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Abstract. When generalization algorithms are known to the public, an adver-
sary can obtain a more precise estimation of the secret table than what can be
deduced from the disclosed generalization result. Therefore, whether a general-
ization algorithm can satisfy a privacy property should be judged based on such
an estimation. In this paper, we show that the computation of the estimation is
inherently a recursive process that exhibits a high complexity when generaliza-
tion algorithms take a straightforward inclusive strategy. To facilitate the design
of more efficient generalization algorithms, we suggest an alternative exclusive
strategy, which adopts a seemingly drastic approach to eliminate the need for
recursion. Surprisingly, the data utility of the two strategies are actually not com-
parable and the exclusive strategy can provide better data utility in certain cases.

1 Introduction

The dissemination and sharing of information has become increasingly impor-
tant to our society. However, such efforts may be hampered by the lack of se-
curity and privacy guarantees. For example, when a healthcare organization re-
leases tables of diagnosis information, explicit identifiers such as names will be
removed. However, an adversary may still identify a patient from the released
table if, say, the combination of the patient’s race, date of birth, and Zip code
can be linked to a unique record in a publicly available voter list [25, 24, 20].

Existing solutions to the micro-data release problem are largely based on
randomization or generalization. This paper considers generalization techniques.
At an abstract level, a micro-data table can be considered as a mapping between
quasi-identifiers (for example, the combination of race, date of birth, and Zip
code) and sensitive values (such as diagnosis result). A generalization can be
regarded as a partition on this mapping, which divides quasi-identifiers and cor-
responding sensitive values into disjoint groups. By hiding the detailed mapping



inside each group, each quasi-identifier is blended with others in the same group.
The amount of privacy protection achieved through such a generalization can be
measured under various privacy properties, such as l-diversity[2].

However, a major limitation of most existing solutions is to assume a dis-
closed table to be the only source of information available to an adversary. Un-
fortunately, this is not always the case. An adversary usually knows the fact that
a generalization algorithm will maximize the utility function in addition to sat-
isfying the privacy property (relying on the secrecy of such information is an
example of security by obscurity). As recently pointed out in [30], this extra
knowledge may allow the adversary to obtain a more precise estimation of the
secret table, on which the privacy property may no longer be satisfied. An ap-
parent solution is to anticipate what the adversary will do, that is to estimate the
secret table based on both the disclosed table and public knowledge about the
generalization algorithm. Once the estimation is obtained, the privacy property
can be evaluated to decide the safety of the generalization algorithm.

In this paper, we study the computation of an adversary’s estimation of the
secret table, which can be modeled as a set of possible instances of the un-
known secret table, namely, disclosure set. We show that a given sequence of
generalization functions can be combined into different strategies in releasing
generalized tables. We first consider generalization algorithms designed under a
straightforward inclusive strategy. We show that the computation of disclosure
sets under the inclusive strategy is inherently a recursive process and exhibits a
high complexity. To facilitate the design of efficient generalization algorithms,
we then suggest an alternative exclusive strategy, which adopts a seemingly
more drastic approach to generalization in order to avoid the need for a recursive
process. Surprisingly, we show that the data utility of those two strategies are
actually incomparable, and the exclusive strategy can provide better data utility
in certain cases. First of all, we motivate further discussions with an example.

Motivating Example Table 1 shows our running example as a table containing
patient information. The table has three attributes: Name, Age, and Patient’s
Condition. The attribute Name is an identifier. We assume the Age attribute
forms a quasi-identifier, and the Condition attribute is sensitive.

Table 2 shows three possible generalizations, G1, G2 and G3, together with
the original table, in an abstract way. We denote as ID the identifier (that is,
Name), QI the quasi-identifier (that is, Age), and S the sensitive attribute (that
is, Condition). Each generalization G1, G2 and G3 includes a group quasi-
identifier QIi(i = 1, 2, 3) and the sensitive attribute S (notice the identifier
ID has been removed). For simplicity, we omit the details of each group quasi-
identifier and sensitive value in the remainder of this paper.



Name Age Condition
Alice 21 flu
Bob 27 tracheitis
Clark 31 pneumonia
Diana 36 tracheitis
Ellen 43 gastritis
Fen 49 gastritis
George 52 cancer
Henry 58 enteritis
Ian 63 cancer
Jason 67 heart disease

Table 1. An Example of Patient Information Table

Original Table G0 Generalization G1 Generalization G2 Generalization G3

ID QI S QI1 S QI2 S QI3 S

A g10(21) c1 g11 c1 g12 c1 g13 c1
B g20(27) c2 (20 ∼ 29) c2 (20 ∼ 29) c2 (20 ∼ 34) c2
C g30(31) c3 g21 c3 g22 c3 c3
D g40(36) c2 (30 ∼ 39) c2 (30 ∼ 44) c2 g23 c2
E g50(43) c4 g31 c4 c4 (35 ∼ 54) c4
F g60(49) c4 (40 ∼ 49) c4 g32 c4 c4
G g70(52) c6 g41 c6 (45 ∼ 59) c6 c6
H g80(58) c5 (50 ∼ 59) c5 c5 g33 c5
I g90(63) c6 g51 c6 g42 c6 (55 ∼ 69) c6
J g101 (67) c7 (60 ∼ 69) c7 (60 ∼ 69) c7 c7

Table 2. An Example of Three Generalization Functions

We assume the generalization algorithm to be public knowledge. This knowl-
edge has several aspects. First, the generalization algorithm defines a sequence
of generalization functions sorted in a non-increasing order of data utility. In
Table 2, the three generalizations are results of applying g1, g2, and g3 to the
original table G0, respectively. We assume the three generalizations have non-
increasing data utility (for example, average group size). The assumption of
given aggregation functions is a common practice of most existing generaliza-
tion techniques. Although the number of possible generalization functions may
grow quickly, say, in the number of attributes, the issue of choosing suitable ag-
gregation functions among all possibilities is beyond the scope of this paper. Our
assumption of non-increasing utility in the sequence of functions is also a com-
mon practice, and also notice that functions with equal or incomparable utilities
can be treated in the same way in our discussions. Second, the generalization
algorithm defines a privacy property. In this paper, we consider a particular pri-
vacy property, namely, recursive (2, 2)-diversity (basically, among all possible
sensitive values that any record can take, the highest ratio of any value X , de-
noted as rDS(X), should satisfy rDS(X) < 2(1 − rDS(X)), or equivalently,
rDS(X) < 2/3) [2]. Third, the generalization algorithm applies the sequence of



generalization functions to the original table, and returns the first generalization
on which the privacy property evaluates to true. Clearly, this approach aims to
maximize the data utility while satisfying the privacy property.

However, the above knowledge about the generalization algorithm may al-
low an adversary to deduce more information than what is directly disclosed in
the generalization. For example, in Table 2, consider two cases. First, suppose
an adversary does not know about the generalization algorithm, but only sees
the second generalization G2. In guessing the original table G0, the adversary
cannot discriminate the sensitive values in each group with respect to their as-
sociation with each ID. For example, the ID A can be associated with either c1

or c2 in the group g1
2 . Therefore, to the adversary, all tables obtained by permut-

ing the sensitive values within each group can potentially be the original table.
Second, suppose an adversary knows about the generalization algorithm in ad-
dition to seeing G2. The adversary can then deduce that G1 must not satisfy
the recursive (2, 2)-diversity because otherwise G1 will be returned instead of
G2 due to better data utility. Although the adversary cannot see G1 (more pre-
cisely, the sensitive values of G1), based on the relationship between the groups
in G1 and G2, he/she can still conclude that both E and F must be associated
with c4 in the original table. Clearly, between the above two cases, the recursive
(2, 2)-diversity is satisfied in the first but not satisfied in the second.

The above example shows that it is insufficient to evaluate a privacy prop-
erty based on a generalization itself when the generalization algorithm is pub-
licly known. Unfortunately, this is indeed the approach adopted by most existing
generalization algorithms. Those algorithms may thus produce results that ac-
tually violate the given privacy property (we say such algorithms are unsafe).
To develop safe generalization algorithms, a critical question is: What exactly
can an adversary deduce about the original table, when he/she knows about the
generalization algorithm? In this paper, we first show how to exactly compute
an adversary’s knowledge about the original table, namely, the disclosure set.
Second, as a consequent, we obtain a safe version of the traditional approach to
generalization by evaluating the privacy property on the disclosure set instead
of the generalization. Later in this paper, we shall show that by applying the safe
version of the generalization algorithm to the above example, we would reach
the counter-intuitive conclusion that neither G2 nor G3 can be safely disclosed.

Organization The remainder of the paper is organized as follows. Section 2
shows how to compute a disclosure set and reveals the inherent complexity of
such a process. Section 3 introduces the exclusive strategy and studies the com-
plexity and data utility of the corresponding generalization algorithms. Section 4
reviews related work. Section 5 finally concludes the paper.



2 Computing Disclosure Sets under the Inclusive Strategy

Section 2.1 first introduces the concept of disclosure set. Section 2.2 then studies
the computation of disclosure sets under the inclusive strategy.

2.1 Disclosure Set

We consider the following micro-data disclosure problem. An original table
G0(ID,QI, S) is given where ID, QI , and S denote the identifier attribute,
quasi-identifier attribute(s), and sensitive attribute, respectively. A generaliza-
tion algorithm G is given, which defines a sequence of generalization func-
tions g1, g2, . . . , gn. The algorithm G applies each gi in the given order to G0

to obtain a generalization Gi(QIi, S) where QIi is the group quasi-identifier
attribute. We assume the last generalization function gn always yields an empty
set, indicating that nothing should be disclosed. The algorithm G always returns
a generalization Gi that satisfies a given privacy property CHK.

The above discussion, however, does not address a critical issue, that is how
the given privacy property CHK should be evaluated when a generalization Gi

is to be disclosed. Generally, CHK should be evaluated based on an adversary’s
knowledge about the original table G0. Such knowledge can be characterized as
follows. The adversary attempts to guess G0 based on the disclosed generaliza-
tion Gi and the public information about the generalization algorithm G. Any ta-
ble that contradicts the information available to the adversary will be eliminated.
The adversary will end up with a set of possible instances, which represents the
best guess the adversary can make about G0, namely, his/her knowledge about
G0. We call such a set the disclosure set corresponding to the generalization
function gi, denoted as DSi. Clearly, the privacy property CHK should be
evaluated on DSi, when the generalization Gi is to be disclosed.

If a disclosed generalization is the only source of information available to
the adversary, then the disclosure set DSi is simply the collection of tables to
which applying gi will yield the generalization Gi. Such a collection of tables
can be obtained by fixing an order on the attribute ID and QI while permuting
the sensitive values within each group of Gi. We denote the collection of tables
as PER(Gi). For example, in Table 2, PER(G1) includes 2× 2× 1× 2 = 16
tables since every group except g3

1 has two permutations.
As illustrated in Section 1, we cannot simply evaluate CHK on PER(Gi)

when the generalization algorithm G is publicly known. The reason is that an
adversary may eliminate some possible instances from PER(Gi) due to a con-
flict with the fact that Gi is disclosed by G. More precisely, the adversary can
apply G to each possible instance in PER(Gi). If G returns any Gj(j < i),
then the adversary knows this possible instance cannot be the original table G0,



and hence it should not be included in DSi. In this way, the adversary can derive
DSi as a subset of PER(Gi).

Example 1. In Table 2, DS1 is simply PER(G1) because generally the original
table will not satisfy CHK, so the adversary cannot eliminate any instance
from PER(G1). Although we shall delay the computation of DS2, we can see
that any possible instance in PER(G2) that has two different sensitive values
associated with the ID E and F will cause G to return G1 instead of G2, and
thus will not be included in DS2.

We formalize the concept of disclosure set in Definition 1.

Definition 1. The disclosure set DSi corresponding to a generalization Gi is a
set of possible instances that satisfy

– DSi ⊆ PER(Gi)
– ∀X ∈ DSi the generalization algorithm G will not return Gj for any j < i.

2.2 The Computation of Disclosure Set

Table 3 shows two algorithms. G on the left-hand side is a generalization algo-
rithm and DS on the right-hand side is an algorithm for computing the disclosure
set of a given generalization. G simply returns the first generalization Gi whose
disclosure set (computed by the other algorithm DS) satisfies a given privacy
property CHK. On the other hand, DS computes the disclosure set of Gi by
eliminating from PER(Gi) any instance X for which the algorithm G returns
a generalization that appears before Gi.

Algorithm G

Input: An original table G0,
generalization functions g1, g2, . . . , gn,
and a privacy property CHK

Output: A generalization Gi(1 ≤ i ≤ n) or φ
Method:
1. For i = 1 to n
2. If DS(gi(G0)) satisfies CHK
3. Return gi(G0)
4. Return φ

Algorithm DS

Input: A generalization Gi

Output: The disclosure setDSi

Method:
1. LetDSi = PER(Gi)
2. For eachX ∈ DSi

3. If G(X) = Gj for some j < i
4. LetDSi = DSi \ {X}
5. ReturnDSi

Table 3. Algorithms G and DS

The algorithms in Table 3 show that the computation of disclosure sets is
inherently a recursive process. In the algorithm DS, to compute the disclosure



set of a generalization Gi, we must test every possible instance X in PER(Gi)
to determine whether X should be included in DSi. More specifically, we first
assume X to be the original table, then we apply the generalization algorithm
G. Each call to G will then involve i−1 calls to the algorithm DS for computing
the disclosure set of the generalizations gj(X)(j = 1, 2, . . . , i − 1) (each such
computation will again involve multiple calls to the generalization algorithm).
One subtlety here is that we are actually using a modified version of G since
it only uses the first i − 1 generalization functions. This is in accordance with
Definition 1, and it also guarantees the recursive process to always terminate.

Example 2. In Table 2, to compute DS2, the algorithm DS will call the algo-
rithm G with each of the possible instances as the input. In this simple case,
only g1 is applied to each instance, and DS1 is simply equal to EXP (G1).
Clearly, for any instance in which E and F are not both associated with c4, the
disclosure set DS1 will satisfy the (2, 2)-diversity, and hence the instance is not
included in DS2. On the other hand, all instances in which both E and F are
associated with c4 (such as the original table G0) form the disclosure set DS2,
which clearly does not satisfy (2, 2)-diversity, either.

The computation of disclosure sets has another complication as follows. Re-
call that to compute DSi, we apply the algorithm G to each X ∈ PER(Gi).
The algorithm G will then compute a disclosure set for each generalization
gj(X)(1 ≤ j ≤ i−1). It may seem that we can then reuse previous results since
the disclosure sets gj(X)(1 ≤ j ≤ i− 1) should normally have been computed
before we compute DSi (refer to the algorithm G). However, this is not the case.
The two sets PER(Gi−1) and PER(Gi) are generally not comparable. Some
instance X may appear in PER(Gi) (for example, g2(X) = g2(G0)) but not
in PER(Gi−1) (for example, g1(X) �= g1(G0)). For such an instance X , the
disclosure sets for gj(X)(1 ≤ j ≤ i − 1) must be computed from scratch.

Figure 1 illustrates this situation. The left-hand side denotes the disclo-
sure set DS1, which is equal to EXP (G1). In the middle is DS2 where the
shaded oval represents EXP (G2). Each of the two small circles denotes a set
PER(X) that satisfies CHK for some X ∈ EXP (G2). All the instances in
EXP (G2)\PER(X) should thus be excluded from DS2. Notice that while all
instances in PER(G2) yield the same generalization under g2, they may yield
different results under g1, as indicated by the two disjoint circles (there may
certainly be more than two different results under g1). One subtlety here is that
when we compute DS2 we typically assume DS1 does not satisfy CHK, so
none of the small circles could be DS1.

Example 3. In Table 2, any instance X ∈ PER(G2) in which E and F are not
both associated with c4 will not appear in PER(G1). The disclosure set DS1



 

DS1 DS2 DS3 

EXP(G2) EXP(G3) 

Fig. 1. Computing Disclosure Sets

must thus be re-computed for each such X while computing DS2. On the other
hand, for any such instance X , PER(X) will satisfy the (2, 2)-diversity. If we
represent those instances as small circles to be subtracted from EXP (G2), as
in Figure 1, there would be 3 × 3 − 1 = 8 such circles (in PER(G2), E and
F can each be associated with three different values so totally nine different
generalizations are possible under g1 among which only G1 does not satisfy the
(2, 2)-diversity).

The situation of computing DS3 is similar but more complicated, as illus-
trated in the right-hand side of Figure 1. The ellipse depicts PER(G3). We first
consider how the algorithm DS will compute DS3. For each X ∈ PER(G3),
the algorithm G may return g1 if CHK is satisfied on the disclosure set of
g1(X) (that is, PER(g1(X))), as represented by the small circle. If CHK is
not satisfied, the algorithm G will continue to compute the disclosure set for
g2(X), which again involves computing a disclosure set for the generalization
under g1 on each instance in PER(g2(X)). If CHK is satisfied on the disclo-
sure set of g2(X), then the algorithm G returns g2. When G returns either g1

or g2, the algorithm DS will exclude the instance X from DS3. As illustrated
in the right-hand side of Figure 1, an instance X in PER(G3) can satisfy one
(and only one) of the following conditions.

1. CHK holds on the disclosure set of g1(X) (illustrated as small circles in
Figure 1)

2. CHK holds on the disclosure set of g2(X) (illustrated as shaded areas)

3. CHK does not hold on the disclosure set of g1(X) or g2(X) (illustrated as
unfilled areas)

Example 4. In addition to the original table G0 in Table 2, Table 4 shows two
other possible instances in PER(G3). The left-hand side table Ga is an example
of instances that satisfy the first condition since PER(g1(G1)) clearly satisfies
(2, 2)-diversity. Both the original table G0 in Table 2 and the right-hand side
table Gb in Table 4 are examples of instances that satisfy the third condition.



In Example 4, although both G0 in Table 2 and Gb in Table 4 satisfy the
third condition, they clearly do so in different ways. More specifically, CHK
does not hold on PER(g1(Gb)) or PER(g2(Gb)); CHK does not hold on
PER(G1) but it does hold on PER(G2). The reason that G0 does not sat-
isfy the second condition but the third is that CHK does not hold on DS2.
Referring to Figure 1, PER(g2(Gb)) will be a shaded oval; DS(G2) will be
a shaded oval (that is, PER(G2)) subtracted by some small circles (that is,
PER(g1(X))(X ∈ PER(G2) ) on which CHK holds.

Table Ga Table Gb

ID QI S

A g10 c1
B g20 c2
C g30 c3
D g40 c4
E g50 c2
F g60 c6
G g70 c4
H g80 c5
I g90 c6
J g100 c7

ID QI S

A g10 c1
B g20 c3
C g30 c2
D g40 c2
E g50 c4
F g60 c4
G g70 c6
H g80 c6
I g90 c5
J g100 c7

Table 4. Two Possible Instances in PER(G3)

We are now ready to consider which instances in PER(G3) should be in-
cluded in DS3. Clearly, according to Definition 1, any instance that satisfies
the first two conditions should be excluded, whereas instances satisfying the
last condition should be included. Although the third condition can be satisfied
in two different ways, we do not need to treat the two cases differently with
the generalization algorithm G (however, we shall see the need for doing so in
next section). In Figure 1, DS3 corresponds to the unfilled area formed as the
complement of all the small circles and shaded ovals.

Example 5. Both G0 in Table 2 and Gb in Table 4 will be included in DS3,
although they fail (2, 2)-diversity in different ways (we shall see another case in
next section).

In this special case, DS3 can actually be computed more easily since there
does not exist any X ∈ PER(G3) that can satisfy the above second condition
(that is, (2, 2)-diversity is satisfied on the disclosure set of g2(X)). Informally,
any such X must first allow the (2, 2)-diversity to satisfy on PER(g2(X)) but
not on PER(g1(X)) (for example, G0 meets this requirement). However, we
have that g1

1 = g1
2 , g5

1 = g4
2 , and g2

2 and g3
2 can satisfy (2, 2)-diversity only if

they each includes three different values. Therefore, the only possibility is that



g3
1 has two identical values, such as in the case with G0. However, we already

know that in this case the disclosure set of g2(X) will not satisfy (2, 2)-diversity
since both E and F must be associated with the same value. We conclude that
the second condition cannot be satisfied by any instance in PER(G3), and DS3

can thus be computed by excluding from PER(G3) any instance X with (2, 2)-
diversity satisfied on PER(g1(X)).

In Figure 1, a confusion may arise about the instances in PER(Gi−1) \
PER(Gi), such as those inside the small circles but outside the shaded ovals.
When we compute the disclosure set for G2, for any instance X ∈ PER(G2),
we evaluate CHK on the disclosure set of g1(X). It seems those instances
in PER(g1(X)) \ PER(G2) should be excluded during such an evaluation
because we know those instances are not possible. However, this is not the case.
The algorithm DS simulates what an adversary will do to eliminate an instance
X from PER(G2), he/she aims to prove that X cannot be the original table.
For this purpose, the adversary will first assume that X is the original table and
then attempt to show that CHK is already satisfied on PER(g1(X)). If this is
indeed the case, then g1(X) would have been released, and thus the adversary
would not have any knowledge about g2(X) at all.

3 Exclusive Strategy

The generalization algorithm G in Table 3 adopts a straightforward strategy in
using the sequence of generalization functions g1, g2, . . . , gn. That is, each func-
tion is applied in the given order, and the first generalization whose disclosure
set satisfies the privacy property will be returned. Although this strategy is a nat-
ural choice and has been adopted by most existing generalization algorithms, it
is not necessarily the only choice, neither is it an optimal choice in terms of data
utility or computational complexity. By adopting different strategies, we may
develop different generalization algorithms from the same sequence of general-
ization functions. In this paper, we do not intend to give a comprehensive study
of possible strategies. Instead, we only present one strategy that is more efficient
and may lead to more data utility in some cases.

Recall that in Example 4, G0 in Table 2 and Gb in Table 4 are both in-
cluded in DS3. However, the difference lies in that CHK does not hold on
PER(g2(Gb)) but it does on PER(G2). An important observation is that we
know Gb should be included in DS3 without computing any disclosure sets,
whereas we do not know whether G2 should be included in DS3 until we com-
pute DS2 (and know it does not satisfy CHK). Such a recursive computation of
DS2 within that of DS3 brings high complexity, and should be avoided if possi-
ble. We thus propose a different strategy in handling instances like G0. That is,



we simply do not include it in DS3, regardless whether DS2 satisfies CHK (no-
tice that if DS2 does satisfy CHK then G2 will also be excluded from DS3). If
we were to represent this situation using Figure 1, then the shaded oval will cor-
respond to any PER(g2(X)) that satisfies CHK (and the small circles remain
to have the same meaning), regardless whether the corresponding disclosure set
satisfies CHK. More generally, we exclude any instance X ∈ EXP (Gi) from
DSi, if only EXP (Gj) satisfies CHK. We present this exclusive strategy as
Algorithm Ge in Table 5. On the other hand, we shall refer to Algorithm G in
section 2 as the inclusive strategy from now on.

Algorithm Ge

Input: An original table G0,
generalization functions g1, g2, . . . , gn,
and a privacy property CHK

Output: A generalization Gi(1 ≤ i ≤ n) or φ
Method:
1. For i = 1 to n
2. If PER(gi(G0)) satisfies CHK
3. If DS(gi(G0)) satisfies CHK
4. Return gi(G0)
5. Else
6. Return φ
7. Return φ

Algorithm DSe

Input: A generalization Gi;
Output: The disclosure setDSi;
Method:
1. LetDSi = PER(Gi);
2. ForeachX ∈ DSi

3. Forj = 1 to i− 1
4. IfPER(gj(X)) satisfies CHK
5. LetDSi = DSi \ {X}
6. ReturnDSi

Table 5. Algorithms Ge and DSe

In Table 5, it can be noticed that both the algorithm for generalization and
that for computing disclosure sets in the exclusive strategy are different from
those in the inclusive strategy. This fact is a reflection of the inter-dependency
between the two algorithms, or equivalently, the inter-dependency between the
approach to generalization and adversary’s knowledge. More specifically, the
generalization algorithm Ge simply refuse to disclose anything, if the given orig-
inal table yield a generalization Gi for which PER(Gi) satisfies CHK but DSi

does not. An adversary also knows this fact since the algorithms are publicly
known. In guessing the original table after seeing Gi released, the adversary
will test each instance X ∈ PER(Gi) to see whether X can be the original ta-
ble. However, different from the inclusive strategy, the exclusive strategy makes
such a testing fairly simple. That is, any instance X for which PER(gj(X))
satisfies CHK for some j < i can be immediately eliminated from further
consideration, because if X were indeed the original table, then the algorithm
Ge would have either returned gj(X) (if its disclosure set satisfies CHK) or
nothing (if the disclosure set does not satisfy CHK) instead of releasing Gi.



Example 6. Consider applying the exclusive strategy to G0 in Table 2. Clearly,
the three generalizations G1, G2, and G3 do not change, because we are still
using the same generalization functions as before (but in a different way). The
disclosure sets DS1 and DS2 also remain the same (note that PER(G1) =
DS1). When the algorithm Ge sees that PER(G1) does not satisfy CHK, it
continues to the next generalization function g2 as with the inclusive strategy.
However, when Ge sees PER(G2) satisfies CHK but DS2 does not, it simply
returns φ indicating that nothing can be disclosed (recall that with the inclusive
strategy, G will continue to g3).

In contrast to the inclusive strategy, the exclusive strategy may seem to be a
more drastic approach that may result in less data utility. Example 6 may seem to
support this statement. However, this is in fact not the case. Due to space limita-
tion, we cannot show DS3 computed from Table 2 under the inclusive strategy,
but we calculate the ratio of the association between E and c4 in Example 7.

Example 7. As mentioned in Section 2.2, for this special case, DS3 can be com-
puted by excluding any instance X for which EXP (g1(X)) satisfies CHK.
The instances in DS3 must thus fall into following three sets. First, both E and
F have c4. Second, both C and D have c2, and only one of E and F may have c4

(the other will have c6). Third, both G and H have c6, and only one of E and F
may have c4 (the other will have c2). These three sets are clearly disjoint. More-
over, by counting the number of permutations, we can see that the cardinality
of the first set is 6 × 2 × 6 = 72 (A, B, and C can have 6 different permuta-
tions; D and G can have 2, etc.) among which all have E associated with c4.
Similarly, the second and third set each has 2 × 6 = 12 instances in which E is
associated with c4, and the other 12 instances in which E is associated with c6

and c2, respectively. We can thus conclude that the ratio of E associated with c4

is (72 + 12 + 12)/(72 + 24 + 24) = 0.8.

By applying the inclusive strategy, the (2, 2)-diversity is not satisfied on
DS3. Therefore, nothing can be disclosed under the inclusive strategy, either.
That is, for the given original table G0 (and also the substantialized table in
Table 1), the two strategies yield the same data utility. Besides, there also exist
other cases where the exclusive strategy will provide more data utility. Suppose
now Gb in Table 4 is given as the original table. Clearly, the inclusive strategy
will disclose nothing because none of the generalizations through G1, G2 and
G3 can satisfy (2, 2)-diversity. For exclusive strategy, neither PER(g1(Gb)) nor
PER(g2(Gb)) can satisfy (2, 2)-diversity. For PER(g3(Gb)), again we calcu-
late the ratio that c4 is associated with E among all conditions in Example 8.



Example 8. Following Example 7, DS3 under the exclusive strategy can be ob-
tained by eliminating any instance X for which PER(g2(X)) satisfy (2, 2)-
diversity from the previous result of DS3 under the inclusive strategy. For the
first set, D and G must now have c2 and c6, respectively, so we are left with
36 instances. Moreover, C and H must have 2 and 6, respectively, leaving to-
tally 20 instances all with E associated with c4. For the second and third set,
nothing need to be eliminated. The ratio of E associated with c4 is thus now
(20 + 12 + 12)/(20 + 24 + 24) = 0.647. And this is also the maximal ratio of
a single condition among all IDs.

Surprisingly, under the exclusive strategy, we can now disclose G3 for the
original table Gb in Table 4 (a substantialized example is shown in Table 6). In
another word, the exclusive strategy actually provides more data utility in this
case. The reason lies in the fact that the privacy property (that is, (2, 2)-diversity)
is not set-monotonic [30], neither is the sequence of sets of possible instances
PER(Gi) (i = 1, 2, . . . , n). Generally, the data utility of the two strategies will
be incomparable. Their performances depend on specific problem settings.

NAME AGE Condition
Alice 21 flu
Bob 27 pneumonia
Clark 31 tracheitis
Diana 36 tracheitis
Ellen 43 gastritis
Fen 49 gastritis
George 52 cancer
Henry 58 cancer
Ian 63 enteritis
Jason 67 heart disease

Table 6. Another Example of Patient Information Table

However, the exclusive strategy has an important advantage over the inclu-
sive strategy, that is, a significantly lower complexity. In Table 5, unlike under
the inclusive strategy, the algorithms under the exclusive strategy are not recur-
sive because we do not call Ge within DSe. Denote xi the complexity for com-
puting the disclosure set DSi under the inclusive strategy, and yi the cardinality
of PER(Gi). We have that xi = (

∑i−1
j=1 xj) ·yi and x1 =| G0 |. By solving this

recursive function, we can estimate the worst case complexity of the inclusive
strategy to be O((| PER(Gmax) |)n) where Gmax is a generalization with the
maximum cardinality of possible instances. In contrast, the complexity of the
exclusive strategy is O(n2· | PER(Gmax) |). By avoiding a recursive process,
the exclusive strategy reduces the complexity from exponential to polynomial.



Other strategies are certainly possible, although their discussion is out of
the scope of this paper. One complication is that the definition of disclosure
sets given in Definition 1 should be generalized to accommodate the fact that
the given sequence of generalization functions is not necessarily evaluated in
the given order. The evaluation of those functions may actually happen in any
order as defined in a strategy, and may vary depending on the given original
table. For example, the exclusive strategy may directly jump to the last function
(that returns φ) from any step. One way to keep the Definition 1 valid in this
particular case is to have multiple copies of the last function and place a copy in
front of each generalization function in the given sequence. In each step, if the
algorithm chooses to either return the current generalization or to use the copy
of the last function to return φ, then the current instance will be eliminated from
the next disclosure set, which is in accordance with Definition 1.

4 Related Work

Micro-data disclosure has been extensively studied [1, 3, 10, 16, 17] where the
security issue discussed in this paper is largely ignored. In particular, data swap-
ping [9, 23, 28] and cell suppression [18] both aim to protect micro-data released
in census tables. However, the amount of privacy is usually not measured in
those earlier work. Miklau et. al presents an interesting measurement of infor-
mation disclosed through tables based on the perfect secrecy notion by Shan-
non [8]. The important notion of k-anonymity is a model of privacy require-
ment [25] that received extensive studies in recent years. To achieve optimal k-
anonymity (with the most utility) is shown to be computationally infeasible [21].

A model based on the intuition of blending individuals in a crowd is recently
proposed in [27]. Personalized requirement for anonymity is studied in [29].
In [11], the authors approach the issue from a different perspective where the
privacy property is based on generalization of the protected data and can be
customized by users. Much efforts have been made around developing effi-
cient k-anonymity algorithms [7, 24, 25, 20, 26, 15, 5], whereas the security of
the k-anonymity model is assumed. Two exceptions are the l-diversity notion
proposed in [2] and the t-closeness notion proposed in [19], which address the
deficiency of k-anonymity of allowing insecure groups with a small number of
sensitive values. Algorithms developed for k-anonymity can be extended to l-
diversity and t-closeness, but they still do not take into account an adversary’s
knowledge about generalization algorithms. In [30], the authors pointed out the
above problem and proposed a model for the adversary’s knowledge, but did not
give any efficient solution for the general micro-data disclosure problem.



In contrast to micro-data disclosure, aggregation queries are the main con-
cern in statistical databases [22, 10, 13]. The main challenge is to answer aggre-
gation queries without allowing an adversary to deduce secret individual values.
The auditing methods in [6, 4] address this problem by determining whether
each new query can be safely answered based on previously answered queries.
The authors of [6, 12, 14] consider the same problem in more specific settings of
off-line auditing and online auditing, respectively. Closest to our work, the au-
thors of [14] consider knowledge about the decision algorithm itself. However,
it only applies to a limited case of aggregation queries and does not consider the
current state of the database in determining the safety of a query.

5 Conclusion

Armed with knowledge about a generalization algorithm used for computing
disclosed data, an adversary may deduce more information to violate a desired
privacy property. We have studied this issue in the context of generalization-
based micro-data disclosure algorithms. We showed that a naive solution to ad-
dress this issue demands prohibitive computational cost. We then introduced
an alternative exclusive strategy for generalization algorithms. Compare to the
naive exponential algorithms based on the traditional inclusive strategy, algo-
rithms based on exclusive strategy have much better efficiency (polynomial in
the size of the table), and also, provide even better data utility in certain cases.
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