
Building an application data behavior model for
intrusion detection

Olivier Sarrouy and Eric Totel and Bernard Jouga

Supelec, Avenue de la Boulaie, CS 4760, F-35576 Cesson-Sévigné CEDEX, France
E-mail : firstname.lastname@supelec.fr

Abstract Application level intrusion detection systems usually rely on
the immunological approach. In this approach, the application behavior
is compared at runtime with a previously learned application profile of
the sequence of system calls it is allowed to emit. Unfortunately, this
approach cannot detect anything but control flow violation and thus
remains helpless in detecting the attacks that aim pure application data.
In this paper, we propose an approach that would enhance the detection
of such attacks. Our proposal relies on a data oriented behavioral model
that builds the application profile out of dynamically extracted invariant
constraints on the application data items.

1 Introduction

Two approaches coexist in intrusion detection. The misuse-based approach
relies on the research of known attack signatures in the data collected over the
information system. Because it requires signatures, this approach cannot detect
unknown attacks. On the other hand, the anomaly-based approach relies on the
comparison, at run time, of the application behavior with a previously built
normal behavior model. At the application level, the anomaly-based approach
is largely preferred. In this case, the normal behavioral model of an application
is often built dynamically by the observation of the sequences of system calls
it emits [11]. Such system call based intrusion detection systems appear to be
insufficient as they cannot detect anything but control flow violations. Thus,
attacks that do not disturb the control flow of the application and focus on pure
data remain undetected [6].

In this paper we introduce an approach that would enhance the detection
of such attacks. Our proposal relies on a data oriented behavioral model. More
precisely, our goal is to dynamically discover invariant constraints on the ap-
plication data that would characterize normal states of the application. This
paper is organized as follows : we first discuss the existing work on the topic,
we then explain how to build the application data model, and we finally exhibit
our prototype implementation before discussing the results we obtain.

2 Related work

Most recent application level anomaly-based intrusion detection systems rely
on the immunological approach introduced by Forrest and al. [11]. This approach

is built over an external - or black-box - behavioral model and consists in monito-
ring the sequences of system calls emitted by the application [13]. Such intrusion
detection systems are efficient in detecting classical attacks which obviously mo-
dify the sequences of system calls emitted by the application, but are easy to
evade by mimicing the sequence of system calls the application is supposed to
emit [20]. To contend this kind of attacks, proposals have been done to enhance
the behavioral model with process internal information, such as the content of
the call stack or the value of the program counter at the time of system calls
[12]. Such approaches, called gray-box approaches, indeed make mimicry attacks
more difficult to succeed but remain unable to detect anything but control flow
integrity violation. However, another kind of attacks exists which does not dis-
turb the control flow of the application but nonetheless leads to the same threat
than classical attacks [18,6].

This second class of attacks focuses on the data that do not influence the
application control flow, and are thus called pure data attacks or non-control
data attacks. These attacks constitute an important threat as they cannot be
detected by any of the current intrusion detection systems [18]. Furthermore, it
appears that numerous real world vulnerabilities can be exploited using such a
pure data attack [6]. Some work has already been done which aims at detecting
pure data attacks, mainly focusing on the integrity of the application data-flow,
either through complete data-flow graph or through taint-checking [4,5,17,14]. In
this paper, we propose to dynamically discover likely invariants in the application
data in order to characterize its normal behavior. In this goal, we rely on the
definition of the set of data that may be sensitive to an intrusion attempt and
thus on the notion of tainted data.

3 Pure data attacks

As explained in the previous section, current intrusion detection systems
remain helpless in detecting what we call pure data attacks, i.e., attacks which
do not violate the integrity of the application control flow. In this section we
first introduce an example of such an attack and then study it in the perspective
of the properties it breaks concerning the data it modifies.

3.1 An example of a pure data attack

A typical example of a pure data attack may be found in the exploitation of
the WU-FTPD Site Exec Command Format String Vulnerability [3] described
in [6]. This vulnerability allows an attacker to overwrite a C structure, denoted
pw. The severity of this vulnerability resides in that the pw structure contains the
uid of the authenticated user. More precisely, this structure is used to re-affect
the application rights to those of the authenticated user after each operation
which requires the application to gain root privileges, such as the setsockopt()
system call used in the treatment of a GET request. This example of complete
attack, given in Figure 1, is interesting as it clearly does not disturb the control

- pw->pw_uid undefined
- euid = 0 Unauthenticated

- pw->pw_uid = 1000
- euid = 1000

Authenticated as Alice

In this example, Alice's uid = 1000

- pw->pw_uid = 0
- euid = 1000

- pw->pw_uid = 0
- euid = 0 *

Authenticated as root

USER Alice
PASS alicepassword

OK

Attack
SITE EXEC \x22\x33 ... %d%n

CD /etc
GET passwd

* Due to the call of seteuid(pw->pw_uid)
 at the beginning of the data transfer

Alice has permanent
administrative privileges

/etc/passwd

PUT passwd

Modify the passwd file

Server state Client State

Fig. 1. WU-FTPD pure-data attack

flow of the application, and thus would not be detected by any of the classical
system call based approaches. An other interesting point in the study of this
attack is that it appears to be characteristic of the properties pure data attacks
break when they are performed. We discuss this idea in more details in the next
subsection.

3.2 Attack characterization

The pure data attack described in the previous subsection appears to be
interesting in how characteristic it is in the disturbance of the expected proper-
ties of the application data. Indeed, this attack breaks a very simple property
verified during a normal use of the application, which is that the pw->pw uid
variable should remain constant during a given session. In this perspective, deno-
ting pw->pw uid1, pw->pw uid2, ..., pw->pw uidn different values of pw->pw uid
during the execution of a given session, this attack may be characterized by the
fact that whenever pw->pw uid1, pw->pw uid2, ..., pw->pw uidn are extracted, it
breaks the simple constraint pw->pw uid1 = pw->pw uid2 = ... = pw->pw uidn.

More generally, it appears that most pure data attacks - and even more
classical attacks - can be characterized by the fact that they break one of the
constraints on data that are verified when the application remains in a « nor-
mal » state, i.e., when it runs without being attacked.

4 Data-based intrusion detection model

As explained above, most pure data attacks - as well as more classical attacks
- can be characterized by the fact that they break some properties verified by the
application data when this application remains in a « normal » state. Thus, we
believe that extracting and afterwards controlling these properties would allow
us to detect intrusions more accurately. In this section, we first introduce a formal
definition of a process state and propose an abstraction of this definition focused
on the properties verified by the application data. Then, we intend to define the
notion of attack in the eyes of this abstraction, still focusing on the properties
verified by the application data. Finally, we propose a detection model based on
that previously introduced considerations.

4.1 State of a process

For each discrete time i, the snapshot state si of a process may be defined
by si = 〈pci, v1i

, ..., vni
〉 where pci is the location in the process of the execu-

ted instruction at time i, i.e. the value of the program counter, and v1i , ..., vni

the values of the various data manipulated by the program at time i (registers,
environment variables, global and local variables, etc ...). This definition of the
state of a process may be insufficient in the perspective of intrusion detection.
Indeed, controlling the consistency of snapshot state si at a given time i some-
times requires the knowledge of all the previous snapshot states s0, ..., si−1. We
thus define the global state Si of a process - in its temporal meaning - at time i
by Si = 〈s0, ..., si〉 = 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i , ..., vni〉.

The set of all potential global states of a process, denoted S is a huge set
where all elements cannot be reached during a « normal » execution of a given
program. Though, we may define the set of allowed global state of a process,
denoted A as the set of global states which can be reached in a context of an
attack free execution.

In practice, it appears that A constitutes a quite small subset of S that we
would like to define in order to discern the « allowed » states and the « unallo-
wed » states. As it seems impossible and probably not much relevant to explicitly
define A, we propose to abstract the state definition to implicitly define it by
expressing the various constraints on the values that application data can effec-
tively take when this application is in an allowed global state. In other words, we
define a number of relationships which constitute a constraint system C. Given a
global state Si = 〈s0, ..., si〉 = 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i

, ..., vni
〉 we consider

that Si ∈ A ⇐⇒ 〈pc0, ..., pci, v10 , ..., vn0 , ..., v1i
, ..., vni

〉 verifies C. Given this
definition a « normal » application state, we can now propose an attack model.

4.2 Attack model

As explained above, we may assume that the application is in an unallowed
global state, i.e., a state S ∈ S\A when one of the constraints of C is broken.

Thus, we propose, on the basis of our data constraint based state model, a defi-
nition of an attack as a sequence of « user actions » which leads the application
from a state Si ∈ A into a state Sf ∈ S\A, therefore breaking the constraints
on the application data that characterize the set A. Given this definition of an
attack, we can now propose a detection model which focuses on the constraints
verified by the application data.

4.3 Detection model

Our detection model relies on the assumption that it is possible to extract in
whatever manner the set of constraints C which characterize the set of allowed
global states A. Supposing this assumption verified, we thus propose to monitor
the application by controlling the enforcement of this set of constraints C and
to raise an alert as soon as one of these constraints seems broken. However, the
extraction of the set of constraints C may appear quite complex. Nevertheless, as
our goal is not to fully qualify the consistency of a given state, but only to qualify
it in a security perspective, it is clear that not all the data items manipulated
by the application are interesting for our work. In the next section, we thus try
to define which data can be critical in a security focused perspective and then
examine a way to practically extract this data out of the whole application data
set.

5 Intrusion sensitive data set

The set of interesting data we try to extract, henceforward called intrusion
sensitive data set and noted ISDS, is defined by the two main properties it
verifies. First, in an immunological approach, it constitutes a subset of the data
which may influence the system calls. Furthermore, it constitutes a subset of the
data being influenced by user inputs, which we call tainted data. The notion of
influence between two or more data can be formally defined by the notion of
causal dependency [8,19,7]. Denoting (o,t) the content of the data object o (a
byte or a variable depending on the level of granularity) at time t, we may then
denote (o’,t’) → (o,t), with t′ ≤ t the causal dependency of (o,t) in relation to
(o’,t’). The relation→ being transitive, we may then define the causality cone of
a point (o,t) as cause(o, t) = {(o′, t′)/(o′, t′)→ (o, t)}. In the same way, we may
define the dependency cone dep(o,t) as the set of points which causally depend
on (o,t) and write dep(o, t) = {(o′, t′)/(o, t)→ (o′, t′)}.

This notion being introduced we may now give a more formal definition of
the intrusion sensitive data set. The first property characterizing the intrusion
sensitive data set expresses the fact that ISDS belongs to the causality cone of
the system calls and their arguments. The second property characterizing the
intrusion sensitive data set as well expresses the fact that ISDS belongs to the
dependency cone of user inputs. Thus, as we have expressed ISDS as the set of
data respecting these two properties, we may define it as the intersection of both
the causality cone of the system calls or their arguments and the dependency

cone of the user inputs and denote (with sc the set of system calls and ui the
set of user inputs) :

ISDS = cause(sc) ∩ dep(ui)

In the next section, we present the kind of constraints we aim at extracting
out of the intrusion sensitive data set we have just defined.

6 Constraints determination

In section 4.2, we have formulated the hypothesis that attacks generally vio-
late invariant constraints on the application data. We have thus tried to extract
these constraints, with the help of an automatic invariant discovery tool called
Daikon [1,10,9]. Daikon analyzes the execution traces of a given application and
tries to extract invariant properties out of it on the basis of a property grammar
which contains the set of all searched invariants. These invariants, which are thus
exhaustively verified on the execution trace data, can be very complex : constant
data item (e.g. x = a), data item taking only a few distinct different values (e.g.
x ∈ {a, b, c}), definition set (e.g. x ∈ [a..b]), non-nullity, linear relationship (e.g.
x = ay + bz + c), order relationship (e.g. x ≥ y), single invariants on x + y, x
- y, etc. We introduce in the next section the implementation of our prototype,
and explain how to generate the execution traces needed for a Daikon analysis.

7 Implementation

In order to generate the execution traces on ISDS, we have used Valgrind
[2,16] to emulate a processor controlled by our prototype and have executed
the monitored application on this emulated processor. Valgrind is a dynamic
binary instrumentation framework offering a dedicated API to emulate a pro-
cessor and study the binaries executed on this emulated processor. Our intrusion
detection system prototype, called Fatgrind, has thus been designed as a plugin
to Valgrind. Fatgrind mainly aims at dynamically extracting ISDS and gene-
rating its execution traces containing the value of the data belonging to it. To
achieve these goals, Fatgrind builds a shadow of the memory of the monitored
process [15]. Each time a byte of memory is written, Valgrind checks whether it
is tainted and thus whether it must be shadowed or not. Furthermore, when a
system call is emitted, Fatgrind computes its causality cone. Each tainted byte
belonging to this causality cone belongs to ISDS and is thus dumped into a file.
Once enough executions of a given application have been done, the execution
traces generated are considered complete enough and are analyzed by Daikon to
automatically extract the likely invariants it contains. Of course, the quality of
the extracted invariants depends on the exhaustivity of the normal application
behavior learning.

8 Results

To evaluate our model, we have studied a little snippet of code equivalent to
the one studied in section 3. This snippet of code was designed to be represen-
tative enough although generating very few traces and thus very few invariant
properties, allowing us to easily check their consistency. We have thus focused
here on the validation of our approach by trying to control one by one the in-
variants inferred by Daikon out of the execution traces generated by Fatgrind.
Among the various properties extracted we indeed discovered the constraints
expressing the equality of the uid variable at the beginning of the daemon loop
and at its end. The obtained results have thus shown the viability of the ap-
proach on a small but representative example. Moreover it appears that most
of the attacks described in [6] would be detected by our approach excepted the
attack against the SSH server where the attacked data item is whatever modified
during a normal use of the application. This report thus encourages us to pursue
the prospective work we have engaged even if a lot of enhancements could be
brought to our approach.

9 Conclusion and future work

The work presented in this paper proposes a way to enhance application
level intrusion detection by introducing a data-oriented detection model. This
approach relies on the automatic generation of a behavioral model based on the
relationship between application data aiming at detecting state inconsistency
at runtime. In order to pursue such an approach, it is necessary to determine
which data are sensitive to intrusions and how these data items are related
to each other. As shown by the results of the previous section, the proposed
approach indeed enables the detection of pure data attacks. However, regarding
the conclusion of this prospective work, it appears that several enhancements
could be brought. Indeed, the binary level does not allow us to access a high
semantical level, as, for instance, we do not get any information about the type of
the manipulated data. We therefore plan to apply this approach to programming
language using a native intermediate representation (Java, .Net, PHP, etc.) in
order to directly modify the interpreter and thus access a richer semantic.

10 Acknowledgement

This work has been funded by the french DGA (General Delegation for Ar-
mament) and the french CNRS (National Center for Scientific Research) in the
context of the DALI (Design and Assessment of application Level Intrusion de-
tection system) project.

Références

1. Daikon. groups.csail.mit.edu/pag/daikon/.

2. Valgrind. www.valgrind.org.

3. Cert advisory ca-2001-33 multiple vulnerabilities in wu-ftpd.
http ://www.cert.org/advisories/CA-2001-33.html, 2001.

4. M. Castro, M. Costa, and T. Harris. Securing software by enforcing data-flow
integrity. In Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation, 2006.

5. L. Cavallaro and R. Sekar. Anomalous taint detection. Technical report, Secure
Systems Laboratory, Stony Brook University, 2008.

6. S. Chen, J. Xu, E. Sezer, P. Gauriar, and R. Iyer. Non-control-data attacks are
realistic threats. In Usenix Security Symposium, 2005.

7. B. d’Ausbourg. Implementing secure dependencies over a network by designing
a distributed security subsystem. In Proceedings of the European Sysmposium on
Research in Computer Security (ESORICS’94), 1994.

8. D. E. Denning. A lattice model of secure information flow. Commun. ACM, 1976.

9. M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering
likely program invariants to support program evolution. IEEE Transactions on
Software Engineering, 2001.

10. M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,
and C. Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 2007.

11. S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff. A Sense of Self
for Unix Processes. In Proceedings of the 1996 IEEE Symposium on Research in
Security and Privacy, 1996.

12. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graphs for
anomaly detection. In Proceedings of the 11th ACM conference on Computer and
communications security, 2004.

13. S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences
of system calls. Journal of Computer Security, 1998.

14. E. Larson and T. Austin. High coverage detection of input-related security faults.
In Proceedings of the 2003 Usenix Conference (Usenix’03), 2003.

15. N. Nethercote and J. Seward. How to shadow every byte of memory used by a
program. Proceedings of the Third International ACM SIGPLAN/SIGOPS Confe-
rence on Virtual Execution Environments, 2007.

16. N. Nethercote and J. Seward. Valgrind : A framework for heavyweight dynamic
binary instrumentation. In Proceedings of ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, 2007.

17. J. Newsome and D. Song. Dynamic taint analysis for automatic detection, analysis,
and signature generation of exploits on commodity software. In Proceedings of the
12th Annual Network and Distributed System Security Symposium (NDSS 2005),
2005.

18. C. Parampalli, R. Sekar, and R. Johnson. A practical mimicry attack against
powerful system-call monitors. Technical report, Secure Systems Laboratory, Stony
Brook University, 2007.

19. A. Sabelfeld and A. Myers. Language-based information-flow security, 2003.

20. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection sys-
tems. In CCS ’02 : Proceedings of the 9th ACM conference on Computer and
communications security, 2002.

