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Abstract. Cut-and-choose is used in interactive zero-knowledge proto-
cols in which a prover answers a series of random challenges that establish
with high probability that the prover is honestly following the defined
protocol. In this paper, we examine one such protocol and explore the
consequences of replacing the statistical trust gained from cut-and-choose
with a level of trust that depends on the use of secure, trusted hardware.
As a result, previous interactive protocols with multiple rounds can be
improved to non-interactive protocols with computational requirements
equivalent to a single round of the original protocol. Surprisingly, we
accomplish this goal by using hardware that is not designed for our ap-
plications, but rather simply provides a generic operation that we call
“certified randomness,” which produces a one-way image of a random
value along with an encrypted version that is signed by the hardware
to indicate that these values are properly produced. It is important to
stress that while we use this operation to improve cut-and-choose proto-
cols, the trusted operation does not depend in any way on the particular
protocol or even data used in the protocol: it operates only with random
data that it generates. This functionality can be achieved with minor
extensions to the standard Trusted Platform Modules (TPMs) that are
being used in many current systems.

We demonstrate our technique through application to cut-and-choose
protocols for verifiable group encryption and optimistic fair exchange.
In both cases we can remove or drastically reduce the amount of in-
teraction required, as well as decrease the computational requirements
significantly.

1 Introduction

Zero-knowledge proofs were first introduced by Goldwasser et al. [19] and have
applications in a wide range of cryptographic protocols that require authenti-
cation of one party to another. A zero-knowledge proof is a protocol in which
a prover P provides some information I to a verifier V , and then engages in
a protocol to convince V that I satisfies some property Q(I) that would be



difficult for V to compute on its own. For example, I might be an encrypted
value and the property Q(I) refers to a simple property of the corresponding
plaintext. Zero-knowledge proofs are used in higher-level protocols such as fair
exchange [1], identification protocols [16], and group signatures [4]. Interactive
zero-knowledge proof systems often employ a paradigm called “cut-and-choose”
in which the prover answers a series of random challenges given by the verifier.
For each challenge, the verifier has at most a 50% chance of getting cheated.
With sufficiently many challenges, the chances of a dishonest prover answering
all of them correctly, and the verifier getting cheated on all of them is negligible.
This requires several rounds of communication between the prover and verifier,
and increases the communication costs, thereby decreasing the efficiency of the
protocol. Several protocols for the verifiable encryption problem use such zero-
knowledge proofs, and this is the core problem that we examine in this paper.

Verifiable encryption is a protocol that actively involves two parties, a prover
and a verifier, and passively involves one or more additional parties. In its sim-
plest version, with a single trusted third party T , the prover P encrypts a secret
value s that is supposed to satisfy some specific property (e.g., a signature on
some message) with the public key of the trusted third party PKT , and sends
the encrypted value EPKT

(s) to the verifier V . The protocol is such that V is
convinced that the received ciphertext will decrypt to a value s which satisfies
the necessary property, but other than this fact V is not able to discover any ad-
ditional information about the value s. In a typical application, a honest prover
will later reveal the secret, and the trusted party is only involved if the protocol
does not complete and V needs to recover the secret without the assistance of P .
Verifiable encryption has been used to construct solutions for fair exchange [1,
2], escrow schemes [29], and signature sharing schemes [17]. In this paper we
solve a generalized, more powerful version known as verifiable group encryption,
in which there are multiple semi-trusted parties (“recovery agents” or “prox-
ies”) and authorized subsets of agents. The secret is encoded such that it can be
recovered only by an authorized subset of recovery agents working together.

One of the more important applications of verifiable encryption is the fair
exchange problem: Two parties A and B have values that they would like to
exchange (e.g., A has a credit card number and B has a downloadable song),
and after executing a fair exchange protocol either both parties receive the value
they are entitled to, or neither does. Fair exchange is the central problem in
various online transactions, and with e-commerce transactions growing at an
ever increasing rate with operations such as online credit card transactions,
online stock trading, and e-checks becoming more common than ever, a large
number of businesses depend on these transactions being executed fairly.

The Trusted Computing Group, an industry consortium of over 100 compa-
nies, has developed specifications for a hardware chip called the Trusted Plat-
form Module (TPM) [22]. TPMs have become common in laptops, business-
oriented desktops, and tablet PCs, including those by IBM, Dell, Lenovo, HP,
and Toshiba, as well as in some server-class systems such as the Dell R300.
TPMs are designed to be very cheap (under $5 each), and are intended to be



easily embedded on the motherboard of a standard system. While major CPU
and chipset manufacturers have designed additional trusted computing compo-
nents (e.g., the Intel LaGrande project), in this paper we simply require the TPM
chip. Primarily, the TPM is used for measurement of system parameters (BIOS,
hardware elements, operating system, software applications, among others) to
provide a measured and protected execution environment, which assures the in-
tegrity and trustworthiness of the platform. To support trustworthy reporting of
these measurements to outside parties, TPMs sign measurements with “Attes-
tation Identity Keys” (AIKs): keys that cannot exist in usable form outside the
TPM, are only used inside the TPM to sign values produced inside the TPM
chip itself, and are certified by a designated certification authority known as a
PrivacyCA which vouches for the fact that the certified key is indeed a legiti-
mate AIK which can be used only internally to a TPM. The exact process of
establishing that a key is an internal-use only AIK relies on a chain of trust from
the manufacturer of the TPM, and is beyond the scope of this paper to describe
— interested readers are referred to the TPM documentation for details [22]. In
addition to operations with measurements and AIKs, TPMs provide a variety of
other capabilities, and in this paper we use the TPM’s ability to generate ran-
dom numbers (or at least cryptographically secure pseudo-random numbers),
and the ability to perform encryption. In this paper we show how to use the
capabilities of a TPM to improve upon existing verifiable encryption protocols
and protocols (specifically fair exchange) that build upon verifiable encryption.

1.1 Our Contribution

We investigate ways in which limited trusted hardware, such as TPMs, can be
used to generate certain non-interactive zero knowledge proofs and thus im-
prove protocols that use these cut-and-choose constructions. Interestingly, we
show that a significant benefit can be gained from constructions that we design
around two proposed very generic TPM commands: TPM MakeRandomSecret and
TPM EncryptShare. These are simple extensions to the current TPM specifica-
tion that involve generating a (pseudo)-random number and signing a set of
values with an AIK. Using these two commands, we can bring down the commu-
nication costs and decrease the number of rounds required in certain interactive
zero-knowledge proof systems. We have identified two applications of our scheme:
fair exchange protocols and verifiable group encryption. Using our TPM-based
protocols, we construct a verifiable group encryption scheme and solve an open
problem in Asokan et al.’s paper [1]: making their protocol non-interactive and
bringing down the cost of the verifiable escrow operation. Other applications may
also benefit from our techniques, including applications such as group signatures
and identity escrow schemes.

2 Related Work

This paper builds upon work in both cryptography and in hardware-assisted
security, and in this section we review related work in each of these areas.



2.1 Cryptographic Protocols

Cut-and-choose zero-knowledge proofs are used in many cryptographic protocols
that involve authentication while maintaining privacy, such as the Fiat-Shamir
identification scheme [16, 4], non-malleable commitments [18], concurrent zero-
knowledge protocols [3], and verifying secret shuffles [20], among other protocols.
Although there have been methods proposed to reduce the round complexity of
zero-knowledge proofs and the design of non-interactive zero-knowledge proofs,
most protocols that use such methods require us to accept a weaker form of
security [8]. In this paper we focus on applications of interactive zero-knowledge
proofs in verifiable group encryption and a specific application of verifiable en-
cryption: fair exchange of signatures.

We now expand on the description of verifiable encryption given in the pre-
vious section to make precise what is meant by the secret value satisfying some
property. Specifically, there is a given relation R, the prover and verifier share
a public value x, and the secret s is such that (x, s) ∈ R. For example, x could
be a public message, and s could be a digital signature made by the prover on
that message — while the verifier is convinced that the prover has indeed signed
the message and provided an encrypted version of this signature as EPKT

(s),
the verifier cannot retrieve the actual signature until either the prover provides
it later or the recovery agent T decrypts the signature for the verifier (e.g., at a
specific “release time”).

The exact relation R depends on the application of verifiable encryption. In
some protocols, the secret is simply the pre-image of the public value x under
some one-way function f(s) = x, meaning that R = {(x, f−1(x))} — this is the
case in the work by Asokan et al. [1], where f is additionally a homomorphism.
Camenisch and Damgard [7] consider a generalized problem in which the relation
R is any relation possessing a 3-move proof of knowledge which is an Arthur-
Merlin game, which they call a Σ-protocol, and includes all of the relations
considered by Asokan et al.’s earlier work.

In addition to introducing Σ-protocols, Camenisch and Damgard also expand
the problem from the verifiable encryption problem studied by Asokan et al.
(with a single trusted party), to the verifiable group encryption problem (with
n semi-trusted recovery agents, or proxies), that we described in the previous
section. Camenisch and Damgard’s solution [7] is a cut-and-choose based method
in which the prover generates two sets of n shares of an intermediate secret, and
then encrypts these 2n shares. The verifier asks the prover to open half of those
encryptions, and in doing so can verify that the prover honestly constructed that
set of encryptions. Thus if the prover attempts to cheat on one (or both) sets
of shares, this will be discovered with probably of at least 1/2. Camenisch and
Damgard then repeat this process multiple times to decrease the chance of being
cheated to a negligible probability.

Fair exchange (of digital signatures) is an important application of verifiable
encryption. There have been a number of protocols developed for fair exchange
of digital signatures, and a survey paper by Ray outlines many of them [30]. The
work by Asokan, Shoup, and Waidner [1], which we mentioned above for the



results on verifiable encryption, provides one of the most widely-referenced and
efficient optimistic fair exchange protocols. Synchronizing messages between the
parties so that the fair exchange properties are met is challenging, but the heart
of this protocol is their solution to the verifiable escrow problem. Thus, in case
one of the parties cheats, the other (honest) party can get the signature or the
promised item from the third party. As is common in many other fair exchange
protocols, this protocol employs a cut-and-choose zero-knowledge proof between
the prover and verifier.

2.2 Hardware-Assisted Security for Cryptographic Protocols

The idea of using trusted hardware tokens to improve the security of crypto-
graphic protocols can be traced back to the work by Chaum and Pedersen [12],
Brands [6], and Cramer [13] in which observers, or smart-cards, or tokens act as
intermediaries in financial transactions between a user and a bank. This idea was
recently studied in a theoretical setting by Katz [26] in which user-constructed
hardware tokens are used as part of a protocol for realizing multiple commitment
functionality in the universal composability (UC) framework. Independently,
Chandran, Goyal and Sahai [11], and Damgard et al. [14] improve on Katz’s
results by making the token independent of the parties using it, resettable, and
relying on general assumptions like trapdoor permutations rather than crypto-
graphic assumptions. More recently Moran and Segev [28] have improved upon
all of the above results by requiring that only one of the two parties involved
needs to build a tamper-proof token as opposed to the previous results which
require that both prover and verifier have to generate their own hardware to-
kens. Our work is clearly related to this line of work on hardware tokens, but
rather than using tokens created by a participant in the protocol we trust a
hardware manufacturer to produce a trustworthy TPM that provides generic,
non-application and non-user-specific functionality. A similar approach using
TPMs for a different problem was taken by Gunupudi and Tate [24], who show
how a TPM with some slight modifications can be used to act in a way in-
distinguishable from a random oracle, which can then be used in multi-party
protocols.

Sarmenta et al. [32] introduced the notion of virtual monotonic counters,
and designed two schemes to implement this concept using TPMs. Sarmenta et
al. then show how virtual monotonic counters can be used to produce several
interesting applications such as digital wallets, virtual trusted storage, and of-
fline payment protocols. In addition, they also introduced the concept of Count-
limited objects (or clobs), which are cryptographic keys or other TPM-protected
objects that are tied to a virtual monotonic counter, and are limited in the
number of times that they can be used.

Using the foundation created by Sarmenta et al., Gunupudi and Tate [25]
applied clobs to create non-interactive protocols for oblivious transfer, designing
a particularly efficient technique for a set of concurrent k-of-n oblivious transfers.
In particular, a large set of general oblivious transfers can be performed using just



a single clob, resulting in a very efficient protocol for a wide range of applications
that use oblivious transfer, including secure function evaluation (SFE).

3 Preliminaries and Protocol Primitives

In this section we describe the TPM operations we propose in this paper. For
constructing our protocols, we use the ability of the TPM to generate random
(secret) numbers, create signatures using one of the TPM’s Attestation Identity
Keys (AIKs), and do basic encryption. Recall that an AIK is a signing key
that is certified by a PrivacyCA as usable only inside a TPM, so we trust that
values signed by an AIK were correctly and honestly produced (assuming an
uncompromised TPM).

To support the cryptographic operations required by the TPM specification,
TPMs must be able to perform modular arithmetic, and we use these capabilities
to perform operations over a particular cyclic group. In particular, let p and q
be primes such that q|p − 1, and let g be a generator for the subgroup of Z∗p
of order q. These values can be global for all TPMs, although it is advisable
that these values be modifiable in case particular primes are discovered to have
undesirable properties. The operations we require of the TPM will be modulo p
and modulo q arithmetic, and based on other keys used by the TPM and other
considerations p might be 1024 or 2048 bits, with q being 160 bits.

3.1 Secret Sharing Schemes

Secret sharing is a fundamental part of our work, so we review the concepts and
establish notation in this section. Specifically, we look at threshold secret sharing,
in which a secret is divided among a group of n members who have decided on a
threshold value, say, k. Each member gets a share of the secret, and only groups
of at least k members can reconstruct the secret. Shamir’s scheme [34] was
the first such secret sharing scheme. Other secret sharing variations, using both
thresholds and more general notions of access control structures, include those
by Feldman [15], Blakley [5] and Krawczyk [27]. Formally, a threshold secret
sharing scheme consists of two functions: Share and Recover such that:

Share(x, k, n)→ (s1, s2, . . . , sn): Splits a secret x ∈ Zq into n shares, with each
si ∈ Zq, so that the secret can be reconstructed from any k shares but not
from any fewer than k shares.

Recover(v1, v2, . . . , vk, k, n)→ y: If v1, v2, . . . , vk are k different shares pro-
duced by the Share operation, then the value y that this produces is the
original secret value (x in the Share operation).

3.2 Our Protocol Primitives

The following are two proposed TPM commands which we will use in this pa-
per. While not necessary for the most straightforward applications, we give the



capability to attach a “condition” to the certified randomness produced by these
commands — the condition may be arbitrary, but a fixed-length hash is passed
to the first command and then included in each encrypted share by the second
command (e.g., if SHA-1 is used, like many other TPM commands, this would
be a 160-bit parameter). This condition is vital for more involved protocols, such
as the fair exchange protocol that we describe in Sect. 4.3, where a party uses
the condition to commit to certain values when starting the verifiable encryption
process.

TPM MakeRandomSecret(hCond, k, n)→ (secHandle, r): This operation gener-
ates a random r ∈ Zq that will be shared in a k-of-n secret-sharing scheme,
and provides the value and a handle to an internal protected storage ver-
sion of the secret. The value hCond is the hash of a “condition” tied to this
random secret, as described above.

TPM EncryptShare(secHandle,AIKHandle, i, PK)→
SignAIK(EPK(hCond ‖ si), PK, k, n, gr, hCond): Gives a signed, encrypted
version of the i-th share of random secret r (referred to by secHandle). If this
is called with i = 1, . . . , n, the shares that are encrypted, s1, . . . , sn should
be the shares output by Share(r, k, n) for some secret sharing scheme.

Since TPMs support basic modular arithmetic for encryption operations,
these operations are relatively easy to implement efficiently using Shamir’s she-
cret sharing scheme [34]. In some applications, such as the optimistic fair ex-
change protocol that we describe later, we don’t need secret sharing at all. In-
stead, we simply need to be able to encrypt the secret random value using the
public key of one or more trusted parties so that the secret can be recovered later
if necessary. This is a degenerate “1-of-n” case of the generic operation above,
but we describe it here separately as this might be the most useful form of the
certified randomness operations.

TPM MakeRandomSecret(hCond)→ (secHandle, r): Random r ∈ Zq is selected,
stored internally with secHandle to refer to it, and returned to the user.
hCond is the hashed condition, as before.

TPM EncryptShare(secHandle,AIKHandle, PK)→
SignAIK(EPK(hCond ‖ r), PK, gr, hCond): The previously generated r is
bundled with the condition hCond and encrypted for a trusted party whose
public key is denoted by PK, and signed by the Attestation Identity Key
(AIK).

4 Our TPM-based Verifiable Group Encryption Protocol

In this section we show how the TPM operations defined above can be used to
implement a form of verifiable group encryption, a problem defined by Camenisch
and Damgard [7]. In verifiable group encryption, there is a sender (prover), a
receiver (verifier), and n semi-trusted parties (“proxies”). The sender has a public
value x that it claims satisfies some property, which can be verified using a secret



witness s known to the sender. The sender wants to send x along with additional
information to the receiver such that the receiver (a) has assurance that it can
recover the secret s if it has the cooperation of an authorized subset of the proxies
and (b) without the cooperation of an authorized subset of proxies the receiver
gets no information about s. There are several ways to define an “authorized
subset” of proxies, but the most generic way is to use a monotone access structure
Γ , which is a set of subsets of authorized proxies that is monotone (so that if
A ∈ Γ and A ⊆ B then B ∈ Γ ).

We next provide a precise and formal definition of this problem. While Ca-
menisch and Damgard formally defined (non-group) Verifiable Encryption and
then informally described the group encryption problem [7], they did not for-
mally define the Verifiable Group Encryption problem. Therefore, while our def-
inition is based on their work, the definition given here is new.

While expressed formally, the properties in the definition have simple in-
tuitive descriptions: The Completeness property states that if the prover and
verifier are honest, the verifier always accepts. The Validity property says that
no dishonest prover can trick a verifier into accepting something that will not
allow recovery of a valid witness s if the verifier uses a set of proxies that are
included in the access control structure Γ . The Computational Zero Knowledge
property states that no dishonest verifier can recover any information about a
valid witness s, and this is true even if the verifier uses an arbitrary set of proxies
that is not in the access control structure.

Definition 1 (Generic Verifiable Group Encryption). Let R be a rela-
tion and define language LR by LR = {x | ∃s : (x, s) ∈ R}. A Verifiable
Group Encryption Scheme for relation R consists of a two-party protocol (P, V )
and a recovery algorithm R. Assume we have a set of n proxies with encryp-
tion/decryption algorithms denoted (Ei, Di) for i = 1, . . . , n, and denote this set
with notation (E ,D) = ((E1, E2, . . . , En), (D1, D2, . . . , Dn)). Let VP (E , x, Γ, λ)
denote the output of the verifier when interacting with P on input (E , x, Γ, λ),
where Γ is a monotone access structure over D and λ is a security parameter.
Let ⊥ denote the null set. The following properties must hold:

1. Completeness: If P and V are honest, then for all sets of proxies (E ,D) and
all x ∈ LR,

VP (E , x, Γ, λ) 6=⊥ .

2. Validity/Soundness: For all polynomial time P̃ , all (E ,D), all Γ , all D̃ ∈ Γ ,
all positive polynomials p(·), and all sufficiently large λ, if α = VP̃ (E , x, Γ, λ)
and α 6=⊥ then

Prob[(x,R(D̃, α)) 6∈ R] < 1/p(λ) .

3. Computational Zero Knowledge: For any polynomial time Ṽ , which is a veri-
fier that takes a subset of decryption proxies D̃ ⊆ D in addition to the regular
verifier parameters, there exists an expected polynomial time simulator SṼ
with black-box access to Ṽ such that for all polynomial time distinguishers A,



all positive polynomials p, all x ∈ LR, and all sufficiently large λ, if D̃ 6∈ Γ
we have

Prob[A(E , x, αi) = i : α0 = SṼ (E , x, λ); α1 = ṼP (E , D̃, x, λ); i ∈R {0, 1}]

<
1
2

+
1

p(λ)
.

Definition 1 is a generic form of verifiable group encryption, but in order to
produce algorithms that can be put into fixed trusted hardware, we restrict two
general parameters in the above definition — we fix the relation R to be a specific
relation based on the discrete log problem, and we restrict the access control
structure Γ to be a threshold structure so that we can use simple threshold
secret sharing schemes. Specifically, we make the following two restrictions:

1. R ⊆ (Zp,Zq) is defined so that R = {(gs, s) | s ∈ Zq}. In other words, in
any pair (x, s) ∈ R, the secret s is the discrete log of x.

2. Γ = {D̃ | D̃ ⊆ D and |D̃| ≥ k}

Since we will be using trusted platforms to implement verifiable group en-
cryption, we need to establish the security properties of a trusted platform so
that we can reason about the security of our implementation. This assumption
is nothing more than an explicit description of what it means for a TPM to
be secure in the obvious sense, and reflects the requirements given in the TPM
Protection Profile [21]. While no hardware can be perfectly protected, currently
manufactured TPMs appear to have a high level of tamper resistance with re-
gard to the protection of secrets, and we believe that our security assumption is
realistic.

Definition 2. The Trusted Platform Security Assumption is the assumption
that the system containing a TPM satisfies the following properties:

1. Tamper-resistant hardware: It is infeasible to extract secrets stored in pro-
tected locations in the TPM.

2. Secure Encryption: The public-key encryption algorithm used by the TPM is
CCA-secure.

3. Secure Signatures: The digital signature algorithm used by the TPM is exis-
tentially unforgeable under adaptive chosen message attacks.

4. Trustworthy PrivacyCA: Only valid TPM-bound keys are certified by a trusted
PrivacyCA.

Assuming we have a trusted platform that provides the operations defined
in Sect. 3.2 and satisfies the Trusted Platform Security Assumption, we define
the following protocol for the verifiable group encryption problem — since our
protocol is non-interactive, we define it as a pair of algorithms, one for the sender
which produces the verifiably-encrypted secret, and one for the receiver which
verifies that the values produced by the sender are properly formed.



In the following algorithms, PK1, . . . , PKn denote the public encryption keys
of the n proxies, so the n-tuple (PK1, . . . , PKn) is the realization of the ab-
stract set of encryption routines E given in Definition 1. Furthermore, since the
abstract access structure Γ is restricted to be a threshold structure, it is fully
specified by the pair (k, n), which represents a “k-of-n” threshold structure. Fi-
nally, we assume that the AIK used in this protocol is loaded into the TPM
before VESender is called and is referenced by TPM handle AIKH, and we
have a certificate Cert(AIK) for this AIK signed by a trusted PrivacyCA. The
condition hCond associated with this escrow is the same as described in Sect. 3.2,
and can be used as needed by applications.

Algorithm VESender((PK1, . . . , PKn), s, (k, n), hCond, λ)
x← gs

(secHandle, r)← TPM MakeRandomSecret(hCond, k, n)
d← s+ r mod q
t← gr mod q
for i ∈ 1, . . . , n do Ci ← TPM EncryptShare(secHandle,AIKH, i, PKi)
return B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉

Algorithm VERecVerify(B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
if Cert(AIK) is not certified by a trusted PrivacyCA then return ⊥
if C1, . . . , Cn are not tuples 〈ci, PKi, k, n, t, h〉 signed by AIK then return ⊥
if 〈k, n, t, h〉 are not identical in all tuples with h = hCond then return ⊥
if gd 6= xt then return ⊥
return α = B

If it is necessary to use these encryptions to recover the secret s, the following
algorithm can be used:

Algorithm VERecover(α = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
Select k Ci’s: Ci1 , Ci2 , . . . , Cik , and use proxies to decrypt each hCondik ‖ sik

if any hCondik does not match parameter hCond then return ⊥
r ←Recover(si1 , si2 , . . . , sik , k, n)
s′ ← (d− r) mod q
return s′

Since the TPM guarantees that the recovered r is such that t = gr, and we have
verified that gd = xt, we have gd = xgr, so s′ is such that gs

′
= gd−r = x. Since s

is the unique value in 0, . . . , q−1 such that gs = x, we must have s′ = s, and we
have recovered the original secret s. Below we demonstrate a useful application
of this scheme.

4.1 Application to Verifiable Group Encryption of Signatures

In this section, we show how to apply our verifiable group encryption protocol
to the problem of verifiably encrypting shares of a valid digital signature. In this
problem there is a publicly-known message m, and we would like for a party
with public key y to sign this message. The signature is not to be revealed



immediately, but needs to be committed to and escrowed in such a way that
an appropriate set of trusted parties can recover the signature if necessary. We
would like to verifiably encrypt the signature so that the receiver has assurance
that the ciphertexts which it receives (and which are unintelligible to it) are in
fact shares of the requested signature.

Our verifiable encryption protocol can be used with many signature schemes,
including GQ [23], Fiat-Shamir [16], and RSA [31], but for concreteness we in-
stantiate it here with Schnorr signatures [33]. Techniques for using other signa-
ture schemes are similar to the techniques described in Section 4 of Asokan et
al. [1]. Note that the verifiable encryption protocol is independent of the sig-
nature scheme used, and the security of the verifiable encryption is in no way
related to the security of the underlying signature scheme. The Schnorr signature
scheme is briefly described below:

Setup of System Parameters: There is a prime modulus p with a generator
g of a subgroup of Z∗p of prime order q, where q is also prime. A random
value ζ ∈ Zq is the private key of the signer, Alice, and her public key is
y = gζ . Let Bob be the verifier.

SchnorrSign(m, ζ): To create her signature, Alice picks a random r ∈ Zq
and computes u = gr, c = h(u ‖ m), and z = r + ζc mod q, where h is a
cryptographic hash function. Her signature is then (c, z).

SchnorrVerify((c, z),m, y): Bob, who knows Alice’s public key y, checks if
h(gzy−c ‖ m) = c, and accepts if it is true, rejects otherwise.

Next we show the sender and receiver portions of our verifiable group encryption
of a Schnorr signature. Since the Schnorr signature is a pair (c, z), where c is
random (in the random oracle model), we transmit c in the clear and use the
verifiable encryption for only the second component z.

Algorithm SigSender((PK1, . . . , PKn),m, (k, n), ζ, hCond)
(c, z)←SchnorrSign(m, ζ)
B ←VESender((PK1, . . . , PKn), z, (k, n), hCond, λ)
return 〈(c, z),B〉

Algorithm SigVerifier(y,m, c,B = 〈d, x, t, C1, C2, . . . , Cn, Cert(AIK)〉, hCond)
if y is not an acceptable public key then return ⊥
if h(xy−c ‖ m) 6= c then return ⊥
return VERecVerify(B, hCond)

If it is necessary to recover the signature from the encrypted shares, we first do
a recovery from the verifiable group encryption to recover z. Since SigVerifier
has verified that h(xy−c ‖ m) = c, and the recovered z is such that x = gz, we
have h(gzy−c ‖ m) = c, which is exactly the property that must be verified in
SchnorrVerify. Therefore, (c, z) is a valid Schnorr signature on message m.

Algorithm SigRecover(c,B, hCond)
z ← VERecover(B, hCond)
if z =⊥ then return ⊥
return (c, z)



Our building blocks for this protocol, VESender and VERecVerify, pro-
vide a secure verifiable group encryption scheme, reflected in the following the-
orem.

Theorem 1. Let R be a relation such that R ⊆ (Zp,Zq) is defined so that R =
{(gz, z) | z ∈ Zq}. The protocol outlined above, when the prover uses a system
that satisfies the Trusted Platform Security Assumption, is a secure verifiable
group encryption scheme for R.

Proof : Due to space limitations we have removed this proof from the conference
paper. It can be found in the full version [35].

4.2 Comparison to Non-Trusted Platform Protocols

We now briefly compare the costs of our protocol to two verifiable encryption
protocols: that of Camenisch and Damgard [7] (the “CD” protocol), and Ca-
menisch and Shoup [9] (the “CS” protocol), in Table 1. Note that the CS pro-
tocol is described only for verifiable encryption of a single secret (not verifiable
group encryption); in the table, we estimate the values for k shares.

Although we cannot fully describe these protocols here due to lack of space,
we note that our full protocol is roughly comparable to one round of the CD
protocol and is completely non-interactive as compared to the CS protocol. The
CD protocol must be repeated in order to build trust: a dishonest prover can
get away with cheating on a single iteration of the secret-sharing phase with
probability 1/2, and this probability is reduced to 1/2R by repeating the protocol
R times. Using 30 rounds means the probability of the prover cheating without
detection is about one in a billion, and a very high degree of assurance can be
obtained by repeating the protocol 80-100 times.

The CS protocol improves on the CD protocol, but is not completely non-
interactive, although it reduces the amount of interaction from that required by
the CD protocol. In addition to providing improved efficiency, our protocol is
completely non-interactive: the prover computes some values, sends them off,
and then is no longer involved. In an e-mail setting (send and forget), this is a
vital property that our protocol achieves but earlier solutions do not.

4.3 Fair Exchange of Digital Signatures

Fair exchange is an important application of the verifiable group encryption
protocol outlined above, where additional operations are included to synchronize
the actions to ensure that the fair exchange property is satisfied. One of the open
problems left by Asokan et al. [1] was to come up with a way to eliminate the
expensive verifiable escrow operation and make their protocol non-interactive.
By using TPMs, we have shown that we can indeed make the protocol non-
interactive, greatly improving efficiency.

In fair exchange of signatures, two parties have messages that they have
pledged to sign, and at the end of the protocol either both have received the



CD protocol CS protocol Our Solution

Interactive Interactive Non-interactive

Cost for One Round (of 30-100) Cost for Full Solution Cost for Full Solution

Prover: 2 n-party Shares
2n encryptions

Verifier: n encrytions
1 or 2 mod powerings
0 or 3 mod multiplies

Recovery: k decryptions
1 secret sharing Recover

1 n-party Share
n encr.
n signatures

n sig. verifies
1 to 4 mod pow.
1 to 4 mod mult.

k decr.
1 sec. shar. Recover

1 n-party Share
n encr.
n sig.

n+ 1 sig. verifies
1 mod pow.
1 mod mult.

k decr.
1 sec. shar. Recover

Table 1. Comparison of the cost of the CD [7] and CS [9] protocols to our TPM-based
solution for n proxies.

other’s signature, or neither has. For concreteness, we assume Schnorr signatures
(as we used in our SigSender function), but this can easily be adapted to any
signature scheme that has a secure reduction scheme using the homomorphism
θ(x) = gx. At the beginning of the protocol, parties A and B have agreed to sign
messages mA and mB , respectively, and along with the publicly-known messages
both parties know each other’s signature public keys yA and yB (corresponding
private keys ζA and ζB are known only to A and B, respectively). Asokan et
al.’s protocol is an “optimistic fair exchange protocol,” meaning that the trusted
third party is not involved unless there is a dispute, but the third party does
require a single, consistent database of tuples to keep track of any requests that
have been made of it. The generality of our solutions for verifiable encryption
in this paper, using multiple trusted parties and a threshold scheme, causes
complications for the fair exchange problem — unless a single globally-consistent
database is maintained, it might be possible for a party to cheat the controls
that the trusted party is supposed to enforce. While we could potentially do
this with some distributed database of tuples, we simplify the problem back to
a single trusted party in this section. The trusted party has public encryption
key PK, which is known to all parties.

Below we give our modification of Asokan et al.’s fair exchange protocol,
which has our construct incorporated. In addition to inserting our signature
escrow functions SigSender, SigVerifier, and SigRecover, a few changes
come from the fact that we are using a specific signature scheme rather than a
generic homomorphic reduction scheme.

1. A chooses r ∈ Domain(f) at random and computes v = f(r). A then com-
putes its signature σA, encrypts it using a regular escrow scheme with con-
dition (v,mB , yB), giving an escrow α which it sends along with v to B.

2. B receives v and α from A, and computes hCond = h(〈v, α,mA, yA〉), then
〈(cB , zB), β〉 = SigSender(PK,mB , ζB , hCond). B’s signature on mB is
then σB = (cB , zB). B sends cB and β to A.



3. A receives cB and β from B, computes it’s own copy of hCond and checks
that β is a proper signature escrow using SigVerifier(yB ,mB , cB , β, hCond)
— if this does not verify, A calls A-Abort(r,mB , yB) and quits the protocol
(perhaps having received B’s signature σB); otherwise, A creates signature
σA for message mA and sends σA to B.

4. B receives σA from A and verifies that this is a valid signature on mA. If
this is a valid signature, then B sends signature σB to A; otherwise, B calls
B-Resolve(v, α,mA, yA,mB , yB , σB) which either returns σA (if α is a valid
escrow) or an error message.

5. A receives σB from B and verifies that this is a valid signature on mB . If this
is a valid signature, then the protocol halts, with both parties having received
valid signatures; otherwise, A calls A-Resolve(r, α, β, cB ,mB , yB ,mA, yA)
to get σB .

Functions A-Abort, A-Resolve, and B-Resolve are executed (atomically) by
the trusted party, and are straightforward adaptations of the functions designed
by Asokan et al. [1] following changes we made in the base exchange protocol
above. The details of these functions are provided in the full paper [35].

The fairness of this protocol is established following reasoning similar to that
in Asokan et al. [1], using Theorem 1 in this paper for the security of our verifiable
encryption scheme, resulting in the following theorem. The proof of this theorem
is a simple modification to the proof in Asokan et al. [1], so is not given here.

Theorem 2. Given parties A and B, in which B has access to a TPM that
satisfies the Trusted Platform Security Assumption, the protocol described above
is a secure optimistic fair exchange protocol.

The most expensive operation in Asokan et al.’s protocol is the verifiable
escrow operation which makes the cost of the protocol grow with R, where R is
the number of rounds between prover and verifier. Using our functions in place
of the verifiable escrow, we only need a single round, reducing the computational
cost, and perhaps more importantly makes that part of the fair exchange protocol
non-interactive.

5 Conclusion and Future Work

We have presented a generic subroutine-like TPM-based construct that we used
to create algorithms that replace cut-and-choose protocols in some interactive
zero-knowledge proofs, making that part of the protocol non-interactive and
more computationally efficient. In the process we have provided an efficient pro-
tocol for verifiable group encryption and improved the efficiency of the protocol
for fair exchange of signatures due to Asokan et al. [1]. Our protocols are generic
and independent of the signature scheme being used.

An intestesting open problem is whether other cut-and-choose protocols can
also be replaced with the help of the TPM-based techniques developed in this
paper, and we are exploring the possibility that our construct could be used



to improve other applications. Another interesting direction to pursue would
be looking at whether the security our TPM-based techniques can be reasoned
about in Canetti’s strong universally composable model of security [10]. We
believe that this is indeed possible, and could provide results quite similar to
Katz’s results but using our standard hardware components rather than custom-
designed hardware tokens.
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