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Abstract. The tasks a system administrator must fulfill become more
and more complex as information systems increase in complexity and
connectivity. More specifically, the problem of the expression and update
of security requirements is central. Formal models designed to express
security policies have proved to be necessary since they provide non am-
biguous semantics to analyze them. However, such models as RBAC or
OrBAC are not used to express reaction requirements which specify the
reaction policy to enforce when intrusions are detected. We present in
this article an extension of the OrBAC model by defining dynamic orga-
nizations and threat contexts to enable the expression and enforcement
of reaction requirements.

1 Introduction

Information systems are becoming more and more complex and system adminis-
trators have to face several problems. In this context, specifying a security policy
becomes a very tedious and error prone task. Using a formal approach brings
several benefits: the policy expression is non-ambiguous and tools can be used
to analyze a security policy[CCBGO07] and deploy it[PCBCT07].

A security policy may express very different requirements and can contain
different types of policies: authentication, access control, flow control and usage
control requirements. However, the reaction policy, which expresses the security
requirements related to the detection of attacks, is generally not considered as
part of the security policy. This reaction policy expresses which reaction require-
ments (RR) should be enforced when the security policy is violated.

Specifying and deploying RR is actually not an easy task. [DTCCBO07] is a
preliminary work in this direction but we shall explain why this approach is not
fully satisfactory. In this paper, we shall define a model based on the concept of
dynamic organization created to manage intrusions which significantly enhances
the approach suggested in [DTCCBO7].

In this paper we suggest to express the RR using the OrBAC model. Section
2 presents the problems related to the expression of the RR. Section 3 reviews
some related work. Section 4 outlines the OrBAC model and section 5 explains
how we use it to model the RR. Section 6 presents three examples of RR related
to an elementary attack and two multi-step intrusions. Section 7 presents the
implementation in the MotOrBAC 2! support tool. We conclude in section 8.

! http://motorbac.sourceforge.net



2 Problematic

In this paper, the task of expressing the RR takes place into a supervision
loop (figure 1) where the processes of intrusion detection and policy specifi-
cation/enforcement interact with each other. In this approach we consider that
the reaction module implements a policy-based reaction process, i.e, upon the
detection of an attack, the reaction process consists in enforcing new security
rules.
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Fig. 1. Supervision loop

The RR expressed in a reaction policy may include prohibitions, obligations
and permissions. Those requirements can be expressed as a set of reaction rules
which are specified for each attack that the intrusion detection systems may
detect. For example the informal specification of the RR for a brute force at-
tack executed against a UNIX account of a SSH server could be the following
requirements:

1. Block the attacker

2. Prevent the attacker from getting a user access to the target computer

3. Suspend the victim account

4. Warn the user who owns the attacked account and tell him he must change
his/her password

We shall show that some requirements can be formalized as obligations (require-
ments 1, 3, 4) and prohibitions (requirement 2). Additionally, those requirements
should be only enforced in the context of a brute force attack. Note that the
fourth requirement can be divided into two requirements: the user must be in-
formed that his account has been compromised and once he has been warned,
he must change his password. In the following section, we show that the policy
model which should be used to express the RR must satisfy several properties.

Formalizing the reaction policy Let us consider a set of Attacks A. Writing
the RR for an attack A; in A consists in specifying a set of security rules R;
which are activated when the attack A; is detected.



The notion of role introduced in the RBAC model is mandatory to specify
RR since we cannot know in advance the ip addresses and/or identity of the
attackers and victims. However, RBAC is not sufficiently expressive to express
RR for several reasons:

— The Attacker and Victims RBAC roles names must be unique for each A;.
Actually if two rules r € Ry and r’ € Ry specified for attacks A; and As use
the same role attacker, a problem appears when the set of rule R; must be
activated because attack A; has been detected. Indeed if the attacker of A,
instance is assigned to role attacker, r will be activated and r’ too despite
the fact that no occurrence of A, has been detected.

— Since the original RBAC model specifies that user-role assignment is handled
statically [FSGT01], the rules R; for each attack A; cannot be dynamically
activated. Even if considering a mechanism which dynamically assigns alert
subjects to roles when attacks are detected, the model lacks expressiveness
to associate each R; to a given A;.

— The concept of session in the RBAC model could be used to assign subjects
to roles when an attack is detected, but only one subject can be assigned
to a session. This raises a problem for distributed attacks involving several
attackers and victims.

— The dynamic nature of a reaction policy cannot be modeled with RBAC. For
example the set of rules R; associated with attack A; should be activated
when the attack is detected, but at least a subset of those rules should
be deactivated after the end of the attack. This could possibly be modeled
through the use of several roles, but this adds even more artificial roles.

An extended RBAC model including contexts [MFO03] can express the link
between an alert classification and a rule through the use of security context if
this context is activated when a given intrusion is detected. However, as said
above, it is impossible to associate activated rules with the corresponding oc-
currence of an attack. Moreover the meaning of the context in this extension is
that of a condition evaluated when an access is made to the system.

We propose to use the concept of dynamic organization to address the prob-
lem of multiple occurrences of an attack. Intuitively, a new dynamic organization
is created to manage a given intrusion and different subjects will be assigned lo-
cally to roles (like victim, attacker) within this dynamic organization. Once the
intrusion is processed, this dynamic organization is deactivated.

3 Related work

A majority of research works has focused on the detection of intrusions but few
works exist in the field of response to intrusions. Incidentally, very few articles
deals with the expression of RR and its enforcement. Some taxonomies of in-
trusion responses have been defined ([Fis96,CP00,SBW07]). Fisch’s taxonomies
[Fis96] are system-oriented, they distinguish intrusion response systems by de-
gree of automation and activity of triggered response. Carver and Posh’s [CP00]



taxonomy deals with response, but from the attack side. Their taxonomy in-
cludes 6 dimensions and does not classifies responses. In [Bra98|, Brackney says
that detection is the first step leading to a response process and explains that
taking action after detection is not a trivial task. Actually reacting quickly and
efficiently is difficult considering the time needed to analyze an intrusion, hence
an automated and autonomous response system is desirable.

In [CCBB*08,DTCCBO7], the OrBAC model is used to express the RR. A
new type of OrBAC context is introduced to manage intrusion detection alerts
expressed in IDMEF (Intrusion Detection Message Exchange Format) HCFO07].
Such a context specifies the alert classification, an identifier that defines which
attack is detected, that triggers its activation and the mapping between alert
attributes and concrete entities (subjects, actions and objects). However, the
approach lacks a mechanism to specify the mapping between concrete entities
mapped with the alert and abstract entities (roles, activities and views) specified
in the OrBAC security rules. Moreover the mapping between alert attributes and
concrete entities is specified for each context although a more generic mapping
that could apply to every threat context would be more convenient and scalable.

In this paper, we propose to use the concept of threat contexts, but the
definition we give is different from the one proposed in the aforementioned ar-
ticles. We separately specify the alert classification which triggers the context
activation and the mapping between alert attributes and concrete entities. Ab-
stract entity definition are used to specify this mapping and assign concrete
entities to abstract entities. Moreover, we introduce the concept of threat organ-
isations. Hence, we can define intrusion-dependent roles like attacker and victim
and consider that subjects are assigned to these roles, but locally to this threat
organization. Thus, it is possible to consider that two different subjects are both
assigned to the role victim but in two different threat organizations. This will be
typically the case if these two subjects are victims of two different intrusions.

4 Introduction to OrBAC

OrBAC [KBB™03] aims at modelling a security policy centered on the concept of
organization. An organization defines and manages a security policy. An OrBAC
policy specification is done at the organizational level, also called the abstract
level, and is implementation-independent. The enforced policy, called the con-
crete policy, is inferred from the abstract policy.

This approach makes all the policies expressed in the OrBAC model repro-
ducible and scalable. Actually once the concrete policy is inferred, no modifi-
cation or tuning has to be done on the inferred policy since it would possibly
introduce inconsistencies. The inferred concrete policy expresses security rules
using subjects, actions and objects. The abstract policy, specified at the organi-
zational level, is specified using roles, activities and views which abstract the
traditional subjects, actions and objects.

The OrBAC model uses a first order logic formalism with negation. How-
ever, since first order logic is generally undecidable, we have restricted our



model in order to be compatible with a stratified Datalog program [UlI89]. A
stratified Datalog program can be evaluated in polynomial time. In the rest
of this article the security rules must correspond to a stratified Datalog pro-
gram. We use a Prolog-like notation where terms beginning with an upper case
are variables and terms beginning with a lower case are constants. The fact
parent(john, jessica). says that john is a parent of jessica. A rule such as
grandparent(X, Z) : —parent(X,Y), parent(Y, Z). means that X is a grandpar-
ent of Z if Y exists such that X is a parent of Y and Y is a parent of Z.

Using this formalism, each organization specifies its own security rules. Some
role may have the permission, prohibition or obligation to do some activity
on some view given an associated context is true. The context concept [CCBO0S|
has been introduced in OrBAC in order to express dynamic rules. Those security
rules are represented using 5-ary predicates:

— permission(org, role, activity, view, context) means that in organization org,
role role is authorized to perform activity activity on view view if context
context is true.

— the prohibition and obligation predicates are similarly defined but express
different security requirements. The prohibition predicate states that a role
is not authorized to perform some activity on some view when a given context
is true. The obligation predicate means that some role must do some activity
on some view when the associated context is true.

For example, the expression:

permission(hospital, nurse, consult, medical_record, emergency)
means that nurses can access the patients medical records in the context of
an emergency. Security rules can be hierarchically structured so that they are
inherited in the organization, role, activity and view hierarchies (see [CCBMO04]).
Since a security policy can be inconsistent because of conflicting security rules
(for example a permission can be in conflict with a prohibition), it is necessary
to define strategies to solve those conflicts [CCBGOT].

Once the security policy has been specified at the organizational level, it is
possible to instantiate it by assigning concrete entities to abstract entities. To
do so, three ternary predicates have been defined to assign a subject to a role,
an action to an activity and an object to a view:

— empower(org, subject, role): specifies that in organization org, subject subject
is empowered in role role.

— consider(org, action, activity): specifies that in organization org, action action
implements activity activity.

— use(org, object, view): specifies that in organization org, object object is used
in view view.

For example, the fact empower(hospital, john, surgeon) states that john is em-
powered in the role surgeon in the hospital organization.

Contexts are defined through logical rules which express the condition that
must be true in order for the context to be active. In the OrBAC model such
rules have the predicate hold in their conclusion:



— hold(org, subject, action, object, context): specifies that in organization org,
subject subject does action action on object object in context context.

As suggested in [CCBO08], contexts can be combined in order to express con-
junctive contexts (denoted &), disjunctive contexts (denoted @) and context
negation (denoted ctx, ctz being a context name).
Using this model, concrete security rules applying to subject, actions and
objects can be inferred as specified by the following derivation rule:
is_permitted(Subject, Action, Object) : —
permission(Org, Role, Activity, View, Context),
empower(Org, Subject, Role),
consider(Org, Action, Activity),
use(Org, Object, View), hold(Org, Subject, Action, Object, Context).
Similar rules are defined to infer the ¢s_prohibited and is_obliged predicates
which represent concrete prohibitions and concrete obligations.

5 Reaction policy specification

As said in section 2, when an intrusion A; is detected, a set of security rules
R; should be activated. We showed that modeling a reaction policy in RBAC
requires to introduce at least as many roles as attacks and that the link be-
tween roles and intrusion detection alerts cannot be established. The concept of
organization in the OrBAC model is well-suited to address those problems.

Actually in OrBAC a subject is empowered into a role within an organization.
It is possible to define generic intrusion related roles such as attacker and victim
and activate a subset of rules R; into an organization O; thanks to the contexts
associated with the rules. Those contexts are activated upon the detection of an
occurrence of A;. This way the set of concrete rules inferred from R; are linked
with the occurrence of A; which activates the contexts used in R; through the
organization O;. In this approach the dynamic organizations associated with the
detection of attack occurrences are dynamically and automatically created in-
stead of being handled manually by an administrator. In the context of intrusion
detection, we call threat organizations these dynamic organizations. In some
sense, there is some analogy with the activation of a session in the RBAC model.
However, there are two main differences with a session: an organization threat is
automatically created when an alert is received to process the associated attack
and there are several subjects involved in an organization threat, typically one
or several attackers and one or several victims.

In the remaining of this article we consider that the alerts are expressed in
the IDMEF format. The IDMEF format is an object-oriented representation of
the data generated by Intrusion Detection Systems (IDSs). It defines several
classes such as Source and Target to represent respectively the attacker and
the victim of an event detected by an IDS and the Classification class which
uniquely identifies the event.



5.1 Threat organization and threat context

We assume that the rules in R making up the RR are defined in an organization
called supervision. The threat organizations are created as sub-organizations of
supervision so that the reaction policy is inherited. When a new IDMEF alert is
generated, a new threat organization is created to manage it. Let us consider an
alert alert;; which is the alert generated upon the detection of the 4" occurrence
of attack A;. The following predicate becomes true and binds the alert and the
new organization threat_org;;:
threat_context_management(alert;;, threat_org;;)

We defined in [CBCdVT08], a complete ontological mapping from IDMEF schema
onto abstract OrBAC roles, activities and views managed by the supervision or-
ganization. Due to space limitation, we do not present this mapping here but
simply introduce those abstract entities we use in the remainder of this paper:

— roles attacker and wvictim

— activity attack

— views to_victim and to_attacker to additionally describe various information
related to the victims and attackers of an intrusion.

We then introduce a new context type (see [CCBO08]| for other types of con-
texts) called threat context. A threat context is activated in threat_org to man-
age a given alert (modelled using the predicate threat_context_-management(Alert,
Theat_org)) if its definition matches the classification of the alert (for this pur-
pose we use the predicate mapping_classi fication(Alert, Threat_context)). This
context is active for every triple {subject, action, object} and defined as follows:

hold(Threat_org, _, _, -, Threat_context) : —

threat_context-management(Alert, Threat_org),
mapping_classi fication(Alert, Threat_context).

This rule says that, if a given threat organization threat_org is associated
with the management of an IDMEF alert alert and if this alert classification
maps onto a threat context threat_context, then this threat context is activated
in the threat organization threat_org for every subject, action and object (de-
noted by the do not care symbol “_”).

Using this context in the specification of rules R;, or a composition of con-
text including it, allows the activation of the rules in R; or a subset of R; in
threat_org. The activated rules for alert Alert are deleted when the threat is no
more active by deleting organization threat_org.

Notice that in case of conflicts, we consider that security rules that depend
on threat contexts have higher priority than other security rules (see [DTCCBO07]
for more explanation).

5.2 Mapping alert to abstract entities

By contrast to [DTCCBO07], The mapping from an alert to the threat abstract
entities in threat_org is done using role, activity and view definitions. Here is



an example of generic mapping between the source of an alert and the attacker
role:

empower(Threat_org, Subject, victim) : —

threat_context_management(Alert, Threat_org),
mapping-target(Alert, Subject).

The mapping from the alert to the abstract entities is independent from the
specification of the threat context. This way a reaction policy can be updated
by adding new rules corresponding to new threats generally without having to
specify the mapping for each new threat.

5.3 Expression of security requirements

The reaction policy may express various security requirements as introduced in
the example of section 2. Those requirements may include permissions activated
in the context of an attack attack;, for example the communication between two
servers located in two different networks, which are normally independent, to
backup critical data:
permission(supervision, data_server, open_ssh_connection,
to_backup_server, attack; ctx)

Here hosts assigned to the data_server role are authorized to backup their
critical data on hosts assigned to the to_backup_server view. This may be im-
plemented by adding rules in some firewalls and routers.

Prohibitions can also be part of the RR. Consider the case of an attacker
trying to connect to a telnet server running on a router from outside a com-
pany’s network. A possible reaction might be to block the traffic coming from
the attacker’s machine and going to the victim’s machine:

prohibition(supervision, attacker, all traf fic, victim, telnet_attack_ctz)

In this abstract rule, the all_traf fic activity abstracts the network protocols
so that there is no need to express the prohibition for each network protocol.

A reaction requirement may be expressed by means of obligations. For in-
stance a web server may be vulnerable to a newly discovered vulnerability and
it should be stopped when an attacker tries to exploit this new vulnerability:

obligation(supervision, web_server_daemon, stop, web_server, new_threat)

Note that we consider that this obligation is an immediate obligation, i.e. it
must be fulfilled as soon as the associated context is true and is no more active
when the context becomes false. Generally some obligations might be enforced
after some delay, typically if the subject of the obligation is a human operator.
Those obligations are called obligations with deadlines [GF05,CCBB*08]. En-
forcing obligations with deadline is more complex than immediate obligations.
In order to simplify both the implementation and expression of obligations, we
consider only immediate obligation in the remainder of this paper.

Other examples of reaction policies which demonstrate the need for permis-
sions, obligations and prohibitions as part of the reaction policy are presented
in section 6.



5.4 Reaction process
The reaction process when an alert is received is the following:

1. creation of a threat organization orgipreqt associated with the new alert.
OTgihreat 1S created as a sub-organization of the supervision organization.

2. activation of threat contexts in orginreq:- Yet no concrete rules are inferred
since no concrete entities are assigned to abstract entities in orgipreat-

3. creation of concrete entities from the alert mapping. Role, activity and view
definitions are evaluated to extract the data necessary to create the concrete
entities from the alert.

4. assignment of subjects, actions and objects created from the alert to intrusion
roles, activities and views in orgipreqt- This step and the previous one are
specified through the abstract entity definitions.

5. activation of abstract security rules associated with the threat context into

OTGthreat-
. derivation of concrete security rules from activated abstract rules.
7. deployment of concrete security rules to configure security components.

=]

The last step in this process is not covered by this article but an approach
to deploy dynamic contextual security policies is proposed in [CCBBT08].

6 Reaction policy examples

In this section we present three examples of reaction policy. The first example
specifies how to react when a buffer overflow is detected. The second and third ex-
amples demonstrate how to react to multi-step attacks: a brute force attack and
a distributed denial of service (DDOS). The multi-step attacks examples assume
that the information system on which the attack is detected uses a correlation
engine to correlate the elementary attacks generated during the execution of the
multi-step attacks (such as [CAB106]). This correlation engine is part of the su-
pervision loop presented in section 2. The reaction policy instantiation process
is detailed in section 6.2.

6.1 Reacting against a buffer overflow

A possible counter-measure against a buffer overflow (BOF) is to isolate the
machine from the network to correct the exploited vulnerability. We take the
example of a BOF vulnerability in the WebDAV-enabled IIS 5.0 servers from
Microsoft. The default threat abstract entities (see section 5) are used to write
the abstract rules. Additionally, we define the all_protocol activity which ab-
stracts the network protocols used by the machines involved in the attack, the
backup_web_server view which abstracts the web server(s) started to replace
a stopped web server and the to_any_address view which abstracts any ip ad-
dress. webdav_bof _ctx is the threat context defined for this attack. We define
the following obligations and prohibitions:



— the victim must be isolated from the rest of the network, i.e. all traffic is
prohibited from and to the victim.:
prohibition(supervision, victim, all_protocol, to_any_address, webdav_bof _ctx)
prohibition(supervision, any_address, all_protocol, to_victim, webdav_bof _ctx)
— obligation to start a backup web server while the attacked server is unavail-
able:
obligation(supervision, administrator, start, backup_web_server, webdav_bof _ctx)
— the vulnerable web server must be patched to remove the vulnerability:
obligation(supervision, administrator, update, to_victim, webdav_bo f _ctx)

Notice that, in that reaction scenario, all reaction rules may be activated in
parallel.

6.2 Reacting against multi-step attacks

Brute force attack An example of attack requiring an alert correlation engine
is a brute force attack. As said at the beginning of section 6, we assume an alert
correlation engine has generated a global alert by fusing the elementary alerts
corresponding to several failed logins on the same account using ssh.

As for the previous example, we introduce some additional abstract entities to
express the reaction policy. The rdp role represents the components which deploy
the reaction policy. The victim_user role abstracts the user being targeted by
the attack. The send_reset activity abstracts the action(s) that disconnect the
attacker from the victim. The suspend_account activity abstracts the action(s)
taken by the administrator or a process to suspend a user account (which can be
implemented by a script for different OSs like Linux/Unix, Microsoft windows,
etc...). The change_password activity abstracts the actions that implement a
password change. The send_warning activity abstracts the way a message is sent
to a user to warn him/her that his/her account has been compromised. Finally we
define a to_victim_account view which abstracts the users accounts. The mapping
between an IDMEF alert and the victem_user role and to_-victim_account view
is done through the following role and view definitions (cf section 5.2):

empower(Threat_org, Subject, victim_user) : —

threat_context-management(Alert, Threat_org),
mapping_target_user_name(Alert, Subject).

use(Threat_org, Object, to_victim_account) : —

threat_context-management(Alert, Threat_org),
mapping-target_user(Alert, Object).

The following rules correspond to the RR example given in section 2 (brute-
_force_ctz is the threat context defined for this attack):

— all traffic coming from the attacker and going to the victim is prohibited:
prohibition(supervision, attacker, all_protocol, to_victim, brute_force_ctz)

— the connexion between the attacker and victim must be interrupted:
obligation(supervision, rdp, send_reset, to_attacker, brute_force_ctx)



— the victim account must be suspended:
obligation(supervision, rdp, suspend_account, to_victim_account, brute_force_ctz)

— the victim must be warned that his/her account has been attacked:

obligation(supervision, rdp, send_warning, to_victim_user, brute_force_ctx)

— once he/she has been warned that his/her account has been attacked, the

victim must change his/her password:
obligation(supervision, victim_user, change_password, to_victim_account,
brute_force_ctx & received_warning_ctx)
The received_warning_ctx context is true if the subject has received a warn-
ing through an email for example. Note the use of the context conjunction
operator &.

Reaction policy instantiation example: Consider a brute force attack per-
formed by a machine having ip address ip4 on a computer having for ip address
ipy against the account acy of user usery . Suppose that an Intrusion Detection
System (IDS) detects the attack and generates an alert m. The reaction policy
for this attack occurrence is instantiated as follows:

1.

2.

When alert m is received by the reaction module, a threat organization
threat_org; is created as a sub-organization of organization supervision.
The threat context associated with the alert classification of m, namely the
brute_force_ctx context, is activated.
The relevant role and view definitions are evaluated so that the following
statements become true:
empower (threat_org,, ipa, attacker), empower(threat_orgi, ipy , victim),
empower (threat_orgy, usery , victim_user),
use(threat_orgy, acy, to_victim_account).
On the other hand we suppose the following statements are already true
before the attack takes place and have been introduced in the policy by an
administrator:

— empower(supervision, rdp_host, rdp)

— consider(supervision, tcp_reset, send_reset)

— consider(supervision, tcp, all_protocol)

— consider (supervision, udp, all_protocol)

— consider(supervision, suspendacct, suspend_account)

— consider (supervision, send_warning_email, send_warning)

— consider (supervision, passwd, change_password)
Since the brute_force_ctx context is true and given the aforementioned as-
signments of concrete entities to abstract entities, the following concrete
security rules are derived:

— is_obliged(rdp_host,tcp_reset,ip)

— is_prohibited(ipa, tcp, ipy)

— is_obliged(rdp-host, suspendacct, acy )

— is_obliged(rdp_host, send_warning_email, usery )
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Fig. 2. The deployment architecture. The netconf [NWGN] protocol is used to configure
some components of the information system. The PIE (Policy Instantiation Engine)
is responsible for managing the global security policy. A PDP (Policy Decision Point)
dispatches and translates concrete permissions and prohibitions. The RDP_host is
responsible for the deployment of obligations

The suspendacct is the name of a script which can be used under POSIX
compatible OSs to suspend a user account. Note that when the user receives
the warning, the received_warning_ctx is activated, thus the conjunction
brute_force_ctx & received_warning_-ctx becomes true and the following
obligation is inferred:
— is_obliged(usery , passwd, acy)
Here passwd is the command line tool used to change a user password.
5. The concrete inferred security rules are deployed (figure 2). Please refer to
[CCBB™08] for an example of reaction policy deployment architecture.

Distributed denial of service We take the example of a DDOS attack imple-
mented with the trinoo attack tool [Dit99]. An attacker uses the trinoo tool by
connecting his/her computer to computers running the trinoo master program.
Those master computers send commands to slave computers which generate
attack traffic to specified target computers. The slave computers run the tri-
noo slave program. As in the previous example, we assume an alert correlation
engine has detected the full DDOS scenario, hence an alert containing all the
information about the master(s), slave(s) and target(s) of the attack has been
generated.

Since the trinoo attack involves master and slave computers, we refine the
generic abstract entity attacker by creating two sub-roles master and slave. We
can still use the attacker role if for example the same rules must be applied to
the master(s) and slave(s) machines (section 4, hierarchies). Figure 3 shows the
ports and protocols used by the tool.

The number of machines composing the attack network may vary a lot. Hence
formalizing the reaction policy as an abstract OrBAC policy is interesting as the
number of abstract rules is independent from the attack network size. Moreover a
trinoo network is composed of different types of attackers: the main attacker who
controls the trinoo network, the master machine(s) and the slave machine(s). We
can abstract all those types of attackers as different roles and manage them into
the same dynamic threat organization. We define the following rules:



o

£

{ 27665/UDP 31335/UDP

_ & j :ﬁlig 27444/UDP gﬂl =
Attacker Mé&er(s) SIéVe(s)

Fig. 3. Ports and protocols used by Trinoo

— master and slave machine(s):
prohibition(supervision, attacker, all_protocols, to_any_address, trinoo_ddos_ctx)
prohibition(supervision, any_address, all_protocols, to_attacker, trinoo_ddos_ctx)
All traffic is prohibited from and to the master(s) and slave(s). Enforcing
the concrete rules derived from those abstract rules may be impossible if
the computers are outside of the information system. In such a case it is
still possible to filter the incoming traffic. Note that since we want to block
the outgoing and incoming traffic of the master(s) and slave(s), we use the
attacker role and the to_attacker view in the rule so that the rules are
inherited through the hierarchies.
— master machine(s):
The master machine(s) can possibly be inside the information system moni-
tored by the IDSs (a malicious employee can install them), so an alternative
way of disabling them is to kill the process making them master(s):
obligation(supervision, administrator, kill_master _process, to_master,
trinoo_ddos_ctx & is_ip)
— slave machine(s):
The same applies for the slave(s):
obligation(supervision, administrator, kill_slave_process, to_slave,
trinoo_ddos_ctz & is_ip)
— victim machine(s):
prohibition(supervision, slave, udp_protocol, to_victim, trinoo_ddos_ctx)
UDP traffic between the slave(s) and victim(s) is prohibited.

The is_ip context is true when a given ip address is part of the information
system network:

hold(Oryg, -, -, O,is_ip) : —ip_belong_to_in formation_system(O)

Note that we use a context conjunction operator & in the two obligations so
that those two rules apply only to computers inside the information system. The
following role definitions are used to map the alert onto the slave and master
sub-roles:

empower(Threat_org, Subject, master) : —

threat_context_management(Alert, Threat_org),
mapping_source_master(Alert, Subject).

empower (Threat_org, Subject, slave) : —
threat_context_management(Alert, Threat_org),
mapping_-source_slave(Alert, Subject).



7 Implementation

Our approach is implemented as part of the supervision platform presented in
section 2.

The MotOrBAC support tool [ACCBCO08] is used to specify the reaction
policy (as well as the entire information system policy). The user can write the
abstract reaction policy and use the simulation window to test his/her policy.
Actually the user can load IDMEF alerts in the simulation window and see the
concrete security rules inferred by MotOrBAC. MotOrBAC is able to assist the
user during steps 1 to 6 in the list presented in section 5.4. The 7" step consists
in translating the concrete security rules inferred from the abstract policy into a
set of languages used by the components implementing the security mechanisms
as illustrated in figure 2 and further explained in [CCBB™08].

Rule name Organization Role Activit Wiew Context
oblig2 supervision rdp send_warning to_victim_user brute_force
obligd supervision victim_user change_password to_victim_account composed_ctx
obligl supervision rdp send_reset 1o_attacker brute_force
oblig2 supervision rdp suspend_account t0_victim_account brute_force

Type Derives from Subject Action Object

obligation obliad MCtim_user nasswil Mictim_user

Fig. 4. from top to bottom: the list of abstract obligations defined in motorbac for the
brute force attack example and the concrete security rules derived from a sample ID-
MEF alert. The prohibitions are in red and the obligations in blue. The last obligation
is not activated since the conjunction of contexts specified in the abstract rule from
which it derives is false.

Figure 4 shows the abstract obligations defined with MotOrBAC to specify
the reaction policy for the brute force attack example. One can see that this list
of rules contains the rules presented in section 6.2 to react against a brute force
attack. The same figure also shows an example of concrete security rules inferred
when a new alert is received.

Abstract entity definitions for dynamic organizations are specified differently
from other entity definitions because the organization in which the definition is
given does not exist at the time of specification. Instead of selecting the organiza-
tion in which the abstract entity definition is specified, the user chooses the type
Threat organization and specify explicitly the mapping between the IDMEF
alerts and the roles, activities and views using XPath expressions. The IDMEF
alert generated by the correlation engine for the trinoo scenario can contain mul-
tiple instances of the Source IDMEF class. In section 6.2, the proposed reaction
policy is different for the slave and master computers, hence their corresponding
Source class instances in the IDMEF alert must be identified. The correlation
engine segregates the master and slave computers in the alert by using the ID-
MEF Process class of the Source class. The name attribute of the Process class



is used to hold the names segregating the master computer(s) (master process)
and slave computer(s) (ns process).

8 Conclusion

Managing the security of an information system involves defining a security pol-
icy and enforcing it. The supervision loop introduced in section 2 mentions the
role of intrusion detection and the processing of its results, which involves react-
ing against attackers. The way the security components behave when an attack
is detected can be formalized as a reaction policy. In this article, we showed that
the OrBAC model is sufficiently expressive to model such policies. Although the
RBAC model lacks expressiveness to specify such type of policy, we have shown
that the OrBAC concept of dynamic organization is well suited to manage the
activation of security rules upon the detection of an attack. Threat contexts can
be combined with other types of contexts to express complex conditions. Since
the reaction policy is expressed in the OrBAC model, it can be analyzed so that
conflicts between rules can be detected and solved.

We have defined default intrusion roles, activities and views to manage most
intrusions which involve one attacker and one victim. For more complex attacks
with multiple attackers and victims, such as a DDOS, the default abstract en-
tities can be refined. We have implemented the approach in the OrBAC API
library, as a result the MotOrBAC support tool can be used to edit a reaction
policy and help the policy administrators analyze and simulate it. We have inte-
grated the OrBAC API in the implementation of a PIE to enable the automatic
instantiation of reaction policies.

Some aspects have not yet been covered in this article, such as the lifetime
of dynamic organizations, i.e. the lifetime of the concrete security rules deployed
for each detected attack.
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