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Abstract. The need for secure logging is well-understood by the security re-
searchers and practitioners. The ability to efficiently verify all (or some) log en-
tries is important to any application employing secure logging techniques. In this
paper, we begin by examining the state-of-the-art in secure logging and identify
some problems inherent to systems based on trusted third-party servers. We then
propose a different approach based upon recently developed Forward-Secure Se-
quential Aggregate (FssAgg) authentication techniques. Our approach offers both
space-efficiency and provable security. We illustrate two concrete schemes – one
private-verifiable and one public-verifiable – that offer practical secure logging
without any reliance on on-line trusted third parties or secure hardware. We eval-
uate proposed schemes and report on our experience with implementing them
within a secure logging system.
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1 Introduction

System logs are an important part of any secure IT system. They record noteworthy
events, such as user activity, program execution status, system resource usage and data
changes. Logs provide a valuable view of past and current states of almost any type
of a complex system. In conjunction with appropriate tools and procedures, audit logs
can be used to enforce individual accountability, reconstruct events, detect intrusions
and identify problems. Keeping system audit trails and reviewing them in a consistent
manner is recommended by NIST as one of the good principles and practices for secur-
ing computer systems [1]. Many types of (especially distributed) software include some
sort of a logging mechanism.

Because of their forensic value, system logs represent an obvious attack target. An
attacker who gains access to a system naturally wishes to remove traces of its presence
in order to hide attack details or to frame innocent users. In fact, the first target of an
experienced attacker is often the logging system [2,3]. To make the audit log secure, we
must prevent the attacker from modifying log data. Secure versions of audit logs should
be designed to defend against such tampering. Providing integrity checks, the primary
security requirement for any secure logging system, is informally stated in the Orange
Book [4] as:



Audit data must be protected from modification and unauthorized
destruction to permit detection and after-the-fact investigation of
security violations.

In addition to the traditional meaning of data integrity which stipulates no insertion
of fake data and no modification or deletion of existing data, integrity of a log file also
requires no re-ordering of log entries. We call this property log stream integrity.

In many real-world applications, a log file is generated and stored on an untrusted
logging machine which is not sufficently physically secure to guarantee impossibility of
compromise [5]. Compromise of a logging machine can happen as long as the Trusted
Computing Base (TCB) – the system component responsible for logging – is not to-
tally bug-free, which is unfortunately always the case. In systems using remote logging
(which send audit data to a remote trusted server), if the server is not available, the log is
buffered and stored temporarily at the local machine. Once an attacker obtains the secret
key of the compromised logging machine, it can modify post-compromise data at will.
In this case, one important issue is forward integrity: how to ensure that pre-compromise
data can not be manipulated? That is, even if the attacker obtains the current secret key,
she must be unable to modify audit data generated before compromise.

No security measure can protect log entries created after an attacker gains control
of a logging machine, unless the logging machine’s keys are periodically updated with
the help of a remote trusted server or a local trusted hardware component (e.g., using
key-insulated and intrusion-resilient authentication schemes [6–8]). We focus on the
security of log entries pre-dating the compromise of a logging machine. Consequently,
we require forward-secure stream integrity, i.e., resistance against post-compromise
insertion, alteration, deletion and re-ordering of pre-compromise log entries.

Traditional log integrity techniques include using special write-only hard disks or
remote logging where copies of log entries are sent to several geographically distributed
machines. Recently, a number of cryptographic approaches have been proposed to ad-
dress security for audit logs which are generated and stored on local logging servers
[2, 3, 5, 9]. Bellare and Yee were the first to define the forward-secure stream integrity
property required in an audit log system and proposed to use forward-secure MACs
and index log entries [2, 3]. Schneier and Kelsey proposed a similar system based on
forward-secure MACs and one-way hash chain [5]. Holt extended Schneier and Yee’s
system to the public key setting [9]. Unfortunately, none of these schemes defends
against truncation attack - a special kind of deletion attack whereby the attacker deletes
a contiguous subset of tail-end log entries. Furthermore, private key-based schemes –
such as Schneier-Kelsey and Bellare-Yee – also suffer from delayed detection attack 1

since they need a trusted server to aid users in verifying log integrity; modifications can
not be detected until the entire log data is uploaded to the trusted server. Moreover, all
prior schemes are inefficient in storage and communication which makes them imprac-
tical for platforms with meager resources, such as implantable medical devices [10].
We overview prior work in more detail in Section 2.

1 For a precise definition, see Section 2.



To mitigate aforementioned shortcomings of prior schemes, we propose a new ap-
proach which provides forward-secure stream integrity for audit logs generated and
stored on untrusted machines. Our scheme is based on a new cryptographic technique
called forward-secure sequential aggregate (FssAgg) authentication recently proposed
in [11, 12]. In an FssAgg authentication scheme, forward-secure signatures (or MACs)
generated by the same signer are sequentially combined into a single aggregate sig-
nature. Successful verification of an aggregate signature is equivalent to that of each
component signature. Whereas, as discussed later, failed verification of an aggregate
signature implies that at least one component signature is invalid. An FssAgg signature
scheme is thus a good match for secure logging applications: it resists truncation at-
tacks due to its all-or-nothing (aggregate and forward-secure) signature verification. In
our scheme, users can verify the log without relying on any trusted server; this obviates
delayed detection attacks. Our scheme offers storage and bandwidth efficiency inherited
from the underlying FssAgg scheme. Also, depending on the specific FssAgg scheme
used, our scheme can be either private- or public-verifiable.

In an FssAgg scheme, individual signatures are erased once they are folded into
the aggregate signature. Subsequent validity of individual log entries is implied by the
validity of the aggregated signature computed over all log entries. This indirect verifi-
cation process is costly if the verifier is only interested in the validity of one specific
log entry. The need to provide finer-grained verification in certain applications moti-
vates us to keep individual log entry signatures in the log file. However since the ag-
gregation function is public, revealing individual signatures enables anyone to truncate
log entries and create new aggregate signature based on existing ones. To prevent this
truncation attack (even when individual component signatures are revealed), we need
the property refferred to as “immutability” of aggregate authentication. Informally, im-
mutability is the computational infeasibility of computing new valid aggregated signa-
tures from existing signatures. To achieve immutability, we extended existing FssAgg
MAC/signature schemes. However, due to space limitation, we refer to [13] for details
on immutability extensions.

1.1 Contributions

Our contributions are as follows:

1. We identify some fundamental security issues and architectural limitations in prior
secure logging schemes.

2. We propose new secure logging schemes which provide forward-secure stream in-
tegrity for audit logs generated and stored on untrusted logging machines and avoid
the undesirable features of prior schemes. Our schemes inherit the effiency and
provable security of the underlying FssAgg schemes.

3. We evaluate proposed schemes by comparing them with prior work in terms of se-
curity as well as communication and computation efficiency. Our evaluation shows
that new schemes offer better security and incur less computation and communica-
tion overhead.

4. We implement existing FssAgg signature schemes and assess their performance in
the context of a real secure logging system.



Organization: We begin with the overview of the state-of-the-art in Section 2, followed
by introduction of forward-secure aggregate authentication in Section 3. We then show
how to use FssAgg schemes in logging applications: we propose a private-verifiable
scheme in Section 4 and a public-verifiable scheme in Section 5. We evaluate our
schemes in Section 6 and report on some experience with prototype implementations in
Section 7. Section 8 overviews related work and Section 9 concludes the paper.

2 Current Approach Analysis

In this section, we examine the state-of-the-art represented by Schneier-Kelsey scheme
[5]. It has been used as a foundation by many subsequently proposed secure logging sys-
tems. Readers interested in further details of the Schneier-Kelsey scheme are referred
to [5].

2.1 Overview of Schneier-Kelsey Scheme

In the Schneier-Kelsey scheme, a logging machine U opening a new audit log first
establishes a shared secret key A0 with a trusted remote server T . After each audit
entry is generated, the current secret key Ai is evolved into Ai+1 through a one-way
function. Log entries are linked using a hash chain. Each log entry Li is composed of
three parts:

1. Log entry data Mi.2

2. Element Yi in the hash chain, where

Yi = H(Mi||Yi−1) and Y0 = H(M0)

3. Forward-secure MAC denoted Zi, computed as: Zi = MACAi(Yi).

U closes the log file by creating a special final-record entry, Mf and erasing Af as well
as other secrets, if any.

There is no constant high-bandwidth channel between U and T . It is assumed that
U communicates log entries to T infrequently. At times, a moderately-trusted entity,
called V , may need to verify or read the audit log, while it is still on U . V receives
from U a copy of the audit log, [L0, L1, · · · , Lf ], where f is the index value of the
last record, from U . V goes through the hash chain in the log entries (the Yi values),
verifying that each entry in the hash chain is correct. V then sends Yf and Zf to T . T
knows A0 so it can compute Af ; this allows it to verify that Zf = MACAf

(Yf ). T
informs V about the verification result and V discovers whether the received copy of
the log has any problems.

2 [5] provides access control to audit log. Each log entry Li contains a log entry type Wi and
Ci = EKi(Di): the actual log data Di is encrypted with an access control key Ki. Since we
focus on log integrity in this paper, to make our discussion clearer, we refer to the combination
of Wi and Ci as Mi.



2.2 Analysis

We claim that the Schneier-Kelsey scheme has two security-related drawbacks:
Truncation Attack: a kind of deletion attack whereby the attacker erases a con-

tiguous subset of tail-end log messages. This attack is realistic, since, after breaking in,
it is natural for an attacker to want to modify the audit log by deleting the most recent
log entries generated right before break-in.

The Schneier-Kelsey scheme uses a hash chain to link log entries such that unde-
tectable log (link) deletion is impossible. This pertains to log entries already off-loaded
to T . However, log entries still residing on U are vulnerable to the truncation attack
since there is no single authentication tag protecting the integrity of the entire log file.
A hash chain element Yi only protects data records generated before time i. Thus, trun-
cating log entries generated after time i is not detected by T , unless there is synchro-
nization between U and T and the latter knows the current value of f . Without a con-
tinuous communication channel, synchronization between U and T would require U to
generate log entries at a fixed rate. However, most logging systems are event-driven and
events are unevenly spaced. Logging events at a fixed rate hinders the logging machine’s
ability to fully utilize its computation and storage resources.

Delayed Detection: Recall that, V is unable to verify a log file by itself and needs to
ask for help from T . If this occurs before T receives a copy of the most up-to-date log
from U , and before U has closed the log file, an attacker can modify pre-compromise
records without being detected. Albeit, such modification will be eventually detected,
after T receives the updated version of a log file.

We illustrate the delayed detection attack in Figure 1. Suppose that, at time a (≥ 0),
U has transmitted log entries [L0, · · · , La] to T . At time b (> a), an attacker breaks
into U and obtains the current secret key Ab. Even though the attacker can not recover
secret keys used in time intervals [a + 1, b − 1], she can modify the values of Mi and
corresponding Yi in this interval without touching Zi. At time f (≥ b), V receives a
copy of log entries L0, · · · , Lf . V and sends Yf and Zf to T . Since the attacker knows
Ab at break-in, she can generate valid MACs from time b. Thus, verification of Yf

with Zf at T will succeed. The modified log file will translate false information to V
and activities conducted within interval [a + 1, f ] will elude V’s detection. In Figure
1, values in the shaded area (M and Y values in time interval [a + 1, b − 1], all Z
values within [b, f ]) can be manipulated by an attacker. Since there is no continuous
high-bandwidth U ↔ T communication channel and U only communicates with T
infrequently, the time interval [a + 1, f ] can be long.

Since the attacker is unable to fake any values Zi (for i ∈ [a + 1, b − 1]), any
manipulation in this period can be detected whenever the corresponding log entries are
uploaded to T and T scan-verifies all individual MACs.3

The two drawbacks of the Schneier-Kelsey scheme seem to be quite fundamental.
However, it is rather surprising that they have not been addressed in any later work. In
addition to the security issues discussed above, the Schneier-Kelsey scheme has some
architectural limitations:

3 Actually, the authors do not mention any scan-verification (verification of individual MACs)
in the paper. They only claim that verification of Zf equals to verification of all the individual
MACs.
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Fig. 1. Delayed detection attack. Data in shaded area is controlled by the attacker. a: time when
log entries are uploaded to T ; b: time of break-in; f : index of last log entry as well as time when
V receives a copy of log file from U .

Online Server. As mentioned earlier, the scheme employs an assisted verification
process and a trusted server T must be present whenever V wants to pose an integrity
query. In other words, the scheme requires a continuous channel (not necessarily high-
bandwidth in this case) between V and T . As any centralized solution, the scheme has
the problem with T being the single point of failure. Furthermore, the overall security
of the scheme scheme relies on the frequency of communication between U and T . The
need for T can be avoided by adopting a public key approach, as in [9].

Storage Inefficiency. Each log entry contains a hash Yi and a MAC Zi. To provide
reasonable long-term security guarantees, a minimum security overhead of 512 bits
per log entry is needed to accommodate a 256-bit hash and a 256-bit MAC. This per-
log-entry overhead makes the Schneier-Kelsey scheme impractical for resource-poor
platforms, such as sensors or implantable medical devices. (The latter, especially, need
a light-weight secure logging system [10].)

The same set of vulnerabilities/limitations is equally applicable to the Bellare-Yee
private key-based scheme [2, 3]. The Holt scheme [9] involves a public key-based ap-
proach. Therefore, it avoids the need for an online server and gains security against
delayed detection attacks. However it is still vulnerable to truncation attacks and suf-
fers from storage inefficiency.

3 Forward Secure Sequential Aggregate Authentication

In this section, we briefly introduce FssAgg scheme components. We refer to [11, 12]
for a more formal and complete definition of an FssAgg scheme.

An FssAgg scheme includes the following components:

[FssAgg.Kg] – key generation algorithm used to generate public/private key-pairs.
It also takes as input T – the maximum number of time periods (key evolvements).
[FssAgg.Asig] – sign-and-aggregate algorithm which takes as input: a private key,
a message to be signed and a signature-so-far (an aggregated signature computed
up to this point). It computes a new signature on the input message and combines
it with the signature-so-far to produce a new aggregate signature. The final step in



FssAgg.Asig is a key update procedure FssAgg.Upd which takes as input the signing
key for the current period and returns the new signing key for the next period (not
exceeding T ). The key update is part of the sign-and-aggregate algorithm in order
to obtain stronger security guarantees.
[FssAgg.Aver] – verification algorithm, which, on input of: a putative aggregate
signature, a set of presumably signed distinct messages and a public key, outputs a
binary value indicating whether the signature is valid.

A secure FssAgg scheme must satisfy the following properties:

1. Correctness: Any aggregated signature produced with FssAgg.Asig must be ac-
cepted by FssAgg.Aver.

2. Forward secure aggregate unforgeability: No one, even knowing the current sign-
ing key, can make a valid FssAgg forgery.

The forward-secure aggregate unforgeability implies two things.
First, a secure FssAgg scheme is append-only - no one can change any message

generated before the compromise. Therefore a FssAgg signature can provide integrity
protection for the whole message body. An attacker who compromises a signer has two
choices: (1) either it includes the intact aggregate-so-far signature in future aggregated
signatures, or (2) it ignores the aggregate-so-far signature completely and starts a brand
new aggregated signature. What it can not do is selectively delete components of an
already-generated aggregate signature.4 Second, it is computationally hard to remove
a component signature without knowing it. Thus, a secure FssAgg scheme is resistant
to deletion (including truncation) attacks. These two properties are very useful and we
exploit them in our design below.

We claim that FssAgg authentication implies forward-secure stream integrity, i.e.:

Forward Security: In an FssAgg scheme, the secret signing key is updated via a one-
way function. An attacker is thus unable to recover previous keys from the current
(compromised) key and therefore can not forge signatures from prior intervals.5

Stream Security. The sequential aggregation process in an FssAgg scheme pre-
serves the message order and provides stream security; thus, re-ordering of mes-
sages is impossible.
Integrity. Any insertion of new messages as well as modification and deletion of
existing messages renders the final aggregate unverifiable.

Based on the above, we can now construct a secure logging system from any secure
FssAgg authentication scheme.

4 Private-Verifiable Scheme

We first describe a private-verifiable scheme that provides forward-secure stream in-
tegrity. In a private-verifiable scheme, verifiers are drawn from a small “private” group.

4 This append-only property resembles the property of a special write-only disk used in tradi-
tional log systems.

5 Assuming, of course, that the plain signature scheme – upon which the FssAgg scheme is built
– is CPA-secure.



Our scheme is based, in turn, on the FssAgg MAC scheme proposed in [11]. Forward-
secure stream integrity is inherited from the FssAgg MAC scheme. To avoid an online
server, two FssAgg MACs are computed over the log file with different initial signing
keys. A semi-trusted verifier can only verify one of them. The other MAC is used by
the trusted server to finally validate the log file. No one – including the semi-trusted
verifier – can alter the contents of the log file without being detected.

We next present the trust model and system assumptions, followed by the descrip-
tion of system operation. Then, we show how to add operations to start/open and close
a log file such that total deletion and abnormal stop attacks can be detected. We then
evaluate the proposed scheme.

4.1 Security and System Model

There are three types of players in our scheme:

1. U is an untrusted log generator. By “untrusted”, we mean that it is not physically se-
cure, bug-free, or sufficiently tamper-resistant to guarantee that it can not be taken
over by an attacker. U does not behave maliciously, unless controlled by the at-
tacker. It generates log entries and replies to V’s query. It only interacts with T to
start a log file or after a log file is closed.

2. V is a semi-trusted verifier that reads and verifies the log file on U . Usually, audit
logs can only be accessed by a small group of people, such as system administra-
tors, security personnel and auditors. Therefore, V is drawn from a small group of
authorized entities; it can obtain and verify a copy of the audit log from U . However,
V is not trusted as far as the integrity of the log file.

3. T is a trusted machine in a secure location. It has secure storage sufficient to store
audit logs from U . It can authorize a legitimate verifier V to access the audit log and
gives V the verification key. It also finally validates the log file. T does not interfere
the verification process.

As in [5], we assume that there is no constantly available reliable high-bandwidth chan-
nel between U and trusted storage on T . Consequently, U and T communicate infre-
quently.

The attacker’s goal is to tamper with the log file by deleting, modifying, inserting
or re-ordering log entries. Clearly, the attacker who compromises U obtains the signing
key used at the time of compromise. We consider two types of attackers: outsiders and
insiders. An outsider is an attacker that knows none of U ’s secrets before compromising
U . A malicious V is considered to be an insider attacker as it knows some of U’s secrets.
An insider is obviously more powerful as far as its ability to tamper with the integrity
of the log file. Our scheme is designed to detect both insider and outsider attacks.

4.2 Scheme Description

We use the following notation from here on:

– Li: i-th message, i.e., the i-th log entry. (We assume that log entries are time-
stamped and generally have a well-defined format).



– F : k-bit full-domain hash function with strong collision resistance F : {0, 1}k →
{0, 1}k.

– H: one-way hash function with strong collision resistance and arbitrarily long in-
put: H : {0, 1}∗ → {0, 1}k.

– mac: secure MAC function mac : {0, 1}k × {0, 1}∗ → {0, 1}t that, on input of a
k-bit key x and an arbitrary message m, outputs a t-bit macx(m).

– UPD: key update frequency (see below).

At any given time, an authenticated log file consists of two parts: (1) log entries:
[L1, · · · , Li] and (2) two authentication tags (forward-secure aggregate MACs): µT ,i

and µV,i that are defined below.

Log File Initialization Before the logging system starts, we require T to be accessible
to U and assume that U is not compromised (yet). U generates two random symmetric
keys, A1 and B1. Then, it commits these keys to T along with the other information
about the specific log file and the key update interval UPD. We are not concerned with
the details of the commitment process. Suffice it to say that, after the commitment
process, T can go off-line and U can be deployed in an adversarial and unattended
environment.6

Meanwhile, U creates the initial “dummy” log entry L1 which commits to a fixed
message (e.g., set to ”START”) and computes two MACs on L1 with keys A1 and B1,
respectively: µT,1 = macA1(L1) and µV,1 = macB1(L1). Next, U evolves its keys
through a one-way function F : A2 = F(A1), and B2 = F(B1).

Through the initial interaction, T knows that U has started a log file at time t with
initial secrets A1 and B1. T stores these values in its database and thereafter knows
that a valid log must exist on U and that that log must contain at least one log entry L1.
The purpose of this initial commitment step is to prevent a total deletion attack, i.e., an
attacker breaking into U at a later time shold not be able to delete the whole log and
simply claim that no such log has been started.

Update Frequency We make no assumptions about key update frequency, except that
it must be fixed at log initialization time by T or U (or both). Moreover, it must be
encoded in the first message from U to T . UPD can be based on time (e.g., every hour),
volume of activity (e.g., every 10 log entries) or some combination thereof. However,
to simplify our discussion below, we assume that keys are updated for each log entry.

Generating Log Entries Before the i-th entry is generated, the log file contains L1, · · · , Li−1

and two FssAgg MACs µT,i−1, µV,i−1. Current keys of U are: Ai and Bi. Now, a new
i-th event occurs and U creates a corresponding log entry Li. U updates7 authentication
tags as follows:

6 We also assume that the initial commitment as well as each subsequent log entry contains a
time-stamp.

7 We use the term “updates”, since, at all times, there are only two authentication tags in the
secure log.



1 U first generates a MAC for V as: macAi
(Li). It then computes µV,i as: µV,i =

H(µV,i−1||macAi(Li)). Here, H acts as the aggregation function. Note that µV,i

can be represented (un-rolled) as:

µV,i = H(H(· · ·H(µV,1||macA1(L1)) · · · )||macAi(Li)) (1)

2 U updates the second FssAgg MAC (for T ) in the same manner:
µT,i = H(µT,i−1||macBi

(Li))
3 Finally, U evolves both keys: Ai+1 = F(Ai), and Bi+1 = F(Bi). Prior keys Ai

and Bi and MACs macAi(Li) and macBi(Li) are immediately and securely erased
(e.g., from disk and RAM).

Log File Closure U officially closes the log file by creating a special closing message
as the final log entry (Lf ), updating the two authentication tags (µV,f and µT,f ) and
securely erasing the remaining keys (Af and Bf ).

This special step is necessary in order to inform users that the log file is closed
properly and no longer accepts any new data. Consider that an attacker might prevent the
logging system from functioning after gaining control of the logging machine. Without
the explicit closing step, we can not determine whether the log file has been closed
normally or the logging process has been impeded by an attacker. Once the log file is
properly closed, an attacker who breaks into U cannot modify anything since no keys
are available.

Log File Validation An authorized verifier V starts the validation process by obtaining
A1 – one of the two initial signing keys – from T . Next, V queries U and obtains a copy
of log entries L1, · · · , Lf as well as µV,f . V computes A2, · · · , Af through the key
update function, computes µ′V,f and checks that it matches µV,f . Verifier’s computation
costs amount to f invocations of F , H and mac.

When T receives the complete and already-closed log file, it can independently
validate it using B1 and µT,f . The validation mimics that performed by V . Note that,
a malicious verifier V , knowing A1, has full control and can modify any log entries by
generating its own version of µV,f . However, it can not forge µT,f .

4.3 Discussion

The private-verifiable scheme is simple and very computation-efficient, since it only
involves fast hashing and symmetric key operations. V can verify a log file without
consulting T ; thus, no on-line trusted party is needed. Furthermore, it is very storage-
efficient: compared with previous schemes which require either f or 2 ∗ f units to store
authentication-related values, our scheme only needs two storage units for two FssAgg
MACs. Considering that log files tend to be very large and can contain millions of log
entries, the benefits of storage-efficiency are quite apparent.

Our scheme provides forward-secure stream integrity through the use of a single
FssAgg MAC that covers all log entries. An attacker can not forge this MAC without
knowing any pre-compromise MAC keys. Deletion and truncation attacks are readily



detectable by any verifier. Furthermore, our scheme detects a total deletion attack, since
we use an explicit commitment process when starting a log file. Also, by explicitly
closing the log file, our scheme can detect certain DoS attacks that aim to incapacitate
the logging system.

However, we concede that a malicious verifier V can tamper with the log without
being detected by other verifiers. This tampering can only be detected with the help of
T . It is thus possible for a malicious insider to mount a delayed detection attack. This is
a definite drawback which leads us to construct an alternative scheme based on public
key techniques.

5 A Public-Verifiable Scheme

We now describe a public-verifiable scheme. It can be based on any FssAgg signature
scheme proposed in [11] and [12]. A public-verifiable scheme allows auditors outside
the system to make sure no tampering takes place within the system. Therefore, it can
be used for systems which require public auditing, such as financial records and voting
systems. A public-verifiable scheme also avoids the shortcoming of a private-verifiable
schemes which, as pointed out above, suffers from delayed detection attacks.

As in the previous section, we begin with the trust model and system assumptions.
Next, we describe and evaluate the new scheme. To avoid unnecessary repetiton, we
focus on the difference between private- and public-verifiable schemes.

5.1 Trust Model

In this scheme we no longer require a trusted server T . Instead, we need a Certification
Authority (CA) that can certify/register U’s public key. The scope of V moves from a
small private group of semi-trusted entities to the public domain, i.e., anyone who has
a copy of the log file can verify it. We no longer need to differentiate between inside
and outside attackers. An attacker is thus anyone who behaves maliciously and does not
know the system’s initial secrets.

5.2 Scheme Description

An authenticated log file in the present scheme consists of two parts: log entries [L1, · · · ,
Lf ] and a single FssAgg signature σ1,f .

Log File Initialization To initiate a log file, U uses FssAgg.Kg to generate the initial
secret key sk1 and the public key pk. Then it registers pk with a public CA. U ’s certifi-
cate for log file contains (at least) essential information, such as: the log creator, the log
ID, starting time and the public key. For example, CA’s signature in U’s certificate for
log file IDlog might be as follows:

CERT (IDlog) = SIGNCA(U , IDlog, t, T, pk, timestamp, · · · )
U keeps sk1. Next, it creates the initial log entry L1 which is set to CERT (IDlog).
Then, U generates a signature σ1,1 on L1 with FssAgg.Asig using the initial private



key sk1. Finally, U updates its key from sk1 to sk2 and securely erases all copies of
sk1.

Generating Log Entries Before the i-th entry occurs, the log file contains [L1, · · · ,
Li−1] and the FssAgg signature σ1,i−1. U’s current secret key is ski. Now, a new event
occurs and triggers U to creates a new log entry Li. U updates its FssAgg signature by
invoking FssAgg.Asig with input: Li, σ1,i−1 and ski. Finally, U evolves its ski into
ski+1 via FssAgg.Upd and securely erases ski. (FssAgg.Upd is invoked immediately
after the aggregate signature is generated.)

Since the maximum number of key update periods T is fixed a priori, as the log file
grows, the number of updates might eventually to exceed T . To address this issue we
can dynamically extend the scheme to support additional key update periods without
sacrificing security. One straightforward way is to generate a public key for the next T
number of time periods and to use the last (initially certified) secret key skT to, in turn,
certify a new set of public keys to be used thereafter. In fact, the certification of the next
batch of public keys should be treated as a special log entry LT .

Log File Closure As in the private-verifiable scheme, U closes the log file by creating
a special closing message as the final log entry Lf , updating the FssAgg signature
accordingly, and securely erasing its secret key.

Validating Log File After receiving a copy of the log file, V extracts public keys from
CERT (IDlog) contained in the initial log entry L1 and V verifies CA’s signature on
CERT (IDlog). Then, V validates the actual log file using FssAgg.Aver.

5.3 Discussion

Compared with its private-verifiable counterpart, the present scheme offers better secu-
rity because of its resistance to delayed detection attacks. It allows anyone – not just
a group of semi-trusted verifiers – to validate a log file. It is thus suitable for appli-
cations where scalability is important and, more generally, where public verification
is required. Except for the log initialization time, no trusted entity is needed for any
system operations.

6 Evaluation

We evaluate the proposed schemes by comparing them with prior schemes. We compare
our private verifiable scheme with two existing private-key-based schemes: Schneier-
Kelsey [5] and Bellare-Yee [3]. We also compare our public-verifiable scheme with
Holt’s scheme [9]. Our comparison is based on four factors: 1) resilience to truncation
attacks; 2) resilience to delayed detection attacks; 3) on-line server requirements; 4)
storage efficiency. Comparison results are summarized in Table 6.

Compared with Schneier-Kelsey and Bellare-Yee, our private scheme is resilient to
truncation attacks, more storage-efficient and requires no on-line server. However, it



Table 1. Comparisons of Various Schemes.

Private Key Public Key
Based Schemes Based Schemes

SK [5] BY [3] Ours Holt [9] Ours
Resilience to truncation attack? No No Yes No Yes
Resilience to delayed detection attack? No No No Yes Yes
No on-line server? No No Yes Yes Yes
Storage efficient? No No Yes No Yes

is vulnerable to delayed detection attacks. Compared with Holt’s scheme, our public
scheme is resilient to truncation attacks and more storage-efficient.

7 Implementation

We investigated the viability of the proposed schemes on an Intel dual-core 1.73GHz
Laptop with 1GB RAM running Linux. We used the NTL [14] and the PBC [15] li-
braries as for necessary cryptographic and number-theoretic primitives.

We prototyped the BLS-FssAgg signature scheme in [11] and the AR-FssAgg and
BM-FssAgg signature schemes in [12]. For BM-FssAgg and AR-FssAgg schemes,
we selected security parameters k = 1024 and l = 160. For the BLS-FssAgg scheme,
we used a singular curve Y 2 = X3 + X defined on a field Fq for |q| = 512 and the
group order |p| = 160, where p is a Solinas prime. Such groups have the fastest pairing
operations [15]. We measured signer’s computation costs by signature generation and
key update on a per-log-entry basis. We measured verifier’s computation costs over
an aggregate signature σ1,t when t = 100, 1, 000 and 10, 000 which corresponds to
a small, medium, and large log file, respectively. Experimental results shown in Table
2 show that the BM-FssAgg scheme is the most efficient in terms of computation
for both signer and verifier. Its signature generation is approximately twice faster than
that of AR-FssAgg and 5.5 times faster than that of the BLS-FssAgg. Its signature
verification is 4 times faster than that of the AR-FssAgg and 16 times faster than that
of the BLS-FssAgg. However, it incurs the most storage overhead.

Table 2. Comparisons of FssAgg Signature Schemes. (Operation Timing in msecs.)

BLS-FssAgg BM-FssAgg AR-FssAgg
Signer Computation Cost Asig 30 2.09 4.39

(per log entry) Upd 0.002 3.46 7.27
total 30.00 5.55 11.66

Signer Storage Cost
t = 100 2% 162% 3%
t = 1000 0.2% 16.2% 0.3%
t = 10000 0.02% 1.62% 0.03%

Verifier Cost
t = 100 3.30× 103 211.97 810.88
t = 1000 29.3×103 2.13×103 8.16×103

t = 10000 330.72×103 21.35×103 80.84×103



We also investigated storage overhead incurred by each scheme. Let Ia denote the
amount of storage needed to to store the secret key and the aggregate signature - the
overhead incurred by authentication. Let |S| denote the size of a signature or a key. Let
I denote the number of log entries and |L| denote the average size of a log entry. We
measure storage efficiency by Ia∗|S|

I∗|L| . BLS-FssAgg needs 1 unit of space each for both
secret key and signature. BM-FssAgg needs 162 units of storage for secret key and 1
unit for the aggregate signature. BM-FssAgg needs 2 units for secret key and 1 for the
aggregate signature. To simply measurements, we assumed log entry size comparable
to the size of a signature or a secret key, e.g. |S| ≈ |L|. The comparison results are also
shown in Table 2. BLS-FssAgg is the best in term of storage efficiency, As the number
of log entries grows, storage overhead in BLS-FssAgg becomes negligible.

8 Related Work

A number of cryptographic approaches to address secure logging have been proposed
to-date. Most prior work focused on three areas: (1) data integrity/authentication, (2)
data confidentiality and access control, and (3) searchable encryption. Since we are
primarily interested in integrity, only the first area directly relates to this paper.

Bellare and Yee were the first to define the forward-secure stream integrity property
required in an audit log system and proposed to use forward-secure MACs [2, 3]. They
focused on formal definition and construction of forward-secure MAC schemes and
applied them to secure audit log applications. In their secure log scheme, multiple log
entries are indexed and tagged independently within one time period. At the end of
each time period, a special log entry containing the number of log entries in the current
time period is created to indicate the end of the current time period. This scheme has
the same security as well as the architectural limits as the Schneier and Kelsey scheme
analyzed in Section 2.

Schneier and Kelsey proposed a similar system (the SK scheme we analyzed in
Section 2) based on forward-secure MAC and one-way hash chains [5, 16, 17]. Unlike
Bellare and Yee’s scheme, in the SK scheme, rekeying is performed after each log entry
is made. Therefore they no longer use per-stage sequence numbers in tagging logs.
Instead, each log entry now contains a link in a hash chain and a forward-secure MAC
computed over this link to authenticate the values of all pervious entries. Moreover,
they presented a precise protocol design for its implementation in a distributed system,
describing how messages are sent to external trusted machines upon log creation and
closing.

Chong, et. al. discussed the feasibility of using of tamper-resistent hardware in con-
junction with a system like Schneier and Yee’s in [18]. Holt extended Schneier and
Yee’s system to the public key setting [9].

Waters, et. al. designed encrypted and searchable audit log [19]. This showed how
identity-based encryption (IBE) can be used to make audit logs efficiently searchable.
Keywords which relate to each log entry are used to form public keys in an IBE system.
Administrators allow searching and retrieval of entries matching a given set of keywords
by issuing clients the corresponding IBE private keys. They recommended the use of the
Schneier and Yee’s technique as their authentication scheme. The two security attacks,



truncation attack and delayed detection attack, which we outlined in Section 2, seem
to be very fundamental to all the secure audit log schemes as far as we know. It is
surprising that they have not been addressed by any later work so far.

9 Conclusion

In this paper, we identified some issues in current secure logging techniques. We then
proposed two concrete schemes to provide forward-secure stream integrity for logs gen-
erated on untrusted machines. Our approach supports forward security and compact ag-
gregation of authentication tags (MACs or signatures). Both of our proposed schemes
offer practical secure logging without reliance on trusted third parties or secure hard-
ware. Our schemes are based on the recent proposed FssAgg authentication schemes
where a unique authentication tag is used to protect the integrity of underlying message
body. We evaluated the performance of our schemes and reported on our experience
with the prototype implementation of a secure logging system. In the full version of
this paper [13], we also considered the immutability extensions to our schemes.

Although the security of proposed schemes rests entirely on previously proposed
techniques (i.e., [11, 12], we still need to construct separate security proofs for each
scheme. Furthermore, we pland to conduct more extensive experiments, and perhaps
even trace-driven simulations, to better understand the performance of our schemes.
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