
Controlled Query Evaluation and
Inference-free View Updates

Joachim Biskup, Jens Seiler, and Torben Weibert

Technische Universität Dortmund, Dortmund, Germany
{biskup|seiler|weibert}@ls6.cs.uni-dortmund.de

Abstract. We extend Controlled Query Evaluation (CQE), an inference
control method to enforce confidentiality in static information systems
under queries, to updatable databases. Within the framework of the lying
approach to CQE, we study user update requests that have to be trans-
lated into a new database state. In order to avoid dangerous inferences,
some such updates have to be denied even though the new database
instance would be compatible with a set of integrity constraints. In con-
trast, some other updates leading to an incompatible instance should not
be denied. We design a control method to resolve this seemingly para-
doxical situation and then prove that the general security definitions of
CQE and other properties linked to user updates hold.

1 Introduction

The enforcement of confidentiality in information systems, that is allowing ac-
cess to information only to authorised users, is often done by static mechanisms
like discretionary access control or mandatory access control. While these mech-
anisms can prevent unauthorised users from a direct access to secret information
such users might still be able to gather enough data to infer secrets indirectly.
This is known as the inference problem [FJ02]. Inference channels can be cre-
ated by various means, in particular by observing the system’s behaviour linked
to integrity constraints and other a priori knowledge about databases.

Controlled Query Evaluation (CQE) is a dynamic control method that
counteracts such inferences. A comprehensive overview of CQE can be found
in [BB04a]; see also [BW08]. All previous work on CQE deals with confidential-
ity in static databases. In this paper, we want to enable users of an information
system to alter the contents of the database by means of issuing update requests,
which should be appropriately reflected in the database.

Enabling users to update information is known to result in unwanted infer-
ences as can be seen in multilevel secure (MLS) databases and the phenomenom
of polyinstantiation (see, for example, [DA87,LD90,JS91,SJ92,CG99,CG01]). In
MLS databases there exists data on high levels that is invisible to users on a
lower level. If a low level user tries to insert data that does already exist on a
higher level such an update request cannot be denied or otherwise the user would
be able to infer the existence of that data on a higher, secret level. Therefore the

2

update is accepted and the same data entity exists on two or more levels; the
database becomes polyinstantiated. Controlled Query Evaluation shares certain
similarities with polyinstantiated MLS databases in that CQE too has multiple
levels. While the database administrator has a complete and exact knowledge of
the database instance, the (unprivileged) database user constructs his own belief
on the database instance using his a priori knowledge and the data that he has
explicitly obtained from the system, namely the potentially modified answers.

We consider the a priori knowledge and the obtained answers to previous
queries as the user’s current view on the database instance. Thus we treat the
data obtained similarly to the traditional database management, where a “view”
is syntactically defined as an identified query, and semantically interpreted either
dynamically or statically, by “materialising” the answer to the identified query.
A classical problem is the question of how to translate an update request that
refers to a view to the underlying database instance, in particular how to resolve
ambiguities (see, for example [BS81,DB82,La90,He04,BP06]). In this paper, we
will avoid the ambiguity problem by only allowing requests to change the truth
value of atomic sentences.

However, we identify and solve the problem of how to process such requests in
an inference-free way. More specifically, in Sect. 2, we summarize query process-
ing under the lying form of CQE. Then, in Sect. 3, we increase the interaction
of the user level with the administrator level by view updates. This feature adds
new sources of possibly dangerous inferences that, however, we can hope to con-
trol by suitably combining a simple means with the concept of lying. In Sect. 4,
we design a full update algorithm in detail, which complements inference-free
query answering with inference-free view updating, and afterwards, in Sect. 5,
we exemplify a run of this algorithm. Then, in Sect. 6, the important property
of confidentiality is proven to hold. Finally, in Sect. 7, we show that any view
update issued by the user can be undone by him.

2 Controlled Query Evaluation with lying

We exploit a well-known logic-oriented approach to information systems, which
provides formal semantics for both query answering and updating including en-
forcement of constraints. In particular, we assume the following prerequisites:

– A database instance db is a complete interpretation of a propositional logic
(leaving generalisations to first-order logic [BB07] or to incomplete informa-
tion systems [BW08] open for a future elaboration), such that a sentence of a
propositional logic is either true or false with respect to a database instance
but never undefined; an instance can be specified by listing for each atomic
proposition χ whether that proposition or its negation should be included.

– A query φ is a (closed) sentence in the logic (suggesting again a generalisation
to open queries [BB07] for future work).

– Accordingly, a query φ is evaluated relative to an instance db by the function
eval(φ)(db) returning the pertinent truth value or, equivalently, either φ or
¬φ, which is denoted by eval∗(φ)(db).

3

– We employ the usual notion of logical implication, denoted by |=.

Furthermore, we deal with inference control in a specific form of Controlled
Query Evaluation that modifies a potentially harmful answer to a query by
lying [BK95,BB01,BW08], that is returning the negation of the true answer
(leaving the alternative forms of refusal [SJ83,BB01,BW08], that is returning
mum instead of the true answer, and a combined form [BB04b] open for further
research). The lying approach is based on the following additional prerequisites:

– The confidentiality policy, supposed to be known to the user, is declared as a
set of potential secrets, that is a finite set pot sec of sentences to be protected
so that the user can never infer that any sentence ψ ∈ pot sec actually holds.

– In order to preserve this kind of confidentiality, we have to protect not only
the individual potential secrets but, in fact, the disjunction of all poten-
tial secrets pot sec disj :=

∨
ψ∈pot sec ψ. This is necessary to avoid “hopeless

situations” which lead to an inconsistency (see [BB01,BB04a] for further
explanation).

– Basically, the control mechanism maintains a user log log for keeping the
(postulated) a priori knowledge of the user and the answers returned to
previous queries, and invokes a censor censorL for inspecting whether in a
given situation the true answer eval∗(φ)(db) to a query φ will be harmful;
more formally the function censorL returns a Boolean value as follows:

censorL(db, pot sec, log, φ) := log ∪ {eval∗(φ)(db)} |= pot sec disj. (1)

– CQE (with uniform lying) is then a function control eval(Q, log0)(db, pot sec)
where Q is any finite sequence of (closed) queries Q = 〈φ1, φ2, . . . , φn〉, log0
is an initial user log representing the a priori user knowledge, db is a database
instance and pot sec is the confidentiality policy to be enforced. The func-
tion control eval returns a corresponding sequence of answers and updated
user logs (ansi, logi). The return values are calculated by censoring the true
answer of a user’s query φi and in case of unwanted inferences by applying
a modification (by lying) to the answer:

ansi := if censorL(db, pot sec, logi−1, φi) then ¬eval∗(φi)(db)
else eval∗(φi)(db)

(2)

logi := logi−1 ∪ {ansi} (3)

It was shown in [BB01] that the confidentiality property expressed by the
following definition holds for this variant of CQE.

Definition 1 (Confidentiality). A function control eval(Q, log0)(db, pot sec)
preserves confidentiality iff for all finite sequences of queries Q, all initial user
knowledges log0, all instances db satisfying log0, all sets of potential secrets
pot sec and all potential secrets ψ ∈ pot sec with log0 6|= ψ there exists an in-
stance dbS satisfying log0 such that

1. db and dbS return the same sequence of answers:
control eval(Q, log0)(db, pot sec) = control eval(Q, log0)(dbS , pot sec)

2. dbS does not contain the potential secret ψ: eval∗(ψ)(dbS) = ¬ψ

4

3 Inferences through view updates

Before formally introducing a model for view updates under CQE, we take an
informal look at user modifications which demonstrate the necessity for a non-
trivial means of handling a user’s update requests. Simply allowing all “accepted”
updates or forbidding all “denied” updates leads to inferences as the following
examples show.

Example 1 (Inferences through accepted update requests). Suppose, a user issues
an update request on a database restricted by an integrity constraint, e.g., a∨ b.
He wants to ensure that the interpretation of a is true. If the system responds
with “Value of a changed to true”, the user can infer that previously a was false
and that then b must have been and still is true.

If b is a secret to be protected then clearly the update request would have had
to be denied. Even if the truth of b is not to be kept secret, the system has in
some way to keep track of the user’s ability to infer the truth of b in order to
prevent future inferences.

Example 2 (Inferences through denied update requests). Suppose, a database in-
stance {¬a, b} underlies the integrity constraint ¬a ∨ ¬b. Again a user issues
a request to ensure the truth of a. This, however, would lead to an integrity
violating instance {a, b}. Denying the update request enables the user to reason
about the value of b: if b was false, then the value of a would not matter. But
since the update request was denied, b must in fact be true.

Again the user is able to infer the truth value of a variable he doesn’t directly
change or query. Interestingly enough, such inferences can be easily calculated
in advance and thus be encountered. The necessary tool for that is a simple
negation of variables in the formulas of propositional logic, as described next.

We define the set FORMULA of allowed propositional formulas in the usual
inductive way: true, false and each v ∈ VAR are elements of FORMULA; if t1
and t2 are elements of FORMULA, then also ¬t1, (t1 ∧ t2) and (t1 ∨ t2). We will
omit brackets where not necessary, and omit double negation where convenient.

While a variable serves as a placeholder for a truth value we will use literals
as a means to specify such a truth value for a given variable:

Definition 2 (Literal). For every variable v ∈ VAR, v and ¬v are literals of
the set LIT. For a literal χ ∈ {v,¬v} with v ∈ VAR, we define χ+ := v. That
way the symbol χ+ is syntactically identical to the variable whose truth value is
being defined by the literal χ.

We can now define the negation of variables on formulas. Although we negate
variables we will specify the variable to be negated by a literal. This is done to
simplify the usage of variable negation later on when a user specifies the updated
truth value of a variable using a literal.

5

Definition 3 (Negation of variables on formulas). The negation of vari-
ables on formulas neg(·, ·) : FORMULA× LIT −→ FORMULA is defined by

neg(φ, χ) :=



φ for φ ∈ {false, true}
φ for φ = v 6= χ+, v ∈ VAR
¬φ for φ = χ+

¬
(
neg(φ′, χ)

)
for φ = ¬φ′(

neg(φ′, χ) ∧ neg(φ′′, χ)
)

for φ = φ′ ∧ φ′′(
neg(φ′, χ) ∨ neg(φ′′, χ)

)
for φ = φ′ ∨ φ′′

(4)

Informally, every appearance of a variable specified by a literal χ in the for-
mula φ is negated. We call neg(φ, χ) the χ-negated formula φ. Likewise, the
negation of variables on a set of formulas neg(·, ·) : P(FORMULA) × LIT −→
P(FORMULA) is defined by

neg(M,χ) := { neg(φ, χ) | φ ∈M }. (5)

Example 3 (Negation of variables on a formula).

neg
(
¬(a ∧ b) ∨ ¬a,¬a

)
= neg

(
¬(a ∧ b),¬a

)
∨ neg(¬a,¬a) (6)

= ¬
(
neg(a ∧ b,¬a)

)
∨ ¬

(
neg(a,¬a)

)
(7)

= ¬
(
neg(a,¬a) ∧ neg(b,¬a)

)
∨ ¬(¬a) (8)

= ¬(¬a ∧ b) ∨ a (9)

We can now identify a simple property of variable negation as defined above:
Lemma 1 (Negation equivalence). For any instance db, all φ ∈ FORMULA,
any literal χ, using the following definition of dbχ via db,

dbχ :=

{(
db \ {χ}

)
∪ {¬χ} for χ ∈ db(

db \ {¬χ}
)
∪ {χ} otherwise

(10)

we have that

eval(φ)(db) = eval
(
neg(φ, χ)

)(
dbχ

)
. (11)

This means that we get the same results evaluating a formula on an instance and
evaluating the χ-negated formula on the instance created by negating the variable
specified by χ.

Lemma 1 can now be used to identify inferences as they appeared in Exam-
ples 1 and 2. We claim (and prove below) that
– the set neg(log, χ) contains valid formulas after changing the truth value of
χ, if beforehand the formulas contained in log were true, and

– the formula neg
(
¬(

∧
φ∈constraints φ), χ

)
describes the knowledge gained by

learning that the set of constraints doesn’t hold under an interpretation
where the truth value of the variable specified by χ has been negated, pro-
vided that the constraints were valid beforehand.

This can be utilised to create a secure, that is inference-free, view update mech-
anism for Controlled Query Evaluation under a uniform lying censor.

6

4 Inference-free view updates under CQE with lying

Definition 4 (Controlled Query Evaluation with view updates). We
define a sequence Q of queries and update requests by:

Q := 〈 Θ1, Θ2, . . . , Θi, . . . Θk 〉 with (12)

Θi :=

{
Φi a query with Φi ∈ FORMULA or
update(χi) a (view) update operation with χi ∈ LIT

(13)

Additionally we have the following:

– constraints ⊆ P(FORMULA) is a finite set of constraints, which have to be
satisfied before and after each update,

– log0 ⊆ P(FORMULA) is an initial set of the assumed user knowledge with
log0 ⊇ constraints,

– db0 is an initial database instance and
– pot sec ⊆ P(FORMULA) is a finite set of potential secrets.

Then we define Controlled Query Evaluation with view updates by

control eval update(Q, log0, constraints)(db0, pot sec) (14)

=
〈
(ans1, log1, db1), . . . , (ansi, logi, dbi), . . . (ansk, logk, dbk)

〉
(15)

For queries Φi, we define the triple (ansi, logi, dbi) as in normal CQE with dbi :=
dbi−1. Update requests update(χi) are defined by the algorithm described in the
following and formalised in Def. 5.

Using the properties of neg as identified in Sect. 3 we can describe an algo-
rithm that provides for inference-free view updates. The algorithm consists of
four steps which also represent four disjunct cases determining the response to
the user. These cases can be outlined roughly as follows:

1. The requested update is already compatible to the user’s view and thus the
database instance is not to be modified.

2. Allowing the requested update would infer a secret or be incompatible with
the set of constraints and this fact is known to the user a priori.

3. Allowing the requested update would be incompatible with the set of con-
straints and this is unknown to the user a priori.

4. The requested update is accepted and the user receives confirmation.

In the following, we shall describe each of the cases in some more detail.

1. The first case is comparable with the property of acceptability in Def. 3.1
in [BS81], where view updates without confidentiality requirements are stud-
ied. An update that is already compatible with the current view needs not
to be performed. In our case, a user’s request to update χi is compatible
with his current view if we have that

control eval
(
〈χi〉, logi−1

)(
dbi−1, pot sec

)
= 〈(χi, logi−1 ∪ {χi})〉. (16)

7

Under the lying censor as defined in Sect. 2 this is equivalent to:

eval∗(χi)(dbi−1) = χi AND logi−1 ∪ {χi} 6|= pot sec disj (17)
OR eval∗(χi)(dbi−1) = ¬χi AND logi−1 ∪ {¬χi}|= pot sec disj (18)

So, if that condition holds we will tell the user that χ is already valid and
update the log accordingly.

2. If the first case did not occur, then obviously ¬χ is valid from the user’s point
of view and a view update can take place if confidentiality or consistency
isn’t threatened. To verify this we check if the updated view would imply
the disjunction of all potential secrets. We claim that this is the case if the
following condition holds:

neg(logi−1, χi) ∪ {χi} ∪ constraints |= pot sec disj (19)

Interestingly we don’t use the actual instance dbi−1 and thus the aforemen-
tioned condition can be evaluated purely from information available to the
user. Consequently the only additional information learned by the user is the
passing of the first case and thus the fact that ¬χi is true within his view.
This fact is added to the log.

3. While the previous case takes care of updates leading to inconsistencies of
which the user is aware himself, the introducing Example 2 shows that there
are also cases in which a user doesn’t know that his update would lead to an
inconsistent instance and additionally where the user isn’t allowed to know
that this would be the case.
We introduce con conj :=

∧
φ∈constraints φ as the conjunction of all con-

straints and can easily verify if the future instance would be inconsistent
after the user’s update:

eval
(
con conj

)(
(dbi−1 \ {¬χi}) ∪ {χi}

)
= false (20)

Additionally we have to check if telling the user about such an inconsistency
would enable him to infer the disjunction of the potential secrets. Again we
can make use of the properties of neg and require the following condition to
be true in order to tell the user about an inconsistency found by the previous
condition (20):

logi−1 ∪ {¬χi} ∪
{
neg(¬con conj, χi)

}
6|= pot sec disj (21)

If both (20) and (21) are true then the user is informed about the incon-
sistency and his update request is denied. Additionally the log has to be
updated by adding {¬χi} ∪

{
neg(¬con conj, χi)

}
.

4. This last case automatically occurs if all conditions of the three cases before
do not hold. From the user’s point of view the update is to be accepted
now and consequently this fourth case notifies the user about his successful
update. The log is being updated with the premise of condition (19) from
the second case and we have logi := neg(logi−1, χi) ∪ {χi} ∪ constraints 6|=
pot sec disj.

8

However, as we learned from the third case there are updates that would be
inconsistent with the set of constraints of the database scheme but which
are nevertheless to be allowed in order to protect secrets. Therefore, in case
condition (20) was indeed true but the protecting condition (21) was false,
we won’t update the actual database instance making the fact that we tell
the user about a successful update a lie.

As we see from the description of the four cases, the proposed algorithm employs
lies at two places: Firstly, it can lie about the current view of the user before
the update and tell him either that his requested update is already compatible
with the database instance although it isn’t (then (18) is true) or the database
instance already contains the literal as desired by the requested update but
telling so would implicate a secret or inconsistency (and thus condition (17) is
not true). Secondly, we may lie to the user about the affirmation of a successful
update despite not touching the actual instance in the fourth case.

Given the brief outline and the more detailed descriptions, we are now ready
to declare the algorithm formally.

Definition 5 (A secure view update algorithm for CQE).
if (condition for case 1)

eval∗(χi)(dbi−1) = χi AND logi−1 ∪ {χi} 6|= pot sec disj (22)
OR eval∗(χi)(dbi−1) = ¬χi AND logi−1 ∪ {¬χi}|= pot sec disj (23)

then

– dbi := dbi−1, logi := logi−1 ∪ {χi}
– ansi := “The requested update is already contained in the database”

else if (condition for case 2)

neg(logi−1, χi) ∪ {χi} ∪ constraints |= pot sec disj (24)

then

– dbi := dbi−1, logi := logi−1 ∪ {¬χi}
– ansi := “Updating χi is inconsistent with secrets or integrity”

else if (condition for case 3)

eval
(
con conj

)(
(dbi−1 \ {¬χi}) ∪ {χi}

)
= false (25)

AND logi−1 ∪ {¬χi} ∪
{
neg(¬con conj, χi)

}
6|= pot sec disj (26)

then

– dbi := dbi−1, logi := logi−1 ∪ {¬χi} ∪
{
neg(¬con conj, χi)

}
– ansi := “Updating χi is incompatible with integrity”

else (case 4)

– if condition (25) then dbi := dbi−1 else dbi := (dbi−1 \ {¬χi}) ∪ {χi}
– logi := neg(logi−1, χi) ∪ {χi} ∪ constraints
– ansi := “Update of χi successful”

9

5 An example

To illustrate the algorithm of Def. 5 we give an example that will trigger all of
the algorithm’s cases:

– pot sec := {s1, s2}
– constraints := {a⇒ s1, c⇒ b, s2 ⇒ ¬c}
– db0 := {a,¬b,¬c, s1, s2}
– log0 := {a⇒ s1, c⇒ b, s2 ⇒ ¬c}
– Q := 〈update(¬a), update(c), update(b), update(c), update(a), update(b)〉

1. update(¬a) will trigger case 1 due to condition (23):

eval∗(¬a)({a,¬b,¬c, s1, s2}) = a AND {a⇒ s1, c⇒ b, s2 ⇒ ¬c}∪{a} |= s1∨s2

The algorithm has to lie in order to protect the disjunction of secrets. Despite
a being true under db0 it has to tell the user that ¬a is already true since
otherwise the user could infer that a was valid which would have implied the
truth of the secret s1. We thus get:

– db1 := {a,¬b,¬c, s1, s2}
– log1 := {a⇒ s1, c⇒ b, s2 ⇒ ¬c,¬a}
– ans1 := “The requested update is already contained in the database”

2. update(c) will trigger case 3 since we have firstly, that an inconsistent database
instance would be created (equation (25) holds):

eval
(
{a⇒ s1 ∧ c⇒ b ∧ s2 ⇒ ¬c}

)(
({a,¬b,¬c, s1, s2} \ {¬c}) ∪ {c}

)
= false

and secondly, that this can be told to the user without implying a secret (equa-
tion (26) holds):

{a⇒ s1, c⇒ b, s2 ⇒ ¬c,¬a} ∪ {¬c} ∪
{
neg(¬con conj, c)

}
6|= pot sec disj

This is because with {¬a,¬b,¬c,¬s1,¬s2} we have a “witness” instance that
makes true the premise of the implication but falsifies the conclusion. The same
witness instance can be used to verify that indeed cases 1 and 2 will not be
triggered. We now have:

– db2 := {a,¬b,¬c, s1, s2}
– log2 := {a⇒ s1, c⇒ b, s2 ⇒ ¬c,¬a} ∪ {¬c} ∪ neg

(
¬(a⇒ s1 ∧ c⇒ b ∧ s2 ⇒

¬c), c
)

= {a⇒ s1, c⇒ b, s2 ⇒ ¬c,¬a,¬c,¬(a⇒ s1 ∧ ¬c⇒ b ∧ s2 ⇒ c)}
– ans2 := “Updating c is incompatible with integrity”

3. update(b) will trigger case 4 and modify the instance since neither is
case 1 triggered (the same “witness” {¬a,¬b,¬c,¬s1,¬s2} can be used to ver-
ify this) nor is case 2 triggered which can be verified using the witness in-
stance {¬a, b,¬c,¬s1,¬s2}. We also have that case 3 isn’t triggered because
eval(con conj)({a, b,¬c, s1, s2}) = true. Therefore a true update of the instance
is done and we get:

10

– db3 := {a, b,¬c, s1, s2}
– log3 := neg

(
{a ⇒ s1, c ⇒ b, s2 ⇒ ¬c,¬a,¬c,¬(a ⇒ s1 ∧ ¬c ⇒ b ∧ s2 ⇒

c)}, b
)
∪ {b} ∪ constraints

= {a⇒ s1, c⇒ ¬b, s2 ⇒ ¬c,¬a,¬c,¬(a⇒ s1 ∧¬c⇒ ¬b∧ s2 ⇒ c), b, c⇒ b}
– ans3 := “Update of b successful”

For those readers not willing to solve the logic puzzle of the now quite
stuffed log we hint that only four instances remain possible: {¬a, b,¬c,¬s1,¬s2},
{¬a, b,¬c,¬s1, s2}, {¬a, b,¬c, s1,¬s2} and {¬a, b,¬c, s1, s2}. As such the user
has gained a complete knowledge about the non-secrets a, b and c while it ap-
pears possible to him that all secrets are false.
4. update(c) will trigger case 4 but not modify the instance. Again cases 1 and 2
are not triggered as the reader can easily verify. This time, however, we have that
a real update would create an instance not compatible with the set of constraints.
The instance {a, b, c, s1, s2} violates the constraint s2 ⇒ ¬c. However, telling
this to the user would imply the truth of s2 since from the users point of view
the other two constraints cannot be violated. Luckily our condition (26) of the
update algorithm protects us from relating a violation of constraints to the user
by remaining “silent” and thus telling him the lie of a successful update:

– db4 := {a, b,¬c, s1, s2}
– log4 := neg

(
{a ⇒ s1, c ⇒ ¬b, s2 ⇒ ¬c,¬a,¬c,¬(a ⇒ s1 ∧ ¬c ⇒ ¬b ∧ s2 ⇒

c), b, c⇒ b}, c
)
∪ {c} ∪ constraints

= {a ⇒ s1,¬c ⇒ ¬b, s2 ⇒ c,¬a, c,¬(a ⇒ s1 ∧ c ⇒ ¬b ∧ s2 ⇒ ¬c), b,¬c ⇒
b, c⇒ b, s2 ⇒ ¬c

– ans4 := “Update of c successful”

With this update the set of possible instances is reduced to two, namely
{¬a, b, c,¬s1,¬s2} and {¬a, b, c, s1,¬s2}.
5. update(a) will trigger case 2 since case 1 isn’t triggered and an update of a
would imply the secret s1 which is captured by condition (24) of the algorithm.
We now have:

– db5 := db4

– log5 := log4 (since ¬a was already in log4)
– ans5 := “Updating a is inconsistent with secrets or integrity”

6. update(b) triggers case 1 via condition (22). We get:

– db6 := db5

– log6 := log5 (since b was already in log5)
– ans6 := “The requested update is already contained in the database”

The example shows that every case of the algorithm is reachable and that
cases 1 and 4 can both be lying or telling the truth. Additionally it visualises
the fact that from the user’s point of view there does always exist at least
one instance with all secrets false that is consistent with the previous answers
given by the update algorithm. In our case these are {¬a,¬b,¬c,¬s1,¬s2} for
the instance before the first three updates, {¬a, b,¬c,¬s1,¬s2} for the instance
after the update of b and {¬a, b, c,¬s1,¬s2} for the updates after that.

11

6 Properties of secure view updates

Given the algorithm from Def. 5, the following lemma states that the funda-
mental invariant of Controlled Query Evaluation under lying (see, for example,
[BK95,BB01,BW08]) applies to secure view updates, too.

Lemma 2 (Invariant). For any instance of Controlled Query Evaluation with
view updates control eval update with a sequence Q = 〈Θ1, Θ2, . . . , Θi, . . . Θk〉 the
following invariant for the user log logi holds: logi 6|= pot sec disj

Proof. For queries Θi = Φi, the claim follows directly from the properties of
normal CQE as shown in [BB01]. For updates Θi = update(χi), we have to
argue about the four different possible cases and their log updates:

1. If the update algorithm responds with an answer “The requested update is
already contained in the database” then we have that either condition (17)
or (18) is true. In the first case we directly get logi = logi−1 ∪ {χi} 6|=
pot sec disj. From the second case we get logi−1 ∪ {¬χi} |= pot sec disj and
by induction we also have that logi−1 6|= pot sec disj. From both follows
logi = logi−1 ∪ {χi} 6|= pot sec disj.

2. If the update algorithm responds with “Updating χi is inconsistent with
secrets or integrity” we obviously have neither (17) nor (18) to be true:

NOT
(

(eval∗(χi)(dbi−1) = χi AND logi−1 ∪ {χi} 6|=pot sec disj)

OR (eval∗(χi)(dbi−1) = ¬χi AND logi−1 ∪ {¬χi}|=pot sec disj)
)

Using the laws of de Morgan and the completeness of the database instance
we obtain the following equivalent expression:

(eval∗(χi)(dbi−1) = ¬χi︸ ︷︷ ︸
a

OR logi−1 ∪ {χi} |= pot sec disj︸ ︷︷ ︸
b

)

AND (eval∗(χi)(dbi−1) = χi︸ ︷︷ ︸
c

OR logi−1 ∪ {¬χi} 6|= pot sec disj︸ ︷︷ ︸
d

)

Thus we have that (a OR b) AND (c OR d) must be true and it follows from
the completeness of the database instance that exactly one of a or c can be
true. Simply enumerating all combinations of a, b, c and d show that only
three such combinations are possible: for ¬a, b, c,¬d it would follow that

logi−1 ∪ {χi} |= pot sec disj AND NOT
(
logi−1 ∪ {¬χi} 6|= pot sec disj

)
and thus

logi−1 ∪ {χi} |= pot sec disj AND logi−1 ∪ {¬χi} |= pot sec disj

holds. This however is a contradiction to the induction hypothesis and thus
this case cannot occur.
From the two other combinations, that is ¬a, b, c, d and a,¬b,¬c, d it follows
directly from d that logi = logi−1 ∪ {¬χi} 6|= pot sec disj is true.

12

3. The third case of the algorithm, the response “Updating χi is incompatible
with integrity”, can only occur if condition (21) holds. Therefore we directly
have that

logi = logi−1 ∪ {¬χi} ∪ neg(¬con conj, χi) 6|= pot sec disj

4. Finally, if none of the previous cases were triggered, we have that the up-
date is accepted. From the non-occurrence of the second case we have that
condition (19) does not hold, from which we directly obtain that

neg(logi−1, χi) ∪ {χi} ∪ constraints 6|= pot sec disj

is true, which shows that the log update of fourth case (the last case) is also
consistent with the invariant we want to show.

From the invariant logi 6|= pot sec disj it follows that the log does not imply
any potential secret. This, however, does not mean that the answers of the up-
date algorithm will never enable a reasoning user to infer the truth of a secret.
In order to show that our claims from the end of Sect. 3 are correct and their
usage in the update algorithm provides security we will define Controlled Query
Evaluation with view updates to be secure if a user can never infer that any
particular potential secret is true in the actual database instance. This require-
ment is captured by demanding that there always exists an alternative database
instance in which the respective potential secret is false, but under which the
same answers are returned as under the actual database instance. We therefore
adapt Def. 1 so it is compatible with the sequence of produced databases under
view updates.

Definition 6 (Confidentiality for view updates). We say that a function
control eval update(Q, log0, constraints)(db0, pot sec) preserves confidentiality iff
for all sequences of queries and update requests Q, all initial user knowledges
log0, all sets of constraints constraints ⊆ log0, all instances db0 satisfying log0,
all sets of potential secrets pot sec, all potential secrets ψ ∈ pot sec with log0 6|= ψ
there exists an instance dbS0 satisfying log0, such that

1. db0 and dbS0 return the same sequence of answers:

υ
(
control eval update(Q, log0, constraints)(db0, pot sec)

)
=

υ
(
control eval update(Q, log0, constraints)(dbS0 , pot sec))

)
2. dbS0 does not contain the secret ψ: eval∗(ψ)(dbS0) = ¬ψ

Above, we define υ to be the projection of a set of tuples of the form
(ansi, logi, dbi) to the user-visible set of answers ansi.

Theorem 1. CQE with secure view updates, i.e., the function control eval update
(Q, log0, constraints)(db0, pot sec) as defined by Def. 4 together with Def. 5, pre-
serves confidentiality in the sense of Def. 6.

13

To prove this theorem, we need the following lemma, which can easily be
proven via a backwards induction, which we omit here due to the lack of space.

Lemma 3. For any sequence Q with length k there exists a sequence of instances
dbSi with the following two properties (where model of means “makes true”):

dbSi−1 :=

{
(dbSi \ {χi}) ∪ {¬χi} for an update triggering case 4 (27)
dbSi otherwise (queries or cases 1 to 3) (28)

dbSi model of logi ∪ {¬pot sec disj} (29)

Proof (of Theorem 1). We show via induction that our system creates the same
sequence of answers for a given sequence Q regardless if it started on db0 or on
dbS0 . This also means that the same sequence of logs is created.

For i = 0, we have log0 = logS0 and no answers so far. For the step from
i− 1 to i, we differentiate between the nature of the operation Θi ∈ Q. If Θi is
a query Φi, then it follows from Lemma 3 and the proofs of confidentiality for
CQE in terms of Def. 1 that the answer returned is the same under db and dbS .

If on the other hand Θi is an update update(χi), then we enumerate over
the four possible cases of that operation under the instance dbi and show the
identical reaction on the corresponding instance dbSi :

1. From case 1 under db we have that logi := logi−1 ∪ {χi} and via Lemma 3
it follows that dbSi model of logi ⊆ {χi}. Assuming case 1 under db and
construction of dbSi−1 via (28) we have that eval∗(dbSi−1)(χi) = χi which
satisfies the first part of equation (22). We show that the second part, that
is logSi−1∪{χi} 6|= pot sec disj, holds too, for if it wouldn’t, then via induction
we also had logi := logi−1 ∪ {χi} |= pot sec disj, contradicting Lemma 2.

2. First we show that the first case is not triggered under dbS . From case 2 under
db it follows that logi := logi−1 ∪ {¬χi} and thus for dbSi via Lemma 3 that
eval∗(χi)(dbSi) = ¬χi. For the same reasons we have eval∗(χi)(dbSi−1) = ¬χi
which falsifies equation (22). Also, equation (23) is not true; otherwise we
had logSi−1∪{¬χi} |= pot sec disj contradicting Lemma 2 since we have that
logi−1 under db is the same as logSi−1 under dbS .
Also our condition for case 2, namely equation (24) depends only on that
log and it follows that case 2 is also triggered under dbS .

3. With the above argument it follows that case 2 is not triggered under dbS if it
wasn’t triggered under db. Therefore we now have to show that case 3 is trig-
gered under dbS . From case 3 under db we have that logi = logi−1 ∪{¬χi}∪{
neg(¬con conj, χi)

}
. From Lemma 3 it follows that dbSi model of logi and

via (28) we get dbSi−1 = dbSi resulting in dbSi−1 model of logi. From this follows

eval
(
neg(¬con conj, χi)

)(
dbSi−1

)
= true. (30)

From dbSi−1 model of logi and ¬χi ∈ logi we have that eval∗(χi)(dbSi−1) =
¬χi, enabling the usage of Lemma 1 on (30):

eval
(
¬con conj

)(
(dbSi−1 \ {¬χi}) ∪ {χi}

)
= true (31)

14

Applying the definition of eval we get

eval
(
con conj

)(
(dbSi−1 \ {¬χi}) ∪ {χi}

)
= false (32)

This is equation (25), which the preceding arguments showed to hold under
dbS . We also have equation (26) to be true since it only depends on the log
of round i− 1. It thus follows that case 3 is triggered under dbS , too.

4. Finally it remains to be shown that case 3 isn’t triggered under dbS if db
triggered case 4. From case 4 under db and Lemma 3 we have

dbSi model of logi = neg(logi−1, χi) ∪ {χi} ∪ constraints (33)

This gives us eval∗(con conj)(dbSi) = true resulting in case 3 not being trig-
gered due to the falseness of equation (25).

7 Reversibility

A user expects to be able to undo an update he issued. This is in fact one of
the two requisites Bancilhon and Spyratos require for a set of view updates to
be called complete (see [BS81]). We therefore demand and prove:

Theorem 2. For any instance of Controlled Query Evaluation with view up-
dates as defined by Def. 4 and Def. 5 and any χ ∈ LIT it is true that an opera-
tion update(χ) at time i−1 can be successfully undone at time i by the operation
update(¬χ).

To prove this theorem, we need the following lemmas, which we state here with-
out a justification, due to the lack of space.

Lemma 4. For all sets of formulas Q,P ⊆ P(FORMULA) and all literals χ ∈
LIT we have P |= Q⇔ neg(P, χ) |= neg(Q,χ).

Lemma 5. If at the point in time i−1 the update update(χ) has been performed
successfully, i.e., case 4 of the secure view update algorithm applies, then the
following property holds: neg(logi−1, χ) ∪ {¬χ} ∪ constraints 6|= pot sec disj

Proof (of Theorem 2). To outline the proof of the theorem, we assume that the
update χ has been successfully completed at the point in time i− 1. According
to case 4 of the algorithm, we then have

logi−1 = neg(logi−2, χ) ∪ {χ} ∪ constraints (34)

We then have to verify that an update(χi) that has the form update(¬χ) will be
completed successfully, too, i.e., the cases 1 to 3 do not apply.

Case 1. We show that neither (22) nor (23) are satisfied. By (34), we have
χ ∈ logi−1, so logi−1∪{¬χ} is inconsistent and thus logi−1∪{¬χ} |= pot sec disj.
This is a contradiction to (22). By Lemma 2, we have logi−1 6|= pot sec disj, and
as χ ∈ logi−1 also logi−1 ∪ {χ} 6|= pot sec disj, which is a contradiction to (23).

15

Case 2. This case cannot occur owing to Lemma 5.

Case 3. Consider db′ := (dbi−1 \ {χ}) ∪ {¬χ}, i.e., that instance that would
become dbi, if db′ satisfied the consistency constraints. First, assume ¬χ ∈ dbi−2.
Then db′ = dbi−2, and since eval(con conj)(dbi−2) = true we conclude that db′,
i.e., the potential dbi, will be consistent after the update ¬χ.

Second, assume χ ∈ dbi−2. If eval(con conj)(db′) = true, the denial condition
(25) does not hold. Otherwise, if eval(con conj)(db′) = false, we will derive a
contradiction. Under the assumptions made, we would have:

logi−1 ∪ {χ} ∪ {neg(¬con conj, χ)} 6|= pot sec disj

Then, stepwise applying Lemma 4, the definition of neg, equation (34) and the
idempotence of neg, we would finally get the result:

logi−2∪{¬χ}∪neg(constraints, χ)∪{¬χ}∪{¬con conj} 6|= neg(pot sec disj, χ)

This result cannot hold, since the premise is inconsistent, owing to constraints ⊆
logi−2 on the one hand and ¬con conj occurring on the other hand.

8 Conclusion

Data manipulation comprises queries and updates under preservation of con-
straints, and both kinds of operation might enable a user to infer information to
be kept secret. In this paper, we extend previous insight about ensuring inference-
free query answers to an original proposal for processing update requests in an
inference-free way. The extension applies to both the formal specification of the
confidentiality requirement and the enforcement mechanism.

Basically, the adapted requirement expresses that, from the user’s point of
view, the dynamically evolving actual instances of the information system are
indistinguishable from alternative instances in which the protected information
does not hold. Roughly summarised, for any single operation, whether a query
or an update, the enforcement maintains a global invariant, which states that
the current knowledge of the user does not imply the disjunction of the potential
secrets. Under additional precautions, the local assurance suffices to guarantee
the global goal of indistinguishability. Furthermore, our proposal complies to the
basic rules of acceptability and reversibility, required for traditional view update
mechanisms. The proposal is also in accordance with polyinstantiation, which
is used in multilevel secure systems as an inevitable feature to resolve conflicts
between preservation of constraints and hiding of confidential information.

In this paper, we have dealt with update requests issued by a user; in com-
plementary work, we are studying updates triggered by an administrator, which
leads to the problem of inference-free “view refreshments”. Additionally, we are
combining both kinds of updates. Interestingly, the complementary work strongly
suggests to consider also transactions rather than only elementary updates.

There are many further challenging problems, including an extension to first-
order logic, information systems permitting open queries, and an exploration of

16

explicit refusals on a requested updates while avoiding the known threats of
meta-inferences, as well as suitable combinations of lying and refusal. An option
to avoid distortions by lying could be worthwhile for applications where returning
unreliable information is not acceptable (see [BB01,BB04a,BB04b]). Moreover,
all investigations could be generalised to incomplete information systems.

References

[BS81] Bancilhon, F., Spyratos, N., Update semantics of relational views, ACM Trans.
Database Syst. 6 (1981), no. 4, 557–575.

[BB01] Biskup, J., Bonatti, P.A., Lying versus refusal for known potential secrets, Data
Knowl. Eng. 38 (2001), no. 2, 199–222.

[BB04a] Biskup, J., Bonatti, P.A., Controlled query evaluation for enforcing confiden-
tiality in complete information systems, Int. J. Inf. Sec. 3 (2004), 14–27.

[BB04b] Biskup, J., Bonatti, P.A., Controlled query evaluation for known policies by
combining lying and refusal, Ann. Math. Art. Intell. 40 (2004), 37–62.

[BB07] Biskup, J., Bonatti, P.A., Controlled query evaluation with open queries for a
decidable relational submodel, Ann. Math. Art. Intell. 50 (2007), 39–77.

[BW08] Biskup, J., Weibert. T., Keeping secrets in incomplete databases, Int. J. Inf.
Sec. 7 (2008), 199–217.

[BP06] Bohannon, A., Pierce, B.C., Vaughan, J.A., Relational lenses: a language for
updatable views. In: PODS 06, ACM, 338–347.

[BK95] Bonatti, P.A., Kraus, S., Subrahmanian, V.S., Foundations of secure deductive
databases, IEEE Trans. Knowledge and Data Engineering 7 (1995), no. 3, 406–422.

[CG99] Cuppens, F., Gabillon, A., Logical foundation of multilevel databases, Data
Knowl. Eng. 29 (1999), 259–291.

[CG01] Cuppens, F., Gabillon, A., Cover story management, Data Knowl. Eng. 37
(2001), 177–201.

[DB82] Dayal, U., Bernstein, P.A., On correct translation of update operations on re-
lational views, ACM Trans. Database Systems 8 (1982), 381–416.

[DA87] Denning, D.E., Akl, S., Heckman, M., Lunt, T., Morgenstern, M., Neumann,
P., Schell, R., Views for multilevel database security, IEEE Trans. Software Eng. 13
(1987), no. 2, 129–140.

[FJ02] Farkas, C., Jajodia, S., The inference problem: a survey, SIGKDD Explor.
Newsl. 4 (2002), no. 2, 6–11.

[He04] Hegner, S.J., An order-based theory of updates for relational views, Ann. Math.
Art. Intell. 40 (2004), 63–125.

[JS91] Jajodia, S., Sandhu, R.S., Towards a multilevel secure relational data model. In:
Proc. ACM SIGMOD Int. Conf. on Management of Data, May 1991, 50–59.

[La90] Langerak, R., View updates in relational databases with an independent scheme,
ACM Trans. Database Systems 15 (1990), 40–66.

[LD90] Lunt, T.F., Denning, D.E., Schell, R.R., Heckman, M., Shockley, W.R., The
SeaView security model, IEEE Trans. Software Eng. 16 (1990), no. 6, 593–607.

[SJ92] Sandhu, R.S., Jajodia, S., Polyinstantiation for cover stories. In: Proc. 2nd
European Symp. Res. Computer Security, ESORICS 92, Lecture Notes in Computer
Science 648, Springer, Berlin etc., 1992, 307–328.

[SJ83] Sicherman, G.L., de Jonge, W., van de Riet, R.P., Answering queries without
revealing secrets, ACM Trans. Database Systems 8 (1983), no. 1, 41–59.

[WS94] Winslett, M, Smith, K., Qian, X., Formal query languages for secure relational
databases, ACM Trans. Database Systems 19 (1994), no. 4, 626–662.

