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Abstract. With the growing use of wireless networks and mobile devices, we are
moving towards an era where spatial and temporal information will be necessary
for access control. The use of such information can be used for enhancing the
security of an application, and it can also be exploited to launch attacks. For crit-
ical applications, a model for spatio-temporal-based access control is needed that
increases the security of the application and ensures that the location informa-
tion cannot be exploited to cause harm. Consequently, researchers have proposed
various spatio-temporal access control models that are useful in pervasive com-
puting applications. Such models typically have numerous different features to
support the various application requirements. The different features of a spatio-
temporal access control model may interact in subtle ways resulting in conflicts.
We illustrate how the access control model can be formally analyzed to detect the
presence of conflicts. We use Alloy, a formal language based on first-order logic,
for the purpose of our analysis. Alloy is supported by a software infrastructure
that allows automated analysis of models and has been used to verify industrial
applications. The results obtained by analyzing the spatio-temporal access control
model will enable the users of the model to make informed decisions.

1 Introduction

With the increase in the growth of wireless networks and sensor and mobile devices,
we are moving towards an era of pervasive computing. The growth of this technology
will spawn applications such as, the Aware Home [8] and CMU’s Aura [11], that will
make life easier for people. Pervasive computing applications introduce new security
issues that cannot be addressed by existing access control models and mechanisms. For
instance, access to a computer should be automatically disabled when a user walks out
of the room. Traditional models, such as Discretionary Access Control (DAC) or Role-
Based Access Control (RBAC) do not take into account such environmental factors
in determining whether access should be allowed or not. Consequently, access control
models and mechanisms that use environmental factors, such as, time and location,
while determining access are needed.

Researchers have proposed various access control models that use contextual infor-
mation, such as, location and time, for performing access control [1,4-6,8, 11, 13-17,
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20] Many of these were developed for commercial applications and are based on RBAC.
Examples include TRBAC [4], Geo-RBAC [5], and STRBAC [15]. These models are
more expressive than their traditional counterparts, and have various features which the
users can selectively use based on the application requirements. The different features
of these models interact in subtle ways resulting in inconsistencies and conflicts. Con-
sequently, it is important to analyze and understand these models before they are widely
deployed.

Manual analysis is tedious and error-prone. Analyzers based on theorem proving
are hard to use, require expertise, and need manual intervention. Model checkers are
automated but are limited by the size of the system they can verify. In this paper, we
advocate the use of Alloy [12], which supports automated analysis, for checking access
control models. Alloy is a modeling language capable of expressing complex structural
constraints and behavior. Moreover, it has been successfully used in the modeling and
analysis of real-world systems [10, 24].

In this paper, we illustrate how to specify and analyze properties of a spatio-temporal
role-based access control model. Alloy is supported by an automated constraint solver
called Alloy Analyzer that searches instances of the model to check for satisfaction
of system properties. The model is automatically translated into a Boolean expres-
sion, which is analyzed by SAT solvers embedded within the Alloy Analyzer. A user-
specified scope on the model elements bounds the domain, making it possible to create
finite Boolean formulas that can be evaluated by the SAT-solver. When a property does
not hold, a counter example is produced that demonstrates how it has been violated.

The rest of the paper is organized as follows. Section 2 describes the related work.
Section 3 shows the relationship of each component of Core RBAC with location and
time. Sections 4, 5 and 6 propose different types of hierarchies and separation of duty
constraints that we can have in our model. Section 7 discusses how the model can
be analyzed using Alloy. Section 8 concludes the paper with some pointers to future
directions.

2 Related Work

Ardagna et al. [1] discuss how location information of the requester can be ascertained
and how such information can be used to evaluate and enforce location-based predicates
used in access control. Location-based access control has been addressed in other works
as well [11, 14, 16].

Role-based access control model [9] is used for addressing the access control needs
of commercial organizations. Several works exist that improve RBAC functionality,
some of which focus on how RBAC can be extended to make it context aware. Sam-
pemane et al. [19] present a new access control model for active spaces. Active space
denotes the computing environment integrating physical spaces and embedded comput-
ing software and hardware entities. Environmental aspects are adopted into the access
control model for active spaces, and the space roles are introduced into the implemen-
tation of the access control model based on RBAC. Covington et al. [8] introduce en-
vironment roles in a generalized RBAC model (GRBAC) to help control access control
to private information and resources in ubiquitous computing applications. The envi-



ronments roles differ from the subject roles in RBAC but do have similar properties
including role activation, role hierarchy and separation of duty. However, the environ-
ment roles are activated according to the changing conditions specified in environmen-
tal conditions, thus environmental properties like time and location are introduced to
the access control framework. In a subsequent work [7], Covington et al. describes the
Context-Aware Security Architecture (CASA) which is an implementation of the GR-
BAC model.

Other extensions to RBAC include the Temporal Role-Based Access Control Model
(TRBAC) proposed by Bertino et al. [4]. The authors in this paper introduce the concept
of role enabling and disabling. Temporal constraints determine when the roles can be
enabled or disabled. A role can be activated only if it has been enabled. Joshi et al.[13]
extend this work by proposing the Generalized Temporal Role Based Access Control
Model (GTRBAC). In this work the authors introduce the concept of time-based role
hierarchy and time-based separation of duty. These works do not discuss the impact of
spatial information.

Researchers have also extended RBAC to incorporate spatial information. The most
important work in this regard is the GEO-RBAC [5]. In this model, role activation is
based on the location of the user. For instance, a user can acquire the role of teacher
only when he is in the school. Outside the school, he can acquire the role of citizen. The
model supports role hierarchies but does not deal with separation of duties. Another
work incorporating spatial information is by Ray et al. [17]. Here again, the authors
propose how each component of RBAC is influenced by location. The authors define
their formal model using the Z specification language. Role hierarchy and separation of
duties is not addressed in this paper. None of these work discuss the impact of time on
location.

The paper proposed by Chandran et al. [6] combines the main features of GTR-
BAC and GEO-RBAC. Here again, role is enabled by time constraints. The user can
activate the role if the role is enabled and the user satisfies the location constraints asso-
ciated with role activation. Another work which falls into this category is GST-RBAC
by Samuel et al. [20]. In this work, the authors develop a framework to incorporate
topological spatial constraints to the existing GTRBAC model. The authors do this by
augmenting GTRBAC operations, namely, role enabling, user-role assignment, role-
permission assignment, and role-activation with spatial constraints. The operations are
allowed only if the spatial and temporal constraints are satisfied. The model also in-
troduces the notion of Spatial Role Hierarchy and Spatial Separation of Duty (spSoD)
constraints. Our early work [15] extends RBAC with spatial and temporal constraints.
Although the goal of this work is similar to those proposed by Chandran et al. and
Samuel et al., our model can express some real-world constraints that are not possible
in the other ones. Atluri et al proposed Geotemporal RBAC model in [2, 3] for pro-
tecting the information in Geospatial databases. In this model , user can acquire a role
based on his spatial-temporal information. For instance, a user can assume the role of
a professor in a classroom during the day time. This allows the user to access some re-
source only when he satisfies spatial and temporal constraints. The Geotemporal RBAC
model, however, does not discuss the impact of spatial and temporal constraints on role
hierarchy and separation of duties.



A lot of work appears in the area of analysis of security policies. Some have used the
Z modeling language for specifying RBAC [25] and LRBAC [17]. Although Z language
can represent RBAC and its constraints in the formal manner, the language itself lacks
the tool to support the automatic analysis of the formalized model. Others have used an
extension of the Unified Modeling Language (UML) [18] called parameterized UML
to visualize the properties of RBAC constraints. However, it still lacks the ability to
perform automated model analysis.

Researchers have advocated the use of Alloy for modeling and analyzing RBAC
specifications. Schaad et al. model user-role assignment, role-permission assignment,
role hierarchy, and static separation of duties features of RBAC extension using Alloy
in [22]. The authors do not model role activation hierarchy or the dynamic separation
of duties. The authors briefly describe how to analyze conflicts in the context of the
model. Samuel et al. [20] also illustrate how GST-RBAC can be specified in Alloy. They
describe how the various GST-RBAC functionalities, that is, user-role assignment, role-
permission assignment, and user-role activation, can be specified by Alloy. However,
this work does not focus on how to identify interactions between features that result in
conflicts. Our work fills this gap.

3 Relationship of Core-RBAC Entities with Time and Location

In this section, we describe how the entities in RBAC are associated with location and
time!. We discuss how the different entities of RBAC, namely, Users, Roles, Sessions,
Permissions, Objects and Operations, are associated with location and time.
Users

We assume that each valid user, interested in doing some location-sensitive oper-
ation, carries a locating device which is able to track his location. The location of a
user changes with time. The relation UserLocation(u,t) gives the location of the user
at any given time instant . Since a user can be associated with only one location at any
given point of time, the following constraint must be true. Note that in this and all the
subsequent formulae, we omit the quantification symbols.

UserLocation(u,t) = l; AUserLocation(u,t) =1; < (; Cl;) vV (I; C L)

We define a similar function UserLocations(u,d) that gives the location of the user
during the time interval d. Note that, a single location can be associated with multiple
users at any given point of time.
Objects

Objects can be physical or logical. Example of a physical object is a computer.
Files are examples of logical objects. Physical objects have devices that transmit their
location information with the timestamp. Logical objects are stored in physical objects.
The location and timestamp of a logical object corresponds to the location and time of
the physical object containing the logical object. We assume that each object is asso-
ciated with one location at any given instant of time. Each location can be associated

! For lack of space, we do not give details on location and time representation. Please refer to
our earlier paper [15] for more details.



with many objects. The function ObjLocation(o,t) takes as input an object o and a time
instance ¢ and returns the location associated with the object at time . Similarly, the
function ObjLocations(o,d) takes as input an object o and time interval d and returns
the location associated with the object.

Roles

We have three types of relations with roles. These are user-role assignment, user-
role activation, and permission-role assignment.

We begin by focusing on user-role assignment. Often times, the assignment of user
to roles is location and time dependent. For instance, a person can be assigned the role
of U.S. citizen only in certain designated locations and at certain times only. To get the
role of conference attendee, a person must register at the conference location during
specific time intervals. Thus, for a user to be assigned a role, he must be in designated
locations during specific time intervals. In our model, a user must satisfy spatial and
temporal constraints before roles can be assigned. We capture this with the concept
of role allocation. A role is said to be allocated when it satisfies the temporal and
spatial constraints needed for role assignment. A role can be assigned once it has been
allocated. RoleAllocLoc(r) gives the set of locations where the role can be allocated.
RoleAllocDur(r) gives the time interval where the role can be allocated. Some role s
can be allocated anywhere, in such cases RoleAllocLoc(s) = universe. Similarly, if role
p can be assigned at any time, we specify RoleAllocDur(p) = always.

Some roles can be activated only if the user is in some specific locations. For in-
stance, the role of audience of a theater can be activated only if the user is in the theater
when the show is on. The role of conference attendee can be activated only if the user is
in the conference site while the conference is in session. In short, the user must satisfy
temporal and location constraints before a role can be activated. We borrow the concept
of role-enabling [4, 13] to describe this. A role is said to be enabled if it satisfies the
temporal and location constraints needed to activate it. A role can be activated only if
it has been enabled. RoleEnableLoc(r) gives the location where role r can be activated
and RoleEnableDur(r) gives the time interval when the role can be activated.

The predicate UserRoleAssign(u,r,d,l) states that the user u is assigned to role r
during the time interval d and location /. For this predicate to hold, the location of the
user when the role was assigned must be in one of the locations where the role allocation
can take place. Moreover, the time of role assignment must be in the interval when role
allocation can take place.

UserRoleAssign(u,r,d,l) = (UserLocation(u,d) = I)A
(I C RoleAllocLoc(r)) A (d C RoleAllocDur(r))

The predicate UserRoleActivate(u,r,d,l) is true if the user u activated role r for the
interval d at location /. This predicate implies that the location of the user during the
role activation must be a subset of the allowable locations for the activated role and all
times instances when the role remains activated must belong to the duration when the
role can be activated and the role can be activated only if it is assigned.

UserRoleActivate(u,r,d,l) =
(I C RoleEnableLoc(r)) A(d C RoleEnableDur(r)) AUserRoleAssign(u,r,d,l)



The additional constraints imposed upon the model necessitates changing the precondi-
tions of the functions AssignRole and ActivateRole. The permission role assignment is
discussed later.
Sessions

In mobile computing or pervasive computing environments, we have different types
of sessions that can be initiated by the user. Some of these sessions can be location-
dependent, others not. Thus, sessions are classified into different types. Each instance
of a session is associated with some type of a session. The type of session instance s is
given by the function T'ype(s). The type of the session determines the allowable loca-
tion. The allowable location for a session type st is given by the function SessionLoc(st).

When a user u wants to create a session si, the location of the user for the entire du-
ration of the session must be contained within the location associated with the session.
The predicate SessionUser(u,s,d) indicates that a user u has initiated a session s for
duration d.

SessionUser(u,s,d) = (UserLocation(u,d) C SessionLoc(Type(s)))

Since sessions are associated with locations, not all roles can be activated within some
session. The predicate SessionRoles(u,r,s,d,l) states that user u initiates a session s
and activates a role for duration d and at location /.

SessionRole(u,r,s,d) = UserRoleActivate(u,r,d,l) Nl C SessionLoc(Type(s)))

Permissions

The goal of our model is to provide more security than their traditional counter-
parts. This happens because the time and location of a user and an object are taken
into account before making the access decisions. Our model also allows us to model
real-world requirements where access decision is contingent upon the time and location
associated with the user and the object. For example, a teller may access the bank con-
fidential file if and only if he is in the bank and the file location is the bank secure room
and the access is granted only during the working hours. Our model should be capable
of expressing such requirements.

Permissions are associated with roles, objects, and operations. We associate three
additional entities with permission to deal with spatial and temporal constraints: user
location, object location, and time. We define three functions to retrieve the values of
these entities. PermRoleLoc(p,r) specifies the allowable locations that a user playing
the role r must be in for him to get permission p. PermOb jLoc(p,0) specifies the al-
lowable locations that the object o must be in so that the user has permission to operate
on the object o. PermDur(p) specifies the allowable time when the permission can be
invoked.

We define another predicate which we term PermRoleAcquire(p,r,d,1). This pred-
icate is true if role r has permission p for duration d at location /. Note that, for this
predicate to be true, the time interval d must be contained in the duration where the
permission can be invoked and the role can be enabled. Similarly, the location / must be
contained in the places where the permission can be invoked and role can be enabled.

PermRoleAcquire(p,r,d,l) = (I C (PermRoleLoc(p,r) N RoleEnableLoc(r)))
A(d C (PermDur(p) N RoleEnableDur(p)))



The predicate PermU serAcquire(u, o0, p,d,l) means that user u can acquire the per-
mission p on object o for duration d at location /. This is possible only when the per-
mission p is assigned some role r which can be activated during d and at location /, the
user location and object location match those specified in the permission, the duration
d matches that specified in the permission.

PermRoleAcquire(p,r,d,l) N UserRoleActivate(u,r,d,l)
A(ObjectLocation(o,d) C PermOb jectLoc(p,0)) = PermU serAcquire(u,o0,p,d,l)

4 Impact of Time and Location on Role-Hierarchy

The structure of an organization in terms of lines of authority can be modeled as an
hierarchy. This organization structure is reflected in RBAC in the form of a role hi-
erarchy [21]. Role hierarchy is a relation among roles. This relation is transitive, and
anti-symmetric. Roles higher up in the hierarchy are referred to as senior roles and those
lower down are junior roles. The major motivation for adding role hierarchy to RBAC
was to simplify role management. Senior roles can inherit the permissions of junior
roles, or a senior role can activate a junior role, or do both depending on the nature of
the hierarchy. This obviates the need for separately assigning the same permissions to
all members belonging to a hierarchy.

Joshi et al. [13] identify two basic types of hierarchy. The first is the permission

inheritance hierarchy where a senior role x inherits the permission of a junior role y. The
second is the role activation hierarchy where a user assigned to a senior role can activate
a junior role. Each of these hierarchies may be constrained by location and temporal
constraints. Consequently, we have a number of different hierarchical relationships in
our model.
[Unrestricted Permission Inheritance Hierarchy] Let x and y be roles such that x >y,
that is, senior role x has an unrestricted permission-inheritance relation over junior role
y. In such a case, x inherits y’s permissions but not the locations and time associated
with it. In other words, the permission can be applied wherever the senior role is at that
time. This is formalized as follows:

(x > y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d',l')

In the above hierarchy, a senior role inherits the junior roles permissions. However, un-
like the junior role, these permissions are not restricted to time and location. Account
auditor role inherits the permissions from the accountant role. He can use the permis-
sions at any time and at any place.

[Unrestricted Activation Hierarchy] Let x and y be roles such that x = y, that is, senior
role x has a role-activation relation over junior role y. Then, a user assigned to role x
can activate role y at any time and at any place. This is formalized as follows:

(x %= y) AUserRoleActivate(u,x,d,l) = UserRoleActivate(u,y,d’,l")

Here again a user who can activate a senior role can also activate a junior role. This
junior role can be activated at any time and place. A project manager can activate the
code developer role at any time and at any place.



[Time Restricted Permission Inheritance Hierarchy] Let x and y be roles such that
x >y, that is, senior role x has a time restricted permission-inheritance relation over
junior role y. In such a case, x inherits y’s permissions together with the temporal con-
straints associated with the permission. This is formalized as follows:

(x >; ¥) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d,l")

In the above hierarchy, a senior role inherits the junior roles permissions. However,
the duration when the permissions are valid are those that are associated with the ju-
nior roles. A contact author can inherit the permissions of the author until the paper is
submitted.

[Time Restricted Activation Hierarchy] Let x and y be roles such that x 3=; y, that is,
senior role x has a role-activation relation over junior role y. Then, a user assigned to
role x can activate role y only at the time when role y can be enabled. This is formalized
as follows:

(x =1 y) ANUserRoleActivate(u,x,d,l) Ad C RoleEnableDur(y) =
UserRoleActivate(u,y,d,!')

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time when the junior role can be activated. A program
chair can activate a reviewer role only during the review period.

[Location Restricted Permission Inheritance Hierarchy] Let x and y be roles such
that x >; y, that is, senior role x has a location restricted permission-inheritance relation
over junior role y. In such a case, x inherit’s y’s permissions together with the location
constraints associated with the permission. This is formalized as follows:

(x >, y) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d',])

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to the locations imposed on the junior roles. A top secret scientist
inherits the permission of top secret citizen only when he is in top secret locations.
[Location Restricted Activation Hierarchy] Let x and y be roles such that x =, y, that
is, senior role x has a role-activation relation over junior role y. Then, a user assigned
to role x can activate role y only at the places when role y can be enabled. This is
formalized as follows:

(x =1 y) ANUserRoleActivate(u,x,d,l) Nl C RoleEnableLoc(y) =
UserRoleActivate(u,y,d’,l)

Here again a user who can activate a senior role can also activate a junior role. How-
ever, this activation is limited to the place where the junior role can be activated. A
Department Chair can activate a Staff role only when he is in the Department.

[Time Location Restricted Permission Inheritance Hierarchy] Let x and y be roles
such that x >, y, that is, senior role x has a time-location restricted permission-inheritance
relation over junior role y. In such a case, x inherits y’s permissions together with the
temporal and location constraints associated with the permission. This is formalized as
follows:



(x >4 ¥) A PermRoleAcquire(p,y,d,l) = PermRoleAcquire(p,x,d,l)

In the above hierarchy, a senior role inherits the junior roles permissions. These permis-
sions are restricted to time and locations imposed on the junior roles. Daytime doctor
role inherits permission of daytime nurse role only when he is in the hospital during the
daytime.

[Time Location Restricted Activation Hierarchy] Let x and y be roles such that x =,
v, that is, senior role x has a role-activation relation over junior role y. Then, a user
assigned to role x can activate role y only at the places and during the time when role y
can be enabled. This is formalized as follows:

(x =11 y) AUserRoleActivate(u,x,d,l) ANd C RoleEnableDur(y)
Al C RoleEnableLoc(y) = UserRoleActivate(u,y,d, )

Here again a user who can activate a senior role can also activate a junior role. However,
this activation is limited to the time and place where the junior role can be activated.
User who has a role of mobile user can activate the weekend mobile user role only if
he/she is in the US during the weekend.

It is also possible for a senior role and a junior role to be related with both permis-
sion inheritance and activation hierarchies. In such a case, the application will choose
the type of inheritance hierarchy and activation hierarchy needed.

5 Impact of Time and Location on Static Separation Of Duties

Separation of duties (SoD) enables the protection of the fraud that might be caused by
the user [23]. SoD can be either static or dynamic. Static Separation of Duty (SSoD)
comes in two varieties. First one is with respect to user role assignment. The second one
is with respect to permission role assignment. In this case, the SoD is specified as a re-
lation between roles. The idea is that the same user cannot be assigned to the same role.
Due to the presence of temporal and spatial constraints, we can have different flavors
of separation of duties — some that are constrained by temporal and spatial constraints
and others that are not. In the following we describe the different separation of duty
constraints.

[Weak Form of SSoD - User Role Assignment] Let x and y be two roles such that
x#y.x,y € SSOD,,(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = — UserRoleAssign(u,y,d,)

The above definition says that a user u assigned to role x during time d and location
! cannot be assigned to role y at the same time and location if x and y are related by
SSOD,,. An example where this form is useful is that a user should not be assigned the
audience role and mobile user role at the same time and location.

[Strong Temporal Form of SSoD - User Role Assignment] Let x and y be two roles
such that x # y. (x,y) € SSOD;(ROLEYS) if the following condition holds:

UserRoleAssign(u,x,d,l) = = (3d' C always e UserRoleAssign(u,y,d',l))



The above definition says that a user u assigned to role x during time d and location [
cannot be assigned to role y at any time in the same location if x and y are related by
SSOD;. The consultant for oil company A will never be assigned the role of consultant
for oil company B in the same country.

[Strong Spatial Form of SSoD - User Role Assignment] Let x and y be two roles such
that x # y. (x,y) € SSOD;(ROLEYS) if the following condition holds:

UserRoleAssign(u,x,d,l) = — (3I' C universe ® UserRoleAssign(u,y,d, "))

The above definition says that a user u assigned to role x during time d and location /,
he cannot be assigned to role y at the same time at any location if x and y are related by
SSOD;. A person cannot be assigned the roles of realtor and instructor at the same time.
[Strong Form of SSoD - User Role Assignment] Let x and y be two roles such that
x#y. (x,y) € SSODs(ROLES) if the following condition holds:

UserRoleAssign(u,x,d,l) = = (3I' C universe,3d' C always e UserRoleAssign(u,y,d','))

The above definition says that a user u assigned to role x during time d and location /,
he cannot be assigned to role y at any time or at any location if x and y are related by
SSOD;. The same employee cannot be assigned the roles of male and female employee
at any given corporation.

We next consider the second form of static separation of duty that deals with per-
mission role assignment. The idea is that the same role should not acquire conflicting
permissions. The same manager should not make a request for funding as well as ap-
prove it.

[Weak Form of SSoD - Permission Role Assignment] Let p and g be two permissions
such that p # q. (p,q) € SSOD_PRA,, if the following condition holds:

PermRoleAcquire(p,x,d,l) = — PermRoleAcquire(q,x,d,1))

The above definition says that if permissions p and q are related through weak SSoD
Permission Role Assignment and x has permission p at time d and location /, then x
should not be given permission g at the same time and location.

[Strong Temporal Form of SSoD - Permission Role Assignment] Let p and g be two
permissions such that p # q. (p,q) € SSOD_PRA; if the following condition holds:

PermRoleAcquire(p,x,d,l) = = (3d' C always  PermRoleAcquire(q,x,d',[))

The above definition says that if permissions p and g are related through strong temporal
SSoD Permission Role Assignment and x has permission p at time d and location /, then
x should not get permission ¢ at any time in location /.

[Strong Spatial Form of SSoD - Permission Role Assignment] Let p and ¢ be two
permissions such that p # q. (p,q) € SSOD_PRA if the following condition holds:

PermRoleAcquire(p,x,d,l) = — (3I' C universe ® PermRoleAcquire(q,x,d,l"))

The above definition says that if permissions p and ¢ are related through strong spatial
SSoD Permission Role Assignment and x has permission p at time d and location /,
then x should not be given permission g at the same time.

[Strong Form of SSoD - Permission Role Assignment] Let p and g be two permis-
sions such that p # ¢q. (p,q) € SSOD_PRA; if the following condition holds:



PermRoleAcquire(p,x,d,l) = = (3I' C universe,Ad' C always ¢ PermRoleAcquire(q,x,d’,l'))

The above definition says that if permissions p and g are related through strong SSoD
Permission Role Assignment, then the same role should never be given the two con-
flicting permissions.

6 Impact of Time and Location on Dynamic Separation of Duties

Static separation of duty ensures that a user does not get assigned conflicting roles or a
role is not assigned conflicting permissions. Dynamic separation of duty addresses the
problem that a user is not able to activate conflicting roles during the same session.
[Weak Form of DSoD] Let x and y be two roles such that x # y. (x,y) € DSOD,, if the
following condition holds:

SessionRole(u,x,s,d,l) = — SessionRole(u,y,s,d,[))

The above definition says that if roles x and y are related through weak DSoD and if
user u has activated role x in some session s for duration d and location /, then u cannot
activate role y during the same time and in the same location in session s. In the same
session, a user can activate a sales assistant role and a customer role. However, both
these roles should not be activated at the same time in the same location.

[Strong Temporal Form of DSoD] Let x and y be two roles such that x # y. (x,y) €
DSOD; if the following condition holds:

SessionRole(u,x,s,d,l) = — (3d' C always, eSessionRole(u,y,s,d',1))

The above definition says that if roles x and y are related through strong temporal DSoD
and if user u has activated role x in some session s, then u can never activate role y any
time at the same location in the same session. In a teaching session in a classroom, a
user cannot activate the the grader role once he has activated the student role.

[Strong Spatial Form of DSoD] Let x and y be two roles such that x # y. (x,y) €
DSOD; if the following condition holds:

SessionRole(u,x,s,d,l) = — (' C universe ® SessionRole(u,y,s,d,l'))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u# can never activate role y in session
s during the same time in any location. If a user has activated the Graduate Teaching
Assistant role in his office, he cannot activate the Lab Operator role at the same time.
[Strong Form of DSoD] Let x and y be two roles such that x # y. (x,y) € DSODj if the
following condition holds:

SessionRole(u,x,s,d,l) = — (' C universe,3d' C always e SessionRole(u,y,s,d',l'))

The above definition says that if roles x and y are related through strong DSoD and if
user u has activated role x in some session s, then u can never activate role y in the same
session. An user cannot be a code developer and a code tester in the same session.



7 Model Analysis

An Alloy model consists of signature declarations, fields, facts and predicates. Each
signature consists of a set of atfoms which are the basic entities in Alloy. Atoms are
indivisible (they cannot be divided into smaller parts), immutable (their properties do
not change) and uninterpreted (they do not have any inherent properties). Each field
belongs to a signature and represents a relation between two or more signatures. A
relation denotes a set of tuples of atoms. Facts are statements that define constraints on
the elements of the model. Predicates are parameterized constraints that can be invoked
from within facts or other predicates.

The basic types in the access control model, such as, User, Time, Location, Role,
Permission and Object are represented as signatures. For instance, the declarations
shown below define a set named User and a set named Role that represents the set of all
users and the set of all roles in the system. Inside the Role signature body, we have four
relations, namely, RoleAllocLoc, RoleAllocDur, RoleEnableLoc, and RoleEnableDur
which relates Role to other signatures.

sig User({}

sig Role{

RoleAllocLoc: Location,
RoleAllocDur: Time,
RoleEnablelLoc: Location,
RoleEnableDur: Time}

The different relationships between the STRBAC components are also expressed as
signatures. For instance, RoleEnable has a field called member that maps to a cartesian
product of Role, Time and Location. Similarly, RoleHierarchy has a field RHmember
that represents a relationship between Role and Role. Different types of role hierarchy
are modeled as the subsignatures of RoleHierarchy.

sig RoleEnable { member: Role -> Time -> Location}

sig RoleHierarchy { RHmember: Role -> Role}

sig UPIH, TPIH, LPIH, TLPIH, UAH, TAH, LAH, TLAH extends
RoleHierarchy({}

The various invariants in the STRBAC model are represented as facts in Alloy. For
instance, the fact URActivate states that for user u to activate role r during the time
interval d and location /, this user has to be assigned to role r in location / during time
d. Moreover, the location of the user must be a subset of the locations where the role is
enabled, and the time must be in the time interval when role r can be enabled. This is
specified in Alloy as shown below. Other invariants are modeled in a similar manner.

fact URActivate{

all u: User, r: Role, d: Time, 1: Location, uras: UserRoleAssignment,
urac: UserRoleActivate |

((u=>r->d->1) in urac.member) => (((u->r->d->1) in uras.member) &&

(1 in r.RoleEnablelLoc) && (d in r.RoleEnableDur))

}



To represent the effects of STRBAC hierarchical structure, we use Alloy’s fact fea-
ture. The fact UPIHFact represents the Unrestricted Permission Inheritance Hierarchy’s
property. The fact states that senior role sr can acquire all permission assigned to itself
together with all permissions assigned to junior role jr.

//Unrestricted Permission Inheritance Hierarchy
fact UPIHFact{
all sr, jr: Role, p: Permission, d: Time, 1l: Location, upih: UPIH,
rpa: RolePermissionAssignment, pra: PermRoleAcquire |
((sr—=>jr in upih.member) && (jr->p->d->1 in pra.member) &&
(sr=>p !in (rpa.member).Location.Time)) =>
(sr->p->sr.RoleEnableDur->sr.Roleknableloc) in pra.member}

The separation of duty constraints are modeled as predicates. Consider the Weak
form of Static Separation of Duties User Role Assignment. This constraint says that a
user u assigned to role r1 during time d and location / cannot be assigned to its conflicts
role 2 at the same time and location. The other forms are modeled in a separate manner.

//Weak Form of SSoD-User Role Assignment

pred W_SSoD_URA (u: User, disj rl, r2: Role,

ura: UserRoleAssignment.member, d: Time, 1: Location){
((u->rl->d->1) in ura) => ((u->r2->d->1) not in ura)

}

Finally, we need to verify whether any conflicts occur between the features of the
model. We rely on the powerful analysis capability of the ALLOY analyzer for this
purpose. We create an assertion that specifies the properties we want to check. After
we create the assertion, we will let ALLOY analyzer validate the assertion by using
check command. If our assertion is wrong in the specified scope, ALLOY analyzer will
show the counterexample.

For instance, to check the interaction of the Weak form of SSOD User Role As-
signment and the Unrestricted Permission Inheritance Hierarchy, we make the assertion
shown below. The assertion does not hold as illustrated by the counterexample shown
in Figure 1.

// WSSoD_URA violation in the present of UPIH Hierarchy
check TestWSSoD_URA
assert TestConflictl_ 1{
no u: User, disj x, y: Role, upih: UPIH,

d: Time, 1l: Location, ura: UserRoleAssignment |
((x=>y in " (upih.member)) &&

(u=>x->d->1 in ura.member)) =>

W_SSoD_URA[u, x, y, u->(xty)->d->1, d, 1]
}
check TestConflictl_1

The counterexample shows one possible scenario. In this case, it uses the following
instances to show the violation.



/ UPQO

RHmember[Role0]
/ RHmember[Role2]

RHmember[Role2] \

Rolel
($TestConflictl_1_y)

Role0

RoleAllocTime

RoleAllocLoc

RoleAllocLoc
/ RoleAllocTime
Location Time

($TestConflictl_1_1) ($TestConflictl_1_d)

member[Role0, Time] f member[Role2,Time] RoleAllocTime
RoleAllocLoc
member[Rolel,Time]
' Role2
UserRoleAssignment ($TestConflict1_1_x)

Fig. 1. Counterexample for assertion TestConflict]_1

Role = {Role0,Rolel,Role2}
UPIHO = {Role0 — Rolel,Role2 — Role0,Role2 — Rolel}

Time = d, Location =1

L

UserRoleAssignment = {User — Role0 — Time — Location,User — Rolel —
Time — Location,User — Role2 — Time — Location}

Substituting x and y in W_SSoD_URA predicate with Role2 and Rolel respectively, we
get the violation. We checked the assertion on a HP-xw4400-Core2Duo-SATA with two
Core2Duo 1.86Ghz CPU and 2 Gb memory running Linux 64. We used Version 4.1.2
Alloy Analyzer. The time taken to check this assertion was 25,916 ms.

Similar types of analysis reveals that the various forms of SSoD permission role in-
heritance conflict with the different forms of permission inheritance hierarchy. Conflicts
were also detected with the various forms of SSoD user role assignment with different
forms of permission inheritance hierarchy. Also, the various forms of DSoD constraints
conflict with the different forms of role activation hierarchy. Another source of conflict
occurs between role activation and permission when the corresponding location con-
straints or the temporal constraints do not overlap. Checking all these conflicts took
914,558 ms in our setup.



8 Conclusion and Future Work

Traditional access control models do not take into account environmental factors before
making access decisions. Such models may not be suitable for pervasive computing ap-
plications. Towards this end, we proposed a spatio-temporal role based access control
model. We identified the entities and relations in RBAC and investigated their depen-
dence on location and time. This dependency necessitates changes in the invariants and
the operations of RBAC. The behavior of the model is formalized using constraints. We
investigated how the different constraints interact with each other and their relation-
ships.

A lot of work remains to be done. We also plan to implement our model. We need
to investigate how to store location and temporal information in an optimal manner.
We also need to investigate how to use triggers for automatically detecting role allo-
cation and role enabling. Once we have an implementation, we plan to validate our
model using some example real-world applications. We also plan to adapt our analysis
techniques for verifying other types of access control models.
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