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Abstract. This research focuses on analyzing the cost effectiveness of a 
database intrusion detection system that uses dependencies among data items to 
detect malicious transactions. The model suggested in this paper considers three 
main factors: the quality of intrusion detection, the probability of intrusion, and 
the cost structure of an organization whose data is protected by the intrusion 
detection system. We developed a step by step approach that helps in 
determining the optimal configuration expressed by the response strategy and 
the threshold value. The experimental results show that our model is capable of 
finding the optimal configuration while taking the cost structure of an 
organization into consideration. 
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1 Introduction 

Although there exist many security tools for protecting computer systems from 
attacks, as per [1], none of them can provide absolute security. Therefore, all 
important events that occur in a computer system must be supervised and examined 
for a possible presence of malicious activity by intrusion detection systems. Of the 
two universally recognized models for intrusion detection [2, 14], misuse detection 
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and anomaly detection, the latter typically uses a threshold to define which events are 
considered normal and which are considered intrusive [3, 4, 15]. By changing the 
threshold, an organization may find the optimal balance between successful detections 
and false alarms. However, finding of the optimal configuration is a difficult task. 
Some recent works have focused on the optimization techniques for anomaly 
detection systems [4, 5]. At present, the majority of existing host-based anomaly 
detection systems are ineffective in detecting attacks on databases, since they are 
focused on tracking and analyzing events that occur in operating systems and 
applications, and not on the database itself. Although a few models have been 
developed for detecting malicious activities in databases, to the best of our 
knowledge, none of these methods have been analyzed for their cost–effectiveness. 
The objective of this work is to evaluate the data dependency based database intrusion 
detection system [12] for optimization based on response strategy and threshold 
value. 

2 BACKGROUND 

A limited research has been done to address the problem of malicious transaction 
detection in database systems. In [6] an architecture for intrusion-tolerant database 
systems is proposed. An intrusion-tolerant database management system is able to 
operate and deliver essential services even in case of attacks. However, this approach 
is more focused on the localization of attacks and recovery of the damage, than on 
developing a specific intrusion detection system. A database intrusion detection 
scheme based on data dependency rule mining is presented in [11]. A similar method 
that uses weighted sequence mining techniques is offered in [7]. The major drawback 
of this detection method is that the weights of attributes must be assigned manually.  
The method presented in [8] detects intrusion in databases that employs role-based 
access control and it uses Naïve Bayes Classifier to predict the role which the 
observed SQL command most likely belongs to, and compares it with the actual role. 
If the roles are different, the SQL statement is considered illegal. An intrusion 
detection system for real-time database systems has been discussed in [9]. 
Researchers in [10] proposed a misuse detection system for databases based on the 
observation that there exist certain regularities in “access patterns” of users.  Our 
research is based on the model presented in [12] that detects malicious activities in a 
database management system by using data dependency relationships. 

Regarding the effectiveness of intrusion detection, a study presented in [3] 
showed that such methods are subject to the base-rate fallacy, coming to the 
conclusion that “in order to achieve substantial values of the Bayesian detection rate, 
we have to achieve a low false alarm rate”. He found that in most cases such a rate is 
unattainable.  Following that, researchers in [13] developed the techniques for 
building an intrusion detection system on the basis of cost-sensitive models. The first 
comprehensive study on the cost effectiveness of intrusion detection systems 
appeared in [5], which addresses the problem of finding the optimal configuration of a 
single intrusion detection system, and various combinations of multiple intrusion 
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detection systems.  An optimization scheme based on game theory has been offered in 
[4]. 

3 THE MODEL 

3.1 Data Dependency Based Intrusion Detection Model 

In this section, we very briefly discuss the data dependency based database intrusion 
detection model, which was presented in [12]. This model has two components, 
namely, the static semantic analyzer and the dynamic semantic analyzer.  The static 
semantic analyzer is employed to analyze the database application program statically 
to discover intra-transaction data dependencies represented by the read, pre-write, and 
post-write set. If a transaction does not conform to the read,  pre-write, or post-write 
sets, it will be identified as a malicious transaction. This is treated as the first line of 
defense. In case, the malicious transactions are well-crafted and are compliant with 
the data dependencies discovered by the static semantic analyzer, the access patterns 
to these sets can be used to discover malicious transactions. The access probabilities 
for these sets depend on the execution path of the database application and the normal 
user access patterns of the database. The dynamic semantic analyzer is designed to 
calculate the access probability based on the database log.  

To have a better understanding on the data dependency based database intrusion 
detection model, we illustrate an example here. Suppose during normal database 
operation phase, two transactions T1 and T2 are generated by the database application. 
Assume that we have the SQL statements in T1 and T2 as shown in Table 1. 

Table 1.  

T1 T2 
Update Table1 set m = i + j  where … 
Update Table1 set n = m + k where … 
Update Table1 set t = m + p + q where … 

Update Table1 set m = i + r where… 
 

 
The static semantic analyzer will generate the read, pre-write, and post-write sets 

as illustrated in Table 2.  Let us use data item m to illustrate the purpose of these sets 
and how they can be used to identify malicious database transaction. Data item m has 
non-empty read set and post-write set. The read set states that before data item m is 
updated by the transaction, either data items in {i, j} or {i, r} have to be read by the 
transaction. The post-write set states that after m is updated, data item n and t have to 
be updated by the same transaction.  Please note that the where clauses have been 
ignored to keep this example short and may not be so in reality. If a transaction 
updates data item m without complying with rules specified by the read set and post-
write set, it will be identified as an anomalous transaction. 
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Table 2.  

 Read Set Pre-Write Set Post-Write Set 
m { {i, j}, {i, r} { ∅ } { {n,t}} 
n { {m, k} } { {m} } { ∅ } 
t { {m, p, q} } { {m, n} } { ∅ } 

If an attacker’s transaction is well-crafted and conform to the data dependencies 
specified, the dynamic semantic analyzer then steps in. Say, in reality, the access 
probabilities of {i, j} and {i, r} in the read set of m are different for normal user 
transactions and set {i, r} is only infrequently used for updating m in special 
occasions. If the attacker’s transaction updating m reads {i, r} instead of {i, j} before 
modifying m, the access probability of the read set generated by the dynamic semantic 
analyzer can be used to identify this anomalous transaction. For more information on 
the data dependency based database intrusion detection model, interested readers may 
refer to [12]. 

As per the requirement of the data dependency based database intrusion detection 
method, there can be only two types of users:  normal users and intruders. Normal 
users are authorized users, who connect to the database only through the database 
application and, therefore, can generate only legal transactions. Intruders are 
unauthorized users, who connect to the database from a remote terminal 
masquerading as normal users. There are many ways to pretend to be a normal user. 
For example, an intruder can obtain a password of the legitimate account or take 
control of a normal user’s database connection. In any case, in order to get an access 
to the database, an intruder must find some vulnerability and exploit it. 

3.2 Probability of Intrusion 

There are three main factors that contribute to the cost of anomaly detection.  These 
factors should be taken into consideration in the analysis of the optimal configuration 
of a data dependency based intrusion detection system. The first factor is the detection 
rate of the system. The method described in [4] was adapted to estimate this 
parameter. The second factor is the ratio of intrusions to legal activities. We assess 
this value by assuming that the number of intrusions depends on the number of 
vulnerabilities in the computer system that may allow an attacker to establish a 
connection to the database protected by the system. Bayes’ formula for posterior 
probability is used to find the actual probability of attack in presence or absence of an 
alarm signal. The last factor is the losses incurred by an organization in different 
outcomes of a single attack. These values define which response strategy the 
organization needs to apply. The optimization conditions for the response strategy are 
found by means of linear programming. The optimal value of threshold is derived 
computationally. 

If both valid and illegal transactions are generated at the same rate, the expected 
rate of intrusions among all transactions can be expressed the as follows: 
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where α  is the proportion of successfully exploited vulnerabilities to all discovered 
vulnerabilities, ψ  is the rate at which vulnerabilities are discovered and ϕ  is the rate 
at which normal users establish connections to the database. The value of ϕ  can be 
easily retrieved by analyzing the database log. In order to find ψ, it is necessary to 
find out what sort of vulnerabilities can be used by an intruder to establish a 
connection to the database. For example, if the operating system on which the 
database application is deployed has a vulnerability that allows getting unauthorized 
access to this system, the intruder finally will be able to steal the password of a 
legitimate database user and establish a connection to the database. Then, using the 
information supplied by the vendor or other organizations such as Computer 
Emergency Response Team, we can estimate the rate at which such vulnerabilities are 
discovered. The most difficult is to evaluate the value of α which depends on a large 
number of various factors.  

The probability that certain vulnerability will be successfully used for an attack is 
greatly influenced by the personality of the individual who first discovered this 
vulnerability. If the vulnerability was discovered by the vendor, it will very likely not 
be announced before the hot fix is released. If the vulnerability is discovered by a 
potential intruder, everything depends on the intruder’s behavior: a hacker can either 
conduct an attack or publish the discovered vulnerability. We can assume that, in the 
first case, there is always a possibility that instead of attacking a single target, the 
hacker can randomly choose a target or perform a mass attack against all known users 
of the vulnerable software or hardware. If the vulnerability is published, the 
probability that this vulnerability will be used against a single organization 
considerably increases. All these factors significantly complicates the calculation of 
α. Hence, to simplify the problem, we assume that α is the fraction of vulnerabilities 
successfully utilized by hackers before the patch has been applied by a vendor. Thus, 
relying on the statistics of successful attacks we can estimate the value of α, which, in 
turn, allows us to find the intrusion rate.  

3.3 Evaluation of the Data Dependency Based Database Intrusion Detection 

As explained earlier, the data dependency based intrusion detection system uses the 
dependencies among the data items in the database. Before a data item is updated in 
the database, some other data items are read or written, and after the update, other 
data items can be written too. Malicious transactions are detected by comparing read, 
pre-write and post-write sets against data items actually read or written by user 
transactions. Also the access probability for these sets can be used to identify 
malicious transactions. Without loss of generality we can formulate data dependency 
based intrusion detection method as the following two rules: 

1. Static Detection Rule: Each update operation of a transaction must 
conform to the data dependencies represented by the read, pre-write, and 
post-write sets;  
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2. Dynamic Detection Rule: Each update operation of a transaction must 
conform to the normal user access patterns of different sets in the read, 
pre-write, and post-write sets. 

 Normally the update operations of a transaction are sequentially tested for 
compliance with both the rules. The transaction is considered illegal if any of its 
update operations does not conform to at least one of the rules. However, for the 
purposes of analysis we assume that initially all of the update operations of a 
transaction are tested for compliance with the first rule. We call this procedure static 
detection. Then, the update operations are tested for compliance with the second rule, 
which we call dynamic detection. The transaction is considered illegal if any of its 
update operations fails to pass either the static or the dynamic detection procedure. It 
is obvious that our approach produces the identical results with the original detection 
method.  

Each transaction that goes through the static analyzer causes the creation of the 
data dependency which the transaction conforms to. In other words, transactions that 
were used to generate the data dependencies are always identified as legal by the 
static detection. Since, by definition, the static analyzer takes into consideration all 
transactions that can be generated by the database application, we can assume that the 
false positive rate of the static detection equals to zero. Actually, this assumption 
seems to hold in most real-life situations, as the transactions which were omitted 
during the static analysis are likely to be revealed later, in course of generating the log 
file for dynamic analysis. The experiments conducted by [12] provide the empirical 
evidence of this assumption, since, according to their results, the false positive rate 
always equals to zero, when the detection is based only on the results of static 
semantic analysis.   

Notice that the transactions identified as malicious by the static detection will be 
classified as illegal regardless of the result of the dynamic detection. Therefore, if we 
denote PSTP as the true positive rate of the static detection, then the aggregate 
detection rate of both static and dynamic detection can be calculated as follows:  

DTPSTPSTPTP PPPP )1( −+=  
where PDTP is the rate at which the dynamic detection correctly identifies intrusions 
misclassified by the static detection.  

The static detection cannot be made more or less strict, so that PSTP is a constant 
value unless the database application is modified. PSTP can be expressed as the 
proportion of the transactions identified as illegal by the static detection to all illegal 
transactions. To obtain this proportion, we need to construct a set of sample intrusions 
and test the static detection procedure against this set. If the selected samples are 
representative, we will get an indicative PSTP value. 

Unlike the static detection, the dynamic detection can be made more or less strict 
by regulating the threshold value. This means that there exists a Receiver Operating 
Characteristic (ROC) curve which plots PDTP against false positive rate PFP.  Although 
the ROC curve can also be derived empirically, we will need to conduct a large 
amount of tests. Therefore, it is better to use an analytical method for finding 
economically optimal configuration of dynamic detection. 

Normally, the dynamic analyzer computes the total use probability for each data 
item set and marks it as infrequently used if the value is less than the thresholdτ. In 
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order to comply with data dependencies, a transaction needs to access all data items of 
at least one data item set of each read, pre-write and post-write sets that represent 
these data dependencies. The dynamic detection generates an alarm signal when the 
transaction includes at least one data item set which is marked as infrequently used. 
Let us make some alterations of this method. Suppose, the data dependencies created 
by the static analyzer altogether contain N data item sets, D1, D2,…,DN. Instead of 
marking data item sets as infrequently used, the dynamic analyzer associates each 
data item set with its total use probability

iDM , 1 ≤ i ≤ N.  Now, suppose that 
transaction T accesses all members of K different data item sets, K ≤ N. During the 
analysis of T, the dynamic detection finds the minimum μ of the values associated 
with each of K data item sets, 

},...,,min{
21 KDDD MMM=μ . 

Then, this value is compared against the threshold τ. If μ  is greater than or equal 
to τ , then transaction T does not include any infrequently used data item, i.e., all K 
data items have the total use probability that are greater than the threshold and the 
transaction is normal. If μ  is less than τ , then the transaction includes at least one 
infrequently used data item, so that an alarm signal is generated. Even though the 
alterations we made do not change the outcome of the dynamic detection, they 
rearrange this procedure to the form to which we can apply an analytical method. The 
only exception is that the result is inverted with regard to the threshold value, so that 
we need to change the limits of integration. As a result, using the base formulas from 
[17], we express PDTP  and PFP as follows: 
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where τ is the detection threshold, μL is the mean value of μ  for legal transactions, μF  

is the mean value of μ  for intrusions, σL is the variance of μ for legal transactions, σF 
is the variance of μ for intrusions, and U(x) is the probability density function for both 
normal and malicious database transactions. Same variance for normal and malicious 
database transaction is assumed. So essentially, PDTP or PFP represents the integration 
of the normal density function. Figure 1 illustrates a sample computation of PDTP and 
PFP. 

Before performing analytical analysis we need to estimate the values of μL, and 
σL , μF   and σF. The former two values can easily be derived from the log file. In 
order to obtain the latter two values we need to find illegal transactions that are 
classified as legal by the static detection and build a set of sample intrusions. The 
samples must be representative; otherwise, the computed value will not indicate the 
real false positive rate. 
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Fig. 1. Computation of PDTP and PFP 

3.4  Optimal Response Strategy 

An organization may or may not have to respond to the alarm signal generated by 
the intrusion detection system. The response usually consists of manual investigation 
of the event which caused the alarm. If the event is indeed malicious in nature, the 
manual investigation allows recovering a part of the damage caused by the intrusion. 
However, the investigations are costly, since they engage resources, both people and 
equipment, and often interfere with the ongoing work. Therefore, an organization 
must decide to investigate an alarm signal, only if there is a great likelihood that the 
alarm was caused by an intrusion. 

In order to make a reasoned decision, an organization needs to find the 
probability of intrusion given occurrence of  alarm, which is expressed, in case of data 
dependency based intrusion detection, by the following formula: 

)1()()|()()|(
)()|()|(

λλ
λ

−+
=

¬¬+
==

FPTP

TP
A PP

P
IPIAPIPIAP

IPIAPAIPp  

where λ is the intrusion rate.  In fact, an organization may decide to launch an 
investigation even if there is no alarm signal, assuming that the intrusion detection 
system produced a false negative outcome. In this case, the organization will need to 
evaluate reliability of its intrusion detection system by computing the posterior 
probability of intrusion given the absence of an alarm signal, as follows: 

)1)(1()1(
)1(

)()|()()|(
)()|()|(

λλ
λ

−−+−
−

=
¬¬¬+¬

¬
=¬=

FPTP

TP
N PP

P
IPIAPIPIAP

IPIAPAIPp  

If an investigation finds that a suspicious transaction in fact is illegal, the 
organization starts recovery procedure to restore the data damaged by this transaction.  
Since investigations are costly, an organization may skip the investigation procedure 
and immediately start the database damage assessment and recovery procedures to 
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cancel out the effects of the transaction which caused an alarm signal. That is, the 
organization fully relies on the decision made by the intrusion detection system. 
However, in case of detection error, the organization will incur losses by rolling back 
a legal transaction. In contrast, a manual investigation always clarifies the true type of 
a transaction, so that the recovery that follows a manual investigation involves only 
illegal transactions. 

Let ci denote the cost of manual investigation, cr represent the cost of a rollback 
operation, cd represent the damage caused by a successful intrusion, and ce denote the 
loss caused by a rollback operation over a legal transaction. Then, the expected cost 
of a transaction when an alarm is generated is determined by the following equation: 

;)()(
)1()1(),(

dAAeAdAerAdArAi

AeAAAdAArArAAiAAA

cprcpcpccicpcpc
rcpricprcicpicriF

+−−++−+=
=−+−−+++=

 

where iA is the fraction of  manually investigated alarm signals, and rA is the rate at 
which the transactions identified as illegal are automatically rolled back by employing 
a database recovery procedure. This function, however, does not reflect the entire 
expected cost, as it does not take into consideration the losses incurred in the absence 
of the alarm, which are computed as follows: 

;)()(
)1()1(),(

dNNeNdNerNdNrNi

NeNNNdNNrNrNNiNNN

cprcpcpccicpcpc
rcpricprcicpicriF

+−−++−+=
=−+−−+++=

 

where iN is the rate at which transactions classified as legal are investigated, and rN is 
the rate at which transactions classified as legal are automatically rolled back. Figure 
2 illustrates the possible responses in both alarm and no alarm cases. 
 

 

Fig. 2. Possible Responses 

From the expected costs of a transaction in both alarm and no alarm cases, we 
can determine the total cost as the arithmetic mean of these values: 
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The variables iA, rA, iN, rN define the optimal response strategy and must be 
chosen to provide minimal values of FA and FN. The optimization conditions with 
regard to these functions are identical, since both of them are expressed by the same 
formula; the only exception is the different probability parameters. We examine the 
optimization conditions by the example of FA. 

The task of finding the minimal cost can be represented as the problem of linear 
programming [16] with an objective function FA(iA , rA) that is a subject to the 
following inequality constraints: 

10 ≤≤ Ar , 10 ≤≤ Ai , and 10 ≤+≤ AA ri . 
These inequalities follow from the fact that iA and rA represent the proportions of 

responses to the received alarm signals. As shown in Figure 3, they produce the 
region of possible solutions limited by both coordinate axes and the line expressed by 
function AAA rri −=1)( . 

 
Fig. 3. Solution Region for FA 

It is known that at least one of the vertices of feasible region represents the 
optimal solution [16]. In our case, there exist three possible solutions that correspond 
to the vertices of the triangle-shaped region: 

1. iA=0, rA=0;   2. iA=1, rA=0;  3. iA=0, rA=1. 
Each of these solutions becomes optimal under certain conditions. These 

conditions are defined by the coefficients of the variables iA and rA. For simplicity, we 
represent these coefficients as follows: 

dArAi cpcpca −+= ,  eAdAer cpcpccb −−+= . 
In this case, we can represent FA as 

dAAAAAA cpbrairiF ++=),( . 

It is obvious that iA=0 and rA=0 is the optimal solution if 0≥a , 0≥b . 
We can prove it by contradiction. First, let us find the minimal value of the expected 
cost:  

dAdAA cpcpbaF =+×+×= 00)0,0( . 



Analysis of Data Dependency Based Intrusion Detection System  11 

Now, let us assume that there exist such iA and rA that FA(iA ,rA) is less than pAcd, 
i.e. 
 dAdAAA cpcpbrai <++ . 

In this case, the following condition is necessary to hold: 
 0<+ AA brai . 

Since the inequality constraints prevent iA and rA from accepting negative values, 
this condition contradicts to the initial condition that both a and b are greater than or 
equal to zero.  

iA=1 and rA=0 is the optimal solution if 0<a , ba ≤ . 
In this case the minimal value for FA(iA ,rA) is  

dAdAA cpacpbaF +=+×+×= 01)0,1( . 

Let us assume there exist such iA and rA, 0>Ar , AA ri −≤1 ,that FA(iA ,rA) 
accepts a lesser value, i.e., 

dAdAAA cpacpbrai +<++ . 
Knowing that  

)1( AA raai −≤ , 
we can represent the previous inequality in the form of 

dAdAAA cpacpbrara +<++− . 

Simplifying it, we will get ba > , which contradicts to ba ≤ . 
iA=0 and rA=1 is the optimal solution if 0<b , ab < . 

We can prove this condition in the same way as the previous one.  
Now we can calculate what ratio of the real values each optimal solution 

corresponds to. From 0≥a , follows that  
0≥−+ dArAi cpcpc , 

i.e., 

A
rd

i p
cc

c
≥

−
. 

From 0≥b , follows that 
0≥−−+ eAdAer cpcpcc , 

i.e., 

A
ed

er p
cc
cc

≥
+
+

. 

From  ba ≤ , follows that  

eAdAerdArAi cpcpcccpcpc −−+≤−+ , 
i.e., 

A
er

ier p
cc

ccc
≥

+
−+

. 

Thus, the optimization conditions for FA can be formulated as shown in Table 3. 
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Table 3.  

Optimization conditions iA rA 
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cc
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0 0 
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1 0 

A
ed

er p
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ccc
<

+
−+

 
0 1 

 
The same conditions for FN  are achieved by replacing PA with PN. 
To sum up, the organization’s actions to optimize the transactions should consist 

of the following steps: 
1. Select a representative set of known illegal transactions and test the static 

detection against the set to estimate PSTP as the proportion of the transaction 
identified as intrusions to all transactions in the set; 

2. Find μ for each of the illegal transactions identified as legal by the static 
detection, compute mean μF and variance σF; 

3. Select the representative set of known legal transactions and find μ for each 
of these transactions; compute mean μL and variance σL.  

4. Determine α, ψ  and ϕ and calculate the rate of intrusions λ;  
5. Determine the organization’s cost metrics expressed by ci, cr, ce, cd ; 
6. Find the optimal configuration, i.e. the values of FT, τ, iA, rA , iN, rN; 
7. Set the threshold to τ ; 
8. Follow the response strategy defined by iA, rA , iN, rN . 
Since many of the initial variables change their values in course of time, the 

organization must periodically repeat these operations to update the optimal 
configuration. 

4 Experimental Results 

As mentioned in Section 3.2, there are three factors affecting the cost of the 
intrusion detection. Changing of any of these factors leads to the alteration of the final 
outcome. However, as Table 3 indicates, the absolute values of the cost metrics 
expressed by ci, ce, cr and cd are less important than the proportions of these four 
variables. The proportions of the first two parameters are unlikely to change with 
time; moreover, the values of ci and ce are expected to be of the same magnitude, as 
both the investigation of an alarm signal and the recovery from an erroneous rollback 
require human interaction. In contrast, the value of cd may significantly vary, as the 
damage caused by an attack depends on the nature of the data stored in the database. 
Given that the rollback is one of the key features of database management systems, cr 
is expected to be much smaller than ci and ce. From these considerations, the 
following variants of the cost metrics were selected for testing: 
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1. cr = 1, ce = ci = 100, cd = 10000; 
2. cr = 1, ce = ci = 100, cd = 50000; 
3. cr = 5, ce = ci = 100, cd = 50000; 

In the first variant, we assume that the damage caused by a successful intrusion is 
100 times greater than the cost of investigation and the cost of recovery from a falsely 
conducted rollback, which, in turn, are 100 times greater than the cost of a rollback 
operation. In the second variant we increase the potential damage, while other 
parameters remain the same. In the third variant we additionally increase the cost of a 
rollback operation. 

The quality of intrusion detection is expressed by PSTP, μL, μF ,σL and σF. These 
parameters should not significantly change with time, unless the intrusion detection 
system has been deployed without a proper training. We tested the program against 
different sets of the parameters, and selected those whose test results are more 
illustrative: PSTP = 0.4, μL=0.6, μF =0.4, σL=0.2, σF=0.2.  In order to show how the 
probability of intrusion influences the optimal configuration, we chose the value of λ 
to vary from 10-5 to 10-1.  Figure 4 illustrates the total expected cost for all three 
variants of cost metrics. The x-axis of the graph is a logarithmic scale representing the 
values of λ. It must be noted that the data provided in this figure is a small subset of 
that obtained through the experiment; due to page limitation, we could not produce 
the entire result here. 

As Figure 4 indicates, in spite of the fact that in the second variant, the value of 
potential damage cd is five times greater than that in the first one, the maximum value 
of the cost function does not increase significantly. However, a larger value of cd 
increases the growth rate of the cost function. In contrast, the cost of recovery from an 
erroneous rollback cr affects the maximum value of the cost function.  Furthermore, 
as Figure 4 depicts, the costs start to decline at some point. Although it seems 
atypical, the explanation for this phenomenon is that the growth of intrusion rate 
decreases the uncertainty of intrusion detection process. In other words, high intrusion 
rate permits more accurate decisions, thus, effectively responding to the attacks. 

5 Conclusions 

In this paper, we have presented a model that can be used to determine the 
economically optimal configuration of the data dependency based intrusion detection 
system. Three main parameters are taken into consideration in our model: the 
intrusion rate, the quality of the intrusion detection, and the cost metrics of an 
organization. We presented a step by step methodology that helps in finding the 
optimal configuration, expressed by the response strategy and the threshold value. 
Our experimental results suggest that the value of potential damage does not 
proportionately affect the total cost function. However, the recovery cost associated 
with an erroneous rollback significantly affects the maximum value of the cost 
function.  Furthermore, the experiment illustrated that the dynamic detection is useful 
only at high intrusion rates. Therefore, while the expected rate of intrusion remains 
reasonably low, an organization may simply rely on the static detection and still 
maintain a low total expected cost of the intrusion detection.  As part of our future 
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work, we plan to conduct further experiments to identify optimal response strategy 
under various circumstances. 
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Fig. 4. Total Cost for Different Variants of Cost Metrics 
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