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Abstract. Trust and Reputation systems in distributed environments
attain widespread interest as online communities are becoming an inher-
ent part of the daily routine of Internet users. Trust-based models enable
safer operation within communities to which information exchange and
peer to peer interaction are centric. Several models for trust based rep-
utation have been suggested recently, among them the Knots model [5].
In these models, the subjective reputation of a member is computed us-
ing information provided by a set of members trusted by the latter. The
present paper discusses the computation of reputation in such models,
while preserving members’ private information. Three different schemes
for the private computation of reputation are presented, and the advan-
tages and disadvantages in terms of privacy and communication overhead
are analyzed.

1 Introduction

Recent years have seen a substantial growth of virtual communities across the
Internet. The accessibility of information and services offered by these commu-
nities, makes it both possible and legitimate to communicate with strangers and
carry out interactions anonymously, as rarely done in ”real” life. However, virtual
communities are prone to many types of deception ranging from people forging
their identity and imposing as others, to people rating their service providers
extremely high or extremely low unrelated to the service they have received.
Trust and Reputation systems (TRS) provide communities with means to re-
duce the potential risk when communicating with people hiding behind virtual
identities. These utilize the experience and knowledge accumulated and shared
by all participants for assigning reputation values to individuals, and attempt
to identify dishonest members and prevent their negative effect.

Reputation may depend on factors such as: interaction of multiple attributes
(as in eBay), certainty of ratings [7], time of interaction and rating, and trust
between members. The latter is crucial in obtaining reputation which is specif-
ically compatible with a user profile or preferences. The issue of trust between
members is discussed in [3, 5] among others. When anonymity is required, trust
between members may be computed based on the similarity of their past ratings
(see [5]). As more systems implement a trust mechanism between members the



impact of this information grows, and greater efforts should be made in keeping
it private.

An empirical study conducted by [12] on data sets from eBay’s reputation
system reported a high correlation between buyer/seller ratings. Moreover, most
feedback provided was positive. One explanation for these results is that when
feedback providers’ identities (pseudo-identities) are known, ratings are provided
based on reasons of reciprocation and retaliation, not properly reflecting the
trustworthiness of the rated parties. Thus preserving the trust level of members
in each other private, while computing reputation becomes an important issue.

Decentralized reputation systems do not make use of a central repository
to process reputation ratings [15] and are considered safer. In these, both the
reputation of users and the ratings they give may be stored locally and known
only to the corresponding user. The challenge here is to compute the reputation
while maintaining private data. Its important to emphasize that based on the
TRS, there exist different data which may be considered private, such as rat-
ings, weights assigned to specific ratings, identity of the raters, trust between
members, etc. A recent paper [9] suggested several privacy preserving schemes
for simple computation of reputation (e.g. eBay [1]).

The current paper advances the state of the art as it uses an enhanced model
of reputation computation which considers the trust members have in one an-
other. We base our discussion on the Knots model [5] but the ideas presented
may apply to any model in which trust between members is important in com-
puting reputation. Three different methods for computing trust and reputation
privately are presented, each offering a slightly different degree of privacy and
communication overhead. All are analyzed with respect to users’ malicious and
non-malicious behavior, and the advantages of each are discussed. The rest of the
paper is organized as follows. Section 2 provides an overview of related work and
presents the knots model. Section 3 describes the three schemes and in Section
4 we conclude and give some future research directions.

2 Background and Related Work

The concern for privacy in communities in general, and the privacy of reputation
information in particular, was discussed in several papers [8, 6, 14, 11, 4]. In [8]
the authors discuss issues of privacy in a P2P network where reputation infor-
mation is distributed among the P2P nodes. Requirements for fair use practices
and their impact on system design, classes of information which may be leaked
and managing the risks related to social and technical issues are all analyzed.
However, no specific method for computing reputation is presented. In [6] a
distributed trust management system, constructed from a two level hierarchy is
described. The high level is composed of brokers which are responsible for aggre-
gating trust information from their individual local nodes. This provides some
privacy from one broker to another, although no privacy is provided at a single
broker’s network. Steinbrecher in [14] presents an information theoretic model of
reputation privacy. She tries to model the amount of privacy lost when a single



user uses different pseudonyms in the same community or in different ones, or
when a user changes her pseudonym. Her measure enables the estimate of un-
linkability provided by such a pseudonym change. In [11], the authors discuss the
issue of privacy for a user in multiple communities that requires a transfer of the
reputation between these communities, creating the concept of cross-community
reputation (CCR). CCR requirements were analyzed in [4] including issues of
privacy, user control vs. community control, ontology matching and others.

Pavlov et al [9] provide the closest paper to the present work. It deals with
private computation of reputation information, when the reputation is defined
as an additive reputation system (e.g. the Beta reputation system [7]). The
authors present three algorithms for computing additive reputation, with various
degrees of privacy and with different level of protection against malicious users.
A method for “witness selection” which reduces the risk of selecting dishonest
witnesses is first presented. Then, a simple scheme which is very efficient but
vulnerable to collusion of even two witnesses is introduced. The second scheme
is more resilient towards curious users, but vulnerable to collusions and uses a
secret splitting scheme. The last, provides the most secure protocol which uses
the verifiable secret sharing scheme [10] based on Shamir’s secret sharing scheme
[13]. The complexity of the scheme is quite high and requires O(n3) messages
where n is the number of contributing nodes. These schemes can be used with
additive computations. Our work, which is described in terms of the Knots model
[5] uses additional factor, which is not additive.

2.1 The Knots Model

The Knots model [5] is a TRS model for large-scale virtual communities. It
is composed of three modules: member trust inference module, Knots construc-
tion module, and reputation computation module. The member trust inference
module identifies trust relations among members; the Knots construction mod-
ule utilizes these relations to generate trust Knots; the reputation computation
module computes local reputations within Knots and global reputations for the
whole community. Without loss of generality we adopt the notation from this
model, but the underlying approach exists in other models as well.

– TrustMember (TM) is trust in the context of recommendations. It is a trust
value that quantifies the extent by which one member relies on another
member to rate experts “correctly”.

– TrustExpert (TE) is trust in the context of experts. Specifically, it quantifies
the extent by which a member relies on an expert to successfully provide the
service it requires.

– An α - Trust Set of a member A, is the set of all members whom A trusts
with level α or more.

The motivation for our current paper is to provide trust based reputation mod-
els such as the knot model, with means to compute reputation in a distributed
manner while preserving private information. In this context the trust one mem-
ber has in another (TM) and the trust a member has in an expert (TE), are



both considered private information. One would prefer not to reveal her trust
in a member from which she gets recommendations. On the other hand the rec-
ommending party may prefer to keep her recommendation private due to the
fear of retaliation. Revealing these to malicious parties exposes the community
to the risk of manipulating recommendations.

3 Privacy preserving Trust and Reputation computation

The problem of privacy we address is the following: assume the existence of an
expert x, and a member A. A needs to compute her trust in the expert, based on
the experience other members of the community have had with this expert. We
use the Trust-set as the group of members participating in this computation.
The trust of A in x using Trust-sets [5] can be computed according to:

TE(A, x) =

∑
Bi∈TrustSet(A),
DTE(Bi,x)6=⊥

DTE(Bi,x)·TM(A,Bi)∑
Bi∈TrustSet(A),
DTE(Bi,x)6=⊥

TM(A,Bi)

where:
– DTE(Bi,x) - the trust member Bi has in expert x based on her own accumu-

lated experience.
– ITE(A,Bi,x)=TM(A,Bi)·DTE(Bi,x) - the indirect trust member A has in expert
x based on Bi’s direct trust in x.

We assume that TM(A,B) is known to agent A since it reflects her private
information. Therefore the denominator is easy to compute by A without dis-
closing private information. The nominator is a sum of products of two terms,
the first one is assumed to be distributed among the agents Bi, and known only
by its corresponding agent, and the second one is known to A. Therefore the
challenge we face is to privately compute the following sum of products, denoted
by ρ(A, x):

ρ(A, x) =
∑
∀Bi∈S DTE(Bi, x) · TM(A,Bi) =

∑
∀Bi∈S ITE(A,Bi, x)

where S denotes the trust-set of A.
We proceed to presenting three different schemes to compute this sum. In

all three schemes we assume a semi-honest protocol. That is, members follow
the protocol honestly, but may remember information and use it for their own
benefit. In section 3.1, we discuss the case of dishonest users.

Scheme 1: Trust relations aware
The first scheme, presented in Algorithm 1, assumes that every member

Bi ∈ S knows the trust value, TM(A,Bi), that member A has in her, or that A
is willing to disclose this information to Bi. It is also assumed that a partially
trusted third party Z exist (i.e. Z does not collude with other agents, and she
has no access to any private information of the involved parties).

The encryption ensures that only Bi knows ITE(A,Bi, x). The permutation
carried out by Z ensures that when the set of values ITE(A,Bi, x) is received by



Algorithm 1 Trust relations aware
1: A sends around her public key KA to all Bi ∈ S along with TM(A,Bi)
2: Each member Bi computes ITE(A,Bi, x), encrypts it and sends the encrypted

form C(KA, ITE(A,Bi, x)) to the third party Z.
3: Z generates a random permutation of the encrypted messages and sends it to A.
4: A decrypts the messages and computes the required sum ρ(A, x).

A, the origin of the ITE(A,Bi, x) value is not clear to A. This scheme achieves
our computational goal and therefore enables private computation of reputation
by any member A. Collusion between any of the members (excluding Z) in
this scheme is not helpful, since they have no access to information related to
non-colluding members. The main advantage of this scheme is its simplicity and
small communication overhead (basically O(n) ), while its main disadvantage is
the disclosure of member trust values. Although deemed otherwise, this privacy
violation is not very severe: being in A’s trust-set, members already know that
their corresponding trust value is above the threshold α.

Scheme 2: Trusted third party dependent
In this scheme, depicted in Algorithm 2, we try to overcome the major disad-

vantage of the former method and assume that members do not know the trust
other members have in them. Unlike our previous scheme, only a trusted third
party Z is entrusted with the values of the trust A has in the different members,
i.e. Z knows (or A sends it) all the values of TM(A,Bi).

Algorithm 2 Trusted third party dependent
1: A sends around her public key KA to all Bi ∈ S.
2: Each member Bi computes C(KA, DTE(Bi, X)) and sends it to Z.
3: Z generates a random permutation of all the values received and sends a vector of

values to A.
4: A decrypts the encrypted vector of trust in expert values DTE.
5: A sends the vector TM of values TM(A,Bi) to Z.
6: Z permutes the vector with the same permutation used in step (3).
7: A and Z compute the scalar product of DTE and TM vectors using secure com-

putation and obtain the desired sum of products ρ(A,X) (cf. [2] for one possible
method to compute scalar product in a secure way).

The main advantage of this method over the previous one, is that individual
members do not know A’s trust in them. On the other hand the third party
Z needs to be trusted with these private values. Moreover, the communication
overhead of this scheme is higher, because of the use of secure scalar product,
which is an expensive operation (using [2] the complexity is linear but requires
the Add Vectors protocol which involves many cryptographic transformations).



Scheme 3: Controlled sequence
This scheme, depicted in Algorithm 3, uses the additive scheme described in

[9] which enables computing the sum of trust values in an expert, in a private
way, independent of any trusted third party. Let us denote the sum of trust
values, members in S have in x, as τ(S, x):

τ(S, x) =
∑
∀Bi∈S DTE(Bi, x)

Algorithm 3 Controlled sequence
1: A computes τ(S,X) using one of the three algorithms described in [9].
2: A decides on a random permutation of members Bi ∈ S and informs each Bi of

the agent following her (next in line) in the permutation.
3: A sends to Bi: TM

′(A,Bi) = (TM(A,Bi) +Q), where Q is a random number.
We denote ITE′(A,Bi, x) = TM ′(A,Bi) ·DTE(Bi, x), for simplicity.

4: Using its partial knowledge of A’s permutation, B1 sends the value ITE′(A,B1, x)
to B2. B2 sends ITE′(A,B1, x) + ITE′(A,B2, x) to B3. B3 repeats this process
and so do, all the following agents.
The last member sends A the sum

∑
∀Bi∈S ITE

′(A,Bi, x).
5: A subtracts Q · τ(S, x) from the sum it received from the last member, and obtains
ρ(A, x) - the desired value.

ρ(A, x) =
∑
∀Bi∈S ITE(A,Bi, x) =

∑
∀Bi∈S TM(A,Bi) ·DTE(Bi, x)

=
∑
∀Bi∈S(TM(A,Bi) +Q) ·DTE(Bi, x)−Q ·

∑
∀Bi∈S DTE(Bi, x)

=
∑
∀Bi∈S ITE

′(A,Bi, x)−Q · τ(S, x)

This scheme has the advantage that no trusted third party is involved in it,
and it therefore provides more privacy in that respect. However, it has several
disadvantages. First, since A is selecting the members it sends the TM ′ values
to, it may select a very small group (e.g. two) thus reducing privacy considerably.
This can be overcome by assuring a minimal size to the set of trusted members
as discussed in [9] (i.e the witness set). Another way of achieving at least size
n group is by having the members use a secret-sharing scheme of at least size
n [13], where one of the members must be able to solve the secret. A second
disadvantage is that the trust of A in other members, which is a private value,
may be compromised by collusion. Any two colluding members Bi, Bj , i, j ∈ S
knowing an approximate value of A’s trust in them may be able to approximate
Q and find the difference between their respective TM(A,Bi), TM(A,Bj) by a
simple subtraction. A way to solve it is to divide the trust set S into two (or
more) subsets, which only A knows their composition and use different random
numbers for each such subset, again making sure the subset is large enough.
Another idea is the following: Let A run the protocol twice. Once with a single
Q value, and in the second run, with many different random Qs. Since the
users don’t know which time is the correct one, their guessing probability is



reduced to 50% (and can be reduced further by re-running the protocol for any
arbitrary number of times). This can reduce considerably the risk of disclosing
TM(A,Bj) values. The third disadvantage is that the communication overhead
in this scheme is even higher than in the second scheme since the complexity of
computing τ(S, x) is O(n3)(see [9]).

3.1 Analysis of dishonest users

In the three schemes presented, we consider two forms of dishonesty: the first
includes attempts to compromise private data, and the second includes attempts
to bias trust values (malicious behavior). A’s motivation to act dishonestly is to
learn private information (e.g. a member’s trust in an expert). Members of A’s
trust set act dishonestly when they try to find out A’s trust in them or if they
attempt to bias an expert reputation by providing wrong input.

Members in S gain from acting dishonestly only when A’s identity is known
to them. We assume that when this information is kept private the agents will
follow the above protocols (although members may be strongly biased toward /
against expert x, this bias is accepted by A and affects A’s trust value in Bi).

In the first scheme members know exactly who the requester A is. If they
want to mislead A, they can promote or demote the value ITE(A,Bi, x) they
provide to the trusted third party, Z. Also, since each member participating
in scheme 1 knows the trust value of A in them, no misconduct is expected
in an attempt to infer TM(A,B). However, in this scheme, members may also
attempt to gather information about the nature of the relation other members
have with A. This is not possible if we assume secure communication, as A sends
its information directly to each member, and these only sends their information
to Z. In the second scheme, A’s identity can be protected. Thus, members have
no motivation to mislead A since they don’t know who A is. In the third scheme
only the first and last users know who A is and A can select these as trusted
friends, the rest have no motivation to be malicious.

The requester A may act dishonestly in order to learn a member’s direct
trust in x by setting the member trust values accordingly (even if we assume
that TM of zero is not a valid value). For example, if the trust in a member is
a value in the range 1..10 and the trust in an expert is a value in the range 1..5.
A may guess the exact trust in an expert by setting one TM value to 1 and the
rest to 6. In the first scheme A cannot fake her trust in members of her trust set
since we assume that they are aware of A’s trust in them. In the second scheme
we can use Z to examine the sets of different TM(A,Bi) values that are either
suspicious or those that allow A to infer the trust a member has in x with good
probability. In the third scheme we can reduce the risk of A faking her trust
in members by a verification procedure carried out by members of the trust set
that detect very low values as suspicious.

4 Conclusions

In this paper we discussed the problem of computing reputation of members in a
community while preserving the privacy of sensitive information. Such informa-



tion includes the rating of individual members and the trust that one member
has in another. The paper presents three schemes for privacy preserving compu-
tation and analyzes their privacy characteristics and communication overhead.
The presented schemes apply techniques for secure summation [9] and dot prod-
uct [2] and use these as primitives in a virtual community oriented setting. Our
constructs extends state of the art work to elevate existing trust based models
in which privacy is a major concern.

Although the schemes were presented in the context of a specific trust and
reputation model, the Knots model, they may be used by other models which
take into account the same sensitive information (members ratings and members
trust). Future work will include formal proof of the amount of privacy provided,
an implemented architecture of the suggested protocols and further discussion
of privacy issues in trust and reputation systems.
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