

ai,1, ai,2, . . . , ai,di (i = 1, 2, . . . , n).
Require: The counts in the computed contingency tables lie in the range [0..z]
Require: OUTPUT: n-way d1 × d2 × · · · × dn contingency table CT .
1: for i ← 1 . . . k do
2: At Pi: Compute the local n-way d1 × d2 × · · · × dn contingency table LCTi.
3: end for
4: P1 generates a n-way (d1 × d2 × · · · × dn) matrix of random numbers r, uniformly chosen

from [0..z].
5: At P1: Given any local cell value c in LCTi, add the corresponding random number r from

the random matrix to compute the sum (r + c) mod z, resulting in the contingency table
RCT1

6: P1 sends RCT1 to P2

7: for i ← 2 . . . k − 1 do
8: At Pi: Sums each cell’s count in its local LCTi with the corresponding cell count in

RCTi−1, resulting in the contingency table RCTi.
9: Pi passes RCTi to Pi+1.

10: end for
11: Pk performs the above sum operation and sends the resulting contingency table RCTk to

P1.
12: P1 subtracts the corresponding r (of the random matrix) from each cell in RCTk and gets

the result CT .
13: return CT

it to the holder of Figure 5. Then, the holder of Figure 5 does the same thing and passes
the result to the first person. The returned table is the table on the right of of Figure 6.
Finally, the first person subtracts the returned table by the random table generated by
him and gets the final contingency table.

3.2 On Vertically Partitioned Data

Algorithm When the data is vertically partitioned among k parties, it is assumed
that each party owns different set of attributes but for the same set of data objects.
Let the overall naturally ordered attribute set be {A1, . . . , An}, and for each attribute
Ai, there is a set of distinct values {ai,1, ai,2, . . . , ai,di} (i = 1, 2, . . . , n). For sim-
plicity, we assume that P1 owns the consecutive attributes {A1, . . . , Ap1}, P2 owns
{Ap1+1, . . . , Ap2}, . . . , Pk owns {Apk−1+1, . . . , An}. Let the number of participating
data objects be m. Indeed, this is not a restriction, since, for a large dataset, we can
divide the data into chunks of size m, and invoke the protocol on the chunks. Then,
we can sum the resulting sub-contingency tables. In the end, the result is a n-way
d1 × d2 × · · · × dn contingency table CT .

In order to compute the count in cell cj1,j2,...,jn of CT (1 ≤ j1 ≤ d1, 1 ≤ j2 ≤
d2, . . . , 1 ≤ jn ≤ dn), each party Pi first needs to perform the following local com-
putations in order to get a representative vector Xi. The first step is that, for each of its
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Center Treatment Response
R1 1 1 2
R2 2 1 1
R3 2 2 2

Center Treatment Response 1 Response 2
1 1 0 1
1 2 0 0
2 1 1 0
2 2 0 1

Fig. 3. Treatment Response Data and Contingency Table I

Center Treatment Response
R4 2 1 2
R5 1 1 2
R6 2 2 1

Center Treatment Response 1 Response 2
1 1 0 1
1 2 0 0
2 1 0 1
2 2 1 0

Fig. 4. Treatment Response Data and Contingency Table II

attributes As (p(i−1) + 1 ≤ s ≤ pi), Pi transforms the corresponding attribute values
in its data into a binary vector Vs = {vs,1, . . . , vs,m}. Specifically, vs,t is set to 1 if the
t-th data value of As equals as,js(1 ≤ t ≤ m)); otherwise 0. Then, for all Vs, Pi locally
computes their product such that Xi = {xi,1, . . . , xi,m} and xi,t =

∏pi

s=p(i−1)+1 vs,t.
After the above local computations, all the parties engage in a secure k-vector prod-

uct protocol, as described in algorithm 3, with their respective input vector Xi(i =
1, . . . , k). The result of the secure k-vector product protocol is the count in cell cj1,j2,...,jn .
All the other cells’ count of CT can be done in the same way. Clearly, the security of
the protocol completely depends on that of the secure k-vector product protocol, which
we shall elaborate below.

Secure k-Vector Product Protocol In this section, we discuss and present the solutions
for securely computing the vector product problem.

First, let us consider k = 2 case, which is also known as scalar or dot product.
Assume that party P1 has vector X while party P2 has vector Y, and each vector has the
cardinality n. Let X = (x1, . . . , xn), Y = (y1, . . . , yn). The scalar product of vectors
X and Y is defined as:

n∑

i=1

xi ∗ yi

The goal of the secure computation is that, at the end of the protocol, each party
would get X ·Y while knowing nothing about the other party’s vector. The protocol pro-
posed by Goethals et al. [12] is quite simple and provably secure. The main idea behind
the protocol is to use a homomorphic encryption system including the Benaloh cryp-
tosystem [4], the Naccache-Stern cryptosystem [19], the Paillier cryptosystem [21], the
Okamoto-Uchiyama cryptosystem [20], and the Goldwasser-Micali cryptosystem [5].
Besides the standard guarantees, homomorphic encryption, as a semantically-secure
public-key encryption, has the additional property that given any two encryptions E(A)
and E(B), there exists an operation⊗ such that E(A)⊗E(B) = E(A∗B), where ∗ is
either addition or multiplication (in some abelian group). The cryptosystems mentioned
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Center Treatment Response
R7 1 1 2
R8 1 1 2
R9 2 2 2

Center Treatment Response 1 Response 2
1 1 0 2
1 2 0 0
2 1 0 0
2 2 0 1

Fig. 5. Treatment Response Data and Contingency Table III

Center Treatment Response 1 Response 2
1 1 1 1
1 2 2 0
2 1 2 0
2 2 1 2

Center Treatment Response 1 Response 2
1 1 1 5
1 2 2 0
2 1 3 1
2 2 2 4

Fig. 6. Generated Random Table and Returned Table

above are additively homomorphic (thus the operation ∗ denotes addition, and the oper-
ation⊗ denotes multiplication). Using such a system, it is quite simple to create a secure
scalar product protocol. The key is to note that

∑n
i=1 xi ·yi =

∑n
i=1(xi +xi + · · ·+xi)

(yi times). If P1 encrypts her vector and sends in encrypted form to P2, P2 can use the
additive homomorphic property to compute the scalar product.

In the following, we extend the idea behind the above secure scalar product protocol
to securely compute k-vector product (k ≥ 3), which is defined as follows.

Assume that there are k parties (P1, P2, . . . , Pk), where each party Pi has a (0, 1)
vector Xi of cardinality n. Let Xi = {xi,1, . . . , xi,n} (i = 1, . . . , k). Our goal here is
to securely compute

∑n
j=1

∏k
i=1 xi,j without requiring each party to disclose its vector.

The key to computing this securely lies in the fact that each row contributes a 1 to
the final answer, if and only if, each party has a 1 for that row. The key is to keep this
information secure. The protocol starts with one party, say P1, who first generates a
private and public key pair (sk, pk) for a semantically secure homomorphic encryption
system and sends pk to other parties. Then, P1 encrypts each of its vector elements x1,j

and sends the encrypted value w1,j = Epk(x1,j) (j = 1, . . . , n) to P2. For each j, if
x2,j = 0, P2 sends to P3, Epk(0); otherwise, it sends to P3 Epk(x1,j) · Epk(0) – this
effectively hides the value it has received from its neighbor. To see how this gives the
right answer, recall that the vectors contain values of either 0 or 1. If P2 has 0 as the
current value of x2,j , then no matter what values the other parties have,

∏k
i=1 xi,j = 0.

Therefore, P2 can send out Epk(0). On the other hand, if P2 has 1 as the current value,
then

∏k
i=1 xi,j = x1,j ·

∏k
i=3 xi,j , and, based on the additive homomorphic property,

Epk(x1,j) · Epk(0) = Epk(x1,j). That is, it doesn’t affect the final result. However,
this way makes the computations secure and prevents collusion (i.e., between P1 and
P3, since it hides the value sent by P1 to P2). In both cases, P2 sends out different
encrypted values from those of P1. Therefore, the other parties will be unable to figure
out the actual values, even when they collude.

The above operations done by P2 are repeated on by the following party Pi(i =
3, . . . , k1), one following the other, on its own vector. Finally, Pk, who finally de-
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Algorithm 2 Secure Construction of Contingency Tables for Vertically Partitioned Data
Require: k parties P1, . . . , Pk

Require: n attributes A1, . . . , An. For each attribute Ai, there is a set of distinct values
{ai,1, ai,2, . . . , ai,di} (i = 1, 2, . . . , n). The number of data objects is m.

Require: For simplicity, we assume that P1 owns {A1, . . . , Ap1}, P2 owns {Ap1+1, . . . , Ap2},
. . . , Pk owns {Apk−1+1, . . . , An}.

Require: OUTPUT: n-way d1 × d2 × · · · × dn contingency table CT .
1: For any given cell cj1,j2,...,jn of CT (1 ≤ j1 ≤ d1, 1 ≤ j2 ≤ d2, . . . , 1 ≤ jn ≤ dn), its

count is computed as follows:
2: for i ← 1 . . . k do
3: At Pi: encode the data values of its attribute As (p(i−1) +1 ≤ s ≤ pi) into a binary vector

Vs of size m such that Vs = {vs,1, . . . , vs,m} and vs,t = 1 if the t-th data value of As

equals as,js(1 ≤ t ≤ m)) ; otherwise 0.
4: At Pi: Locally compute the product Xi of all Vs such that Xi = {xi,1, . . . , xi,m} and

xi,t =
∏pi

s=p(i−1)+1 vs,t.
5: end for
6: P1, . . . , Pk invoke the secure vector product protocol (algorithm 3) to compute V P =∑m

t=1

∏k
i=1 xi,t, which is the count for cell cj1,j2,...,jn .

7: Compute all the other cells’ count of CT in the same way.
8: return CT

cides on wk,j , computes w =
∏n

j=1 wk,j sends w back to P1. P1 decrypts it using
her private key and, again, based on additive homomorphic property, gets the result of∑n

j=1

∏k
i=1 xi,j .

The specific details of the protocol are given in Algorithm 3. One problem lies with
collusion. Since P1 owns the secret key corresponding to the public key, it can easily
decrypt any of the intermediate messages. Thus, P1 can collude with other parties to
breach the security of the protocol. However, this can be avoided by using threshold en-
cryption. In threshold encryption, all parties own the public key, but the decryption key
is split between all parties so that at least a certain number of parties (over a threshold)
are required to successfully decrypt a message. This can effectively remove the problem
of collusion.

Example In this section, we will give an example to illustrate Algorithm 2. The table
on the left of Figure 7 is the global table. There are three parties, each of whom holds
one attribute (i.e., one column). To get the contingency table, they follow Algorithm 2
exactly. For illustration , we show the procedures of calculating the count of records
having value (center=1, treatment=1, response=1). For that particular value, three par-
ties have the corresponding vectors {1, 0, 0, 0, 1, 0, 1, 1, 0}, {1, 1, 0, 1, 1, 0, 1, 1, 0} and
{0, 1, 0, 0, 0, 1, 0, 0, 0)} respectively. The product of these three vectors is the count.
According to Algorithm 3, party one generates a pair of public key pb and private
key pv and passes the encrypted message {Epb(1, r11), Epb(0, r12), ..., Epb(0, r19)}
to party two. Party two receives the message and executes the operations associative
with its own values by Algorithm 3. For example, for the first component, as the value
is 1, encrypt Epb(1, r′21) and multiply with E(1, r11) to get E(1, r21). For the second
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Algorithm 3 Secure k-Vector Product Protocol
Require: k parties P1, . . . , Pk.
Require: Each party Pi has input vector Xi = {xi,1, . . . , xi,n} (i = 1, . . . , k)
Require: P1, P2, . . . , Pk get the output V P =

∑n
j=1

∏k
i=1 xi,j

1: P1 generates a private and public key pair (sk, pk) for a semantically secure homomorphic
encryption system.

2: P1 broadcasts pk to P2, . . . , Pk.
3: for j = 1 . . . n do
4: P1 sends to P2 w1,j = Epk(x1,j).
5: end for
6: for i = 2 . . . k − 1 do
7: At Pi:
8: for j = 1 . . . n do
9: if xi,j= 0 then

10: w(i, j) = Epk(0).
11: else
12: w(i, j) = Epk(wi−1,j) · Epk(0)
13: end if
14: Pi sends to Pi+1 wi,j

15: end for
16: end for
17: At Pk:
18: for j = 1 . . . n do
19: if xi,j= 0 then
20: w(k, j) = Epk(0).
21: else
22: w(k, j) = Epk(wi−1,j) · Epk(0)
23: end if
24: end for
25: Pk computes w =

∏n
j=1 wk,j

26: Pk sends w to P1

27: P1 computes V P = Dsk(w) =
∑n

j=1

∏k
i=1 xi,j .
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Center Treatment Response
R1 1 1 2
R2 2 1 1
R3 2 2 2
R4 2 1 2
R5 1 1 2
R6 2 2 1
R7 1 1 2
R8 1 1 2
R9 2 2 2

Center Treatment Response 1 Response 2
1 1 0 4
1 2 0 0
2 1 1 1
2 2 1 2

Fig. 7. Vertically Partitioned Table and Resulting Contingency Table

component, as the value is 0, generate Epb(0, r22) directly. Following this algorithm,
party two passes the data to party three finally. Party three does the same operations
and gets {Epb(0, r31), Epb(0, r32), ..., Epb(0, r39)}. Then multiply them together to get
Epb(0, r′′) and send it back to party one. Party one uses his private key to decrypt it and
gets the final product value 0. The same operations are repeated for the other cells of
the contingency table. The final result is the table on the right of Figure 7.

3.3 Communication and Computation Costs

We now give cost estimates for constructing contingency tables using the protocols we
have presented. Let the number of participating parties be k. The total number of cells
in the resulting contingency table is d = d1 × d2 × · · · × dn.

First, we analyze the cost for the horizontal partition case. The dominating cost for
algorithm 1 is communication cost. Let u be the number of bits in representing the count
values in cells of the contingency table. Then, the total bits in order to pass the whole
contingency table is (d ∗ u). In the protocol, there are k passes of the contingency table
around the parties. Therefore, the protocol requires (d ∗ u ∗ k) bits of communication.
Clearly, the cost mainly depends on the dimension of the contingency table. We can
see there is a tradeoff here. If a higher dimension contingency table is needed, it would
incur higher communication cost. Computation cost is not significant since the only
computation carried out are a series of sums.

For the protocol on the vertically partitioned data, we analyze the cost in terms of
the following actual operations: encryptions, multiplications, and decryptions. This is
because these are the dominating factors in the protocol. As we have mentioned in the
above section, the secure construction of contingency tables on vertically partitioned
data makes use of the secure vector product protocol given in algorithm 3, which is also
the only part involving the secure computations for computing a cell count. Given the k
parties, each has a vector of size m after some local computations. Then, for each cell
in the contingency table, all the parties engage in the k-vector product protocol, which
requires m∗k encryptions, m∗ (k ∗p+1) multiplications (where p is the percentage of
1’s in the vectors), and 1 decryption. Therefore, for constructing the contingency table
with d cells, the total number of encryptions required to be performed is m∗k∗d, while
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the total number of multiplications required is m ∗ (k ∗ p + 1) ∗ d and the total number
of decryptions is d. Essentially, the cost of the encryptions dominate the overall cost.

We ran tests on a SUN Blade 1000 workstation with a 900 Mhz processor and
1 gigabyte of RAM. A C implementation of the Okamoto-Uchiyama [20] encryption
system was used. The key size was fixed at 1152 bits, which is more than sufficient
for most applications. With this setup, 1000 encryptions require on average around 13s.
Also, the time for encryption/decryption cost increases approximately linearly with the
number of encryptions. Thus, it is very easy to estimate the actual time required for
different number of parties, different vector sizes, and different contingency table sizes.
For example, 5 parties with vectors of size 1000 and contingency tables of size 25 would
require approximately 28 minutes. The time required would be significantly lower with
smaller key sizes and with use of special purpose encryption hardware. Secondly, it
is also possible to use a much more efficient size of set intersection protocol[23] to
compute the k party scalar product. While this is orders of magnitude more efficient,
the downside is the increased disclosure – the size of the intersection sets of all of
the subsets is also revealed. If this is acceptable, the more efficient protocol should
definitely be used.

3.4 Security Analysis

In the above sections, we gave secure protocols for integrating contingency tables se-
curely in both the horizontal and vertical partitioning case. However, do these protocols
really protect each participating party’s privacy? In this section, we will discuss the
security of the protocols. Further, the discussion considers two factors, the protocols
themselves and the specific concerns in the context of contingency tables.

First, consider the multi-party secure sum protocol for horizontal partitioning. This
protocol is as secure as figuring out the random data added by the first party. As the
random data is generated only by one party, it can be proven that the protocol is secure.
However, this conclusion is based on the assumption that no parties collude. If party
i − 1 and party i + 1 collude, they can get the value of party i by subtracting, without
knowing the added random data. To against this type of attacks, we may apply the
method proposed by [26]. First, divide the sub-contingency table that each party holds
into multiple parts. Second, for each party, put all users into a ring randomly and use the
same multi-party secure sum protocol to get the sum of parts. Finally, party one sums up
all the sums to get the final result. Since at each time, the order of parties is random, it
avoids the collusion of some parties at the cost of extra computation. People may argue
that if there are only three parties, this method dose not work. Considering the real
cases of integrating contingency table, it is fair to assume there are more than 3 parties
involved. Thus, multi-party secure sum protocol is secure in terms of the protocol itself.

There are other concerns from the domain of contingency table itself. Suppose one
party has data A and the final sum is A also. This means that party can infer that all
other parties hold empty tables, without knowing the added random data. In our paper,
we assume it is not a threat. This assumption meets our experience in practice. A con-
tingency table is trying to catch the count of every combination of attribute values. The
cells of zero do not interest any party. Actually, in the case of sparse contingency table,
each party can even assume all the cells are zero. Another possibility is to not remove
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the final randoms from the sum. Instead the first and the last party (P1 and Pk) can per-
form a secure addition and comparison to check if the actual value of the cell is above a
certain threshold. If so, the value can be computed. If not, the value is discarded. Now,
the parties may simply infer that the actual value is below a threshold without know-
ing exactly how much it is. However, this could become quite expensive in terms of
computation cost.

Now, let us consider the protocol for vertical partitioning of data. It uses the key
property of semantic security encryption systems that Epb(1, r1) and Epb(0, r2) are
indistinguishable. While this is true, the protocol itself is quite secure. However, the do-
main of contingency table brings some specific concerns. In our problem, the message
that each party sends out is a 0-1 vector. One concern is that if one party has a vector
of m cells of 1 and the final multi-vector product is m, this party can infer that the cells
of all other parties at the same coordinates are 1. However, that may happens rarely in
a large database. Even it happens, that party can at most infer a small part of data. In
terms of this, we assume this type of threat is not harmful. As earlier, we can cause the
parties to see random splits of the scalar product and use secure comparisons to find
out if the actual result should be shared, though this again would be computationally
expensive. Another concern is that of collusion among the parties. As discussed earlier,
using threshold encryption systems can solve this problem. Also, to overcome this, we
may borrow the method for horizontally partitioned data. For each count, put all parties
in a ring randomly. Thus, each time the party generating keys is different and the col-
luded person do not stay together. Another way dealing with potential privacy leak is to
generate contingency tables for fewer attributes, like every two or three. Thus, get a set
of lower-dimensional tables instead of a whole high-dimensional data. This way will
improve the privacy of all parties significantly, while at the cost of loosing lots of in-
formation. The generated tables would not help people learn the relationship among all
attributes. This is a tradeoff. Its selection may depend on the data self and the real goals
for the contingency table. We intend to carefully examine this tradeoff in the future.

4 Conclusion

In this paper, we have presented the problem of secure construction of contingency ta-
bles from distributed data and suggested some solutions. Our methods are reasonably
efficient and secure. More work is still required to figure out how much information can
be inferred from the contingency table itself. It may even be unnecessary to compute
the entire contingency table depending on what you would like to learn from it. In the
future, we intend to propose secure methods to perform basic analysis on the contin-
gency table such as the chi square test or Fisher’s exact test directly without computing
the entire table.
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