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Abstract. We present a control mechanism for preserving confidential-
ity in relational databases under open queries. This mechanism is based
on a reduction of costly inference control to efficient access control that
has recently been developed for closed database queries. Our approach
guarantees that secrets being declared in form of a confidentiality pol-
icy are not disclosed to database users even if they utilize their a priori
knowledge to draw inferences. It turns out that there is no straightfor-
ward transition from the approach for closed queries to open queries.
We show, however, that hiding the confidentiality policy from database
users is sufficient to preserve confidentiality. Moreover, we propose an
algorithmic implementation of the control mechanism.

1 Introduction

In our modern information society, individuals disseminate personal informa-
tion over various channels. In the sense of informational self-determination, one
should be able to freely decide which information to reveal, but in fact it is
hardly possible to foresee all consequences of a revealed piece of information.
Thus it seems more appropriate for an individual to declare which information
should not be disclosed to other individuals.

In the context of relational databases (potentially carrying lots of personal
information), the goal of confidentiality preservation can be enforced by suit-
able mechanisms based on confidentiality policies declaring the information that
should not be disclosed to other database users. Besides confidentiality, how-
ever, availability of information is another important security goal: a database
can only be productively employed by a user if it delivers all information needed
to complete the user’s task. This apparently leads to a tradeoff between confi-
dentiality and availability.

Another aspect to be pointed out is the notion of information. Where data
are merely uninterpreted (not application-oriented) constants, information is
usually gained by adding semantics to data. For instance, data from a relational
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database can be combined with semantic constraints in order to deduce infor-
mation. Consider a relational database system maintaining the account data of
a bank; with the semantic constraint that account numbers are unique within
the bank, a database user learns the balance of an account holder when first
asking for the account number of this client and then asking for the balance of
the account with the number returned. Here, the combination of account holder
and balance is deduced information from the two query results and the semantic
constraint.

Controlled Query Evaluation (CQE) is an effective inference control mecha-
nism for protecting information as declared by a suitable confidentiality policy
in logic-oriented information systems. Such a policy consists of logical sentences,
called secrets, which the user must not know if they are true in the actual
database instance. For closed database queries, CQE checks whether the true
answer (or, in some cases, also the negated answer) to a query together with the
a priori knowledge of the querying user allows for the disclosure of information
being protected by the policy; if so, the answer is modified, either by lying (i. e.,
returning the negated answer) or by refusing the answer, or by a combination of
both. CQE primarily aims at preserving confidentiality of the declared secrets
but also ensures availability of information when confidentiality is guaranteed.

Regarding efficiency, CQE suffers from two problems. First, it relies on the
implication decision in first-order logic (being undecidable in general): each de-
cision whether a (closed) query may be answered correctly corresponds to the
decision whether a set of logical sentences implies a secret. Second, CQE has to
maintain a growing log file of the assumed user knowledge. This leads to high
time and space complexity, respectively. To overcome these drawbacks, a static
form of CQE has been developed reducing the expensive implication decision
to a pattern matching problem and abandoning the log file while keeping up
confidentiality preservation.

Being originally developed for closed database queries, in this work we extend
static CQE to open queries. A closed query does not contain free variables and
can thus be answered by either true or false. In contrast, an open query contains
free variables and the evaluation is the set of variable substitutions making the
query true in the database instance. Considering open queries is an important
step in enhancing our query language since most practical database queries are
open ones. Being confined to closed queries usually requires that a database user
already has certain knowledge about the content of the database whereas open
queries provide a higher degree of freedom in terms of expressiveness: Consider
a database that maintains the names of the account holders of a bank and their
balances. A user being confined to closed queries can only determine the balance
of an account holder by asking for different balances until the correct value
has been guessed. With open queries, however, this balance information can be
retrieved in one simple step.

After an overview of related work in Sect. 2, in Sect. 3 we recall some database
concepts and sketch previous results for static CQE for closed relational database
queries. In Sect. 4 we show that these results cannot be extended straightfor-
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wardly to open queries; we propose a new control mechanism for open queries
and prove it confidentiality preserving. In Sect. ?? we develop an algorithm for
this control mechanism. Sect. ?? concludes the paper and gives perspectives for
future research.

2 Related Work

Early approaches to security in relational databases mainly focused on discre-
tionary access control (DAC), either by granting privileges to database users
with data annotated by the respective access rights (see, e. g., [?]), or by modify-
ing user queries in order to enforce a discretionarily declared security policy (see,
e. g., [?]). Later, the concept of mandatory access control (MAC) was developed
and deployed in various approaches. Instead of attaching access control informa-
tion directly to the data (as DAC does), in MAC system-wide security policies
are enforced on the basis of security models (see, e. g., [?]). (Relational) databases
implementing MAC are also called “multilevel secure” (MLS) and make use of
techniques like polyinstantiation; see, e. g., [?,?,?,?,?]. Moreover, e. g. in [?,?,?],
comprehensive systems have been proposed that integrate DAC and/or MAC
into the different stages of database design.

Beyond traditional access control, inference control mechanisms have been
proposed to prevent unwanted flows of information. Information emerges from
the answers to database queries by, e. g., additionally taking database constraints
or common sense knowledge into account. An overview of the inference problem
in different areas can be found, e. g., in [?]. Prevention of inferences in relational
and MLS databases have been investigated, e. g., in [?,?,?,?,?].

Being initially proposed in [?,?] the ideas of protecting information in logical
databases according to security policies by lying and/or refusing to answer have
been elaborated in [?,?,?] under the notion of Controlled Query Evaluation. This
technique was extended for relational databases in [?] and optimized for specific
conditions in [?,?].

3 Preliminaries

3.1 Relational Databases and Open Queries

A relation schema RS = 〈R,U , Σ〉 describes the structure of a relation in a
relational database. R is the relation symbol, U is a finite set of attributes with
|U| = n, and Σ is a finite set of semantic constraints on U which we assume
to be a minimal cover (see [?]) of functional dependencies – the most prevalent
kind of local constraints in actual relational databases.

An instance r of a relation schema is a finite Herbrand interpretation of the
schema satisfying Σ and considering R as a predicate. The values ci of a tuple
µ = R(c1, . . . , cn) are elements of an infinite set of constants Const and the value
of an attribute A in a tuple µ is referred to by µ[A]. With |=M we denote the



4 Joachim Biskup et al.

satisfaction relation between an interpretation and a formula, so if µ is element
of r, we write r |=M µ.

Let A,B ⊆ U , then r satisfies the functional dependency (FD) A → B if for
any two tuples µ1, µ2 of r it holds that µ1[B] = µ2[B] for every B ∈ B whenever
µ1[A] = µ2[A] for every A ∈ A. K ⊆ U is a key of RS if K → U is logically
implied by Σ and K is minimal with this property. RS is in Boyce-Codd normal
form (BCNF) if for each FD A → B, logically implied by Σ and with B 6⊆ A, A is
a superset of a key. We assume single-relation databases (with schema 〈R,U , Σ〉
and instance r unless otherwise stated), leaving inter-relational considerations
for future research.

Database queries are expressed in a fragment of the relational calculus. Let
Var be a set of variables, then the query language Lq is the set of formulas of
the form (∃X1) . . . (∃Xl)R(v1, . . . , vn) with 0 ≤ l ≤ n, Xi ∈ Var , vi ∈ Const ∪
Var , {X1, . . . , Xl} ⊆ {v1, . . . , vn}, and vi 6= vj if vi, vj ∈ Var and i 6= j. If
{v1, . . . , vn}∩Var = {X1, . . . , Xl} for a query from Lq, then it is closed ; if there
are free variables in the query, ({v1, . . . , vn} ∩ Var)\{X1, . . . , Xl} 6= ∅, then it
is open. We denote queries by Φ(V ) where V is the vector of the free variables
in Φ. When convenient we omit the variable vector V (if V is empty or not
important in the context). With L c

q we denote the language containing exactly
the closed queries from Lq.

With sel(Φ(V )) ⊆ U we denote the set of attributes for which a constant
appears in Φ(V ). Since a closed query Φ(V ) ∈ L c

q corresponds to a projection
of a tuple to sel(Φ(V )) we refer to formulas from L c

q as select-project-queries.
The assignment of attribute A in Φ(V ) is denoted by Φ(V )[A] (∈ Const ∪Var).
In the following we assume a single user sending queries to the database and call
him “the user” for short.

3.2 Controlled Query Evaluation

The ordinary evaluation of a closed query Φ in an instance r is defined by
eval∗(Φ)(r) := if r |=M Φ then Φ else ¬Φ. An open query Φ(V ) is evaluated
by replacing the free variables V with constants c such that the resulting (closed)
sentence is true in r:

eval∗(Φ(V ))(r) = {Φ(c) | c ∈ Const × · · · × Const and r |=M Φ(c)}.

Note that the evaluation of an open query always implies a negative part: a
variable assignment c′ makes Φ(V ) false in the database instance if Φ(c′) does
not occur in eval∗(Φ(V ))(r).

Controlled Query Evaluation (CQE) deviates from the ordinary evaluation
if any of the previously declared potential secrets is going to be disclosed to
the user. A potential secret Ψ is a sentence of a policy language Lps being a
fragment of a suitable logic as discussed in [?]. The user may learn that Ψ is
false in the instance r; if, however, Ψ is true in r, then this information must be
kept secret. The confidentiality policy (or “policy” for short) is a finite set pol ,
consisting of potential secrets. From a security perspective it is desirable to reach
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preservation of confidentiality even if the user knows the policy. However, this
cannot always be guaranteed which justifies the option of hiding the policy, so it
may be known or unknown to the user. We assume the policy language to be the
set of (closed) select-project-queries over the relation R, i. e., Lps = L c

q . Finally,
the user is supposed to be aware of the semantic constraints of the database
being expressed by the set Σ of the relation schema RS .4 We thus initially set
the user knowledge, consisting of sentences that are true in r and that the user
is supposed to be aware of, to log0 = Σ.

For closed queries, CQE with potential secrets enforced by refusal has been
defined, depending on the user awareness a regarding the policy (a = known or
a = unknown), by cqea(Q, log0)(r, pol) := 〈(ans1, log1), (ans2, log2), . . . 〉 for a
sequence Q = 〈Φ1, Φ2, . . . 〉 of closed queries. It uses a censor function to deter-
mine the returned answers ansi (with mum denoting a refusal) and the updated
user knowledges log i. The censor inspects whether the true or the negated an-
swer to a query would enable the user to infer a potential secret (in the case of
an unknown policy only true potential secrets are considered).5 If so, the answer
is refused and the user knowledge does not change. Otherwise, the answer is
given honestly and the user knowledge is updated with this answer. We recall
the definitions from [?] amended by the “improved refusal”6 result from [?]:

censorknown(pol , log , Φ, r) := (exists Ψ)(Ψ ∈ pol and
(log ∪ {eval∗(Φ)(r)} |= Ψ or log ∪ {¬eval∗(Φ)(r)} |= Ψ))

censorunknown(pol , log , Φ, r) := (exists Ψ)(Ψ ∈ pol and
r |=M Ψ and log ∪ {eval∗(Φ)(r)} |= Ψ)

ansi := if log i−1 |= eval∗(Φi)(r) then eval∗(Φi)(r) else
if censora(pol , log i−1, Φi, r) then mum else eval∗(Φi)(r)

log i := if log i−1 |= eval∗(Φi)(r) or censora(pol , log i−1, Φi, r)
then log i−1 else log i−1 ∪ {eval∗(Φi)(r)}

To model “correct” and “harmless” user knowledge we assume r |=M log0 and
we require each instance-policy-pair (r, pol) to satisfy a precondition depending
on the user awareness: if a = known the precondition for (r, pol) is log0 6|= Ψ , for
every Ψ ∈ pol ; if a = unknown the precondition is if r |=M Ψ then log0 6|= Ψ ,
for every Ψ ∈ pol . According to [?] the CQE cqea preserves confidentiality in the
sense of the following definition:

Definition 1. A CQE is confidentiality preserving for a policy pol if for every
finite prefix Q′ of a sequence Q of queries the following holds: For every Ψ ∈ pol
and for every instance r (with (r, pol) satisfying the precondition) there exists an
instance r′ and a policy pol ′ (with (r′, pol ′) satisfying the precondition) with

(1) (r′, pol ′) leads to the same answers for Q′ as (r, pol);
4 These semantic constraints may reflect business rules the user is aware of.
5 Inspecting the negated answer is necessary to avoid meta-inferences [?].
6 If the user already knows the answer to his query, the censor is bypassed.
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(2) eval∗(Ψ)(r′) = ¬Ψ ;
(3) if a = known: pol ′ = pol .

A CQE is confidentiality preserving if it is confidentiality preserving for all
possible policies.

Example 1. Consider the schema 〈BANK ,U , Σ〉 of a bank database with
U = {acc no, acc holder}, Σ = ∅, and the known policy pol = {Ψ} with
Ψ ≡ (∃XN )BANK (XN , Smith), protecting that Smith has an account at the
bank. The instance bank of BANK and a query Φ1 are given by bank =
{BANK (123, Smith),BANK (456, Jones)} and Φ1 ≡ BANK (123, Smith). Since
eval∗(Φ1)(bank) = Φ1 and Φ1 |= Ψ we get censorknown = true and thus
cqeknown(〈Φ1〉, log0)(bank , pol) = 〈(mum, log0)〉.

For convenience, we consider closed queries as specific open queries without
free variables in the following. Consequently, the evaluation of a closed query Φ
will be {Φ} (if r |=M Φ) or ∅ (if r 6|=M Φ), respectively.

3.3 Static CQE for Closed Queries

In previous work we investigated static forms of CQE for closed database queries.
In this context “static” means that we proposed suitable restrictions regarding
query and policy languages as well as schema constraints to avoid the costly
inference control mechanism and the ever growing log file. In the following we
shortly summarize our contributions.

In [?] we considered a simple query language only allowing for select-queries
in combination with a policy language being equivalent to the query language
L c

q introduced in Subsect. 3.1. It turned out that no further schema restrictions
are necessary when confining the user and the security administrator to these
languages. We showed that the declarative goals of inference control (as in Def. 1)
can be reached by applying a simple pattern matching algorithm to the single
queries.

When relaxing the query language such that select-project-queries can be
expressed we had to impose certain restrictions as elaborated in [?]. Basically,
the relation schema must be in object normal form (ONF), i. e., it must be
in BCNF and have a unique key [?] (an assumption that occurs frequently in
practice), and potential secrets must adhere to a syntactic constraint to still
guarantee preservation of confidentiality.

In [?] we refined the results of [?]. We found conditions for using logical
connectives in query and policy languages and we relaxed the syntactic constraint
for potential secrets. Since we refer to this constraint in the following section we
recall the definition from [?]:

Definition 2. Let RS = 〈R,U , Σ〉 be a relation schema in ONF with Σ being a
minimal cover of FDs. The left-hand side of an FD σ ∈ Σ is denoted by lhs(σ).
The set of fact schemas of RS is then defined by

fs(RS ) = {A |A ∈ U} ∪ {A | exists σ ∈ Σ : A ⊆ lhs(σ)}∪
{AB | exists σ ∈ Σ with A ⊆ lhs(σ) and B ∈ U\lhs(σ)}.
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4 Static Controlled Evaluation of Open Queries

Several CQE approaches to open queries have been proposed by Biskup and
Bonatti [?] for the enforcement methods of lying and refusal. Although being
effectively computable due to suitable syntactic restrictions, these approaches
still suffer from high computational complexity and the need of a log file. Our goal
is the development of a static CQE for open queries with refusal as enforcement
method. We only consider policies pol ⊆ Lps satisfying sel(Ψ) ∈ fs(RS ) for each
Ψ ∈ pol and assume for Subsect. 4.1 and ?? that pol is known to the user.

4.1 A First Approach

As described in Subsect. 3.2, the ordinary evaluation of an open query yields a set
of sentences being true in the database instance. Consequently, the original form
of static CQE cannot be applied to open queries, since the censor was constructed
with singleton answer sets in mind. Moreover, it does not seem appropriate to
either allow or refuse entire queries; regarding an open query, some assignments
of the free variables may compromise confidentiality whereas others may not.
Thus, evaluating open queries in a controlled way should basically determine
which variable assignments will lead to a disclosure of secrets and exclude them
from the answer. A variable assignment not being returned as part of the answer
to a query then can be interpreted in two different ways: it may make the query
false in the database instance; or it may lead to the disclosure of a potential
secret. The user is able to distinguish these two cases since he is supposed to be
aware of the policy.

The positive part ans of the controlled answer to an open query Φ(V ) is de-
termined by means of the ordinary query evaluation eval∗ and the set ref (used)
possibly being infinite and containing every “harmful” Φ(c):

ref (Φ(V ), pol) = {Φ(c) | c ∈ Const × · · · × Const
and exists Ψ ∈ pol : Φ(c) |= Ψ}

(1)

ans(Φ(V ), pol , r) = eval∗(Φ(V ))(r)\ref (Φ(V ), pol) (2)

Besides this positive part, the user is aware of a completeness information,
as introduced in [?], basically saying that each substitution of the variables in
V is either false in the instance r or true in r and part of the answer or true in
r and not part of the answer. This is expressed by the following completeness
sentence (with ans denoting the positive part (2) of the controlled answer, i. e.,
a finite set of ground substitutions of Φ(V )):

comp(Φ(V ), ans) ≡ (3)

(∀V )[¬Φ(V ) ∨ (Φ(V ) ∧
∨

Φ(c)∈ans

V = c) ∨ (Φ(V ) ∧
∧

Φ(c)∈ans

V 6= c)]

Observe that this completeness sentence is actually a tautology because it is
equivalent to (∀V )[¬Φ(V )∨Φ(V )]; therefore the user can construct it by himself
and it needs not to be added to the user knowledge explicitly.
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Having sent an open query Φ(V ) to the database, the answer according
to (2) will be returned to the user and the assumed user knowledge log will
be updated, i. e., if log i denotes the user knowledge before answering Φ(V ),
then the user knowledge log i+1 after having answered Φ(V ) is determined by
log i+1 = log i ∪ ans(Φ(V ), pol , r).

4.2 The “Known Policy Problem”

At first glance, a known policy does not give the user any useful information
with respect to the disclosure of secrets: each element of the policy is a potential
secret, i. e., it has to be kept secret if it is true in the database. However, the user
is not able to gain information about the actual truth value of a potential secret
when only considering the policy. Nevertheless, a problem might emerge from
the user awareness regarding the policy in combination with the completeness
sentence which can be rewritten as an implication and then be exploited for
disclosing a potential secret. We first illustrate this problem by an example and
then analyze it more generally.

Example 2. Consider schema, policy and instance from Example 1, but as-
sume that Σ = {acc no → acc holder}. Observe that BANK is in ONF.
Two queries are given by Φ1(XN , XH) ≡ BANK (XN , XH) and Φ2 ≡
(∃XH)BANK (123, XH). Φ1 is an open query, asking for all tuples in bank . Ac-
cording to the (tentative) mechanism from Subsect. 4.1 we get:

eval∗(Φ1)(bank) = {BANK (123, Smith),BANK (456, Jones)} (4)
ref (Φ1, pol) = {BANK (123, Smith)} (5)
ans(Φ1, pol , bank) = {BANK (456, Jones)} = ans1 (6)
comp(Φ1, ans1) ≡ (∀XN )(∀XH)[ ¬BANK (XN , XH) (7)

∨ (BANK (XN , XH) ∧ (XN = 456 ∧XH = Jones))
∨ (BANK (XN , XH) ∧ (XN 6= 456 ∨XH 6= Jones)) ]

Φ2 is a closed query (since it does not contain free variables) and asks whether
there is an account with the number 123. Confidentiality is not compromised
since Φ2 6|= Ψ . Therefore, Φ2 is answered as follows:

ans(Φ2, pol , bank) = {(∃XH)BANK (123, XH)} (8)

The user knowledge now consists of log0(= Σ), the answers to Φ1 (??) and
Φ2 (??), and the completeness sentence (??). From (??) the user knows that
BANK (123, c) holds in bank for some suitable constant c ∈ Const . The variable
assignment (123, c) belongs to the third part of the disjunction in (??): it makes
Φ1 true in bank but is not part of the answer to Φ1. Thus, BANK (123, c) must
be a secret. Since the only secret is (∃XN )BANK (XN , Smith), the constant c
must be identified with Smith. As a result the user knows that the secret is true
in bank : bank |=M BANK (123, Smith) and BANK (123, Smith) |= Ψ and thus
bank |=M Ψ .
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r 6|=M Φ(c)r |=M Φ(c)

A B(= ∅)

C (“harmful”) D

Φ(c) ∈ ans

Φ(c) /∈ ans

Fig. 1. Classification of variable assignments

For a more general analysis first reconsider the completeness sentence (3)
and its visualization in Fig. ??: The box depicts the (infinite) set of all possible
variable assignments c for the free variables V of an open query Φ(V ) and
is partitioned into four disjoint subsets. The horizontal partition differentiates
between c being part of the explicitly returned controlled answer or not whereas
the vertical partition differentiates between c making Φ(V ) true or false in r.
Variable assignments being covered by the first part of the disjunction in (3)
belong to either subset B or subset D of the figure; variable assignments being
covered by the second part of the disjunction belong to subset A; and variable
assignments being covered by the third part of the disjunction belong to subset
C. B is empty (variable assignments not making Φ(V ) true are not part of the
answer) and C contains exactly the “harmful” variable assignments that are true
in r but not part of the answer (because they imply a secret). Thus, a variable
assignment neither belonging to A nor to D belongs to C. Second, a known
policy carries additional information: the variable substitutions not belonging to
A and D in Fig. ?? may be identified by inspecting the policy: if Φ(c) |= Ψ for
a Ψ ∈ pol then c belongs to C. Assuming a unary relation7 we formalize this
information for pol = {R(c1), . . . , R(cm)}:

pol inf i ≡ (∀X)[(Φi(X) ∧
∧

Φi(c)∈ansi

X 6= c) =⇒
m∨
j=1

X = cj ] (9)

If (∃X)R(X) ∈ pol , each query would be refused since pol would protect the
existence of any tuple in the instance. The system would thus be useless in some
sense and therefore we neglect this case in the following.

Now consider a more formal variant of Example ?? for a unary relation with
instance r = {R(c1)}. The policy and the two queries are given by pol = {R(c1)}
with c1 ∈ Const , Φ1(X) ≡ R(X) (asking for all tuples in r), and Φ2(X) ≡
(∃X)R(X) (asking for the existence of a tuple in r). According to the (tentative)
control mechanism described above we get the following answers, completeness

7 Our considerations can easily be adapted to general n-ary relations.
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information, and policy information:

ans1 = ∅, ans2 = (∃X)R(X)

comp1 = (∀X)[ ¬R(X)∨
(R(X) ∧

∨
R(c)∈ans1 X = c) ∨ (R(X) ∧

∧
R(c)∈ans1 X 6= c)]

≡ (∀X)[ R(X) =⇒ (
∨
R(c)∈ans1 X = c ∨

∧
R(c)∈ans1 X 6= c)]

pol inf 1 ≡ (∀X)[(R(X) ∧
∧
R(c)∈ans1 X 6= c) =⇒ X = c1]

Combining ans2 and comp1 then yields8

(∃X)[R(X) ∧ (
∨
R(c)∈ans1 X = c ∨

∧
R(c)∈ans1 X 6= c)]

≡ (∃X)[R(X) ∧
∧
R(c)∈ans1 X 6= c]

which, together with pol inf 1, leads to X = c1. It follows that r |=M R(c1)
resulting in the user being able to disclose a potential secret.

4.3 Inference Control with Unknown Policies

One possibility to avoid the problem sketched in the previous subsection is to
reconsider the query language and the policy language. Confining the user or
the security administrator in expressing queries or policies, respectively, might
help to avoid the harmful inference problem. We, however, refrain from adjusting
the query and policy languages since we consider this a step backwards in our
attempt to develop a system being convenient from the perspective of database
users and security administrators.

A more promising approach is a reconsideration of the user’s knowledge about
the policy which is a crucial part of the harmful inference in Example ??. The
completeness information together with the information from the policy may be
exploited to infer a secret; consequently, if we hide the potential secrets from
the user, we might be able to preserve confidentiality again. The completeness
sentence (3) is independent of the user awareness since it does not refer to specific
policy elements. We may thus assume the policy to be unknown to the user
without having to change the control mechanism as sketched in Subsect. 4.1.
This mechanism is secure in the sense of Def. 1 when assuming an unknown
policy.

Theorem 1. Static CQE for open queries with unknown policies preserves con-
fidentiality in the sense of Def. 1.

Remark. Since static CQE does not need a user log, queries from a sequence
may be evaluated separately without compromising confidentiality.

To prepare for a proof sketch for Theorem ?? we now explain our notion of
the chase for elements from L c

q and present three technical lemmas.

8 The equivalence holds since
∨

R(c)∈ans1 X = c is empty being equivalent with false.
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The Chase for Generalized Tuples. Originally, the chase is defined for sets of
(full) tuples9, whereas we consider subsets of the language L c

q . Because of the
structure of these formulas, however, we are able to interpret them as generalized
tuples, i. e., tuples possibly containing null values, by (temporarily) neglecting
the existential quantifiers and interpreting the variables as null values of the
type “existing but unknown”. Considering elements from Const as distinguished
and elements from Var as non-distinguished variables the notion of chasing can
be applied to subsets of L c

q as well. We will use this mechanism in the proof of
Theorem ??.

Proof of Confidentiality. For each formula being true in a database instance there
must be a ground atom, i. e., a sentence not containing any variables, implying
this formula and also being true in the instance:

Lemma 1. Consider an instance r and a χ ∈ L c
q . It holds that r |=M χ iff there

exists a ground atom χg ∈ L c
q with r |=M χg and χg |= χ.10

When we chase a set S of closed select-project-queries (considered as gener-
alized tuples by neglecting the existential quantifiers) with FDs Σ to construct
a database instance (represented by a set of ground atoms) then each formula
being true in this instance and containing only existentially bound variables or
constants that already occur in S is implied by S ∪Σ:

Lemma 2. Consider a disjoint partition of the set of constants, Const =
ConstA ·∪ConstB, and let S ⊂ L c

q such that each constant occurring in an
element of S is from ConstA; Σ a set of FDs; χc ∈ L c

q a generalized tuple from
the result of chasing S with Σ; χg ∈ L c

q a ground atom resulting from replacing
all (existentially quantified) variables in χc with constants from ConstB; and
χ ∈ L c

q with χg |= χ and χ[A] ∈ Var or χ[A] ∈ ConstA for every attribute A.
Then it holds that S ∪Σ |= χ.

By Lemma ??, a potential secret being implied by a set S of closed select-
project-queries and a set of FDs is already implied by a single formula from S
under the assumption of ONF.

Lemma 3. Consider a relation schema RS = 〈R,U , Σ〉 being in ONF, a set
S ⊂ L c

q , and a potential secret Ψ ∈ L c
q with sel(Ψ) ∈ fs(RS). It holds that

S ∪Σ |= Ψ iff χ′ |= Ψ for a χ′ ∈ S.

We are now well prepared for providing a proof sketch for Theorem ??.

Sketch of Proof. By Def. 1, considering an instance-policy-pair (r, pol), for each
potential secret Ψ and each (prefix of a) query sequence Q we have to find
an alternative instance-policy-pair (r′, pol ′) (satisfying the precondition) with
these properties: (1) (r′, pol ′) leads to the same answers for Q as (r, pol); (2)
9 Refer to [?] for an explanation of the original chase.

10 The symbol |= denotes logical implication.
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r′ makes Ψ false. There is no additional requirement regarding pol ′ since we
consider unknown policies. For constructing r′ we basically chase the answers to
Q regarding r with Σ and replace the remaining variables with new constants.
Then, pol ′ is constructed by adding a potential secret for each constant being
newly introduced during the chase. Property (1) follows from this construction
and Lemmas ??–??, and property (2) is proven indirectly by assuming that
eval∗(Ψ)(r′) = Ψ and applying Lemmas ??–??, leading to the disclosure of Ψ
by the answers to Q regarding r and pol which contradicts the definition of the
CQE mechanism. ut

The transition from known to unknown policies slightly changes the semantics
of the refusal method. If pol is known to the user, he is able to determine for
every variable assignment c not being returned as part of the answer to Φ(V )
whether c makes Φ(V ) false in r or c leads to the disclosure of a potential
secret (i. e., belongs to the ref -part of the answer). Refusals are not returned
explicitly because the user is able to figure them out himself. If, however, pol
is unknown, the ref -part of the answer cannot be determined by the user since
hiding the policies from the user aims at making the subsets C and D of Fig. ??
indistinguishable. We must still not return explicit refusals in order to keep up
this indistinguishability. Therefore, with unknown policies static CQE is enforced
rather by filtering than by refusing the answer. Summing up we regain the goal
of confidentiality-preservation at the price of leaving the user uncertain about
the ref -part of the answer to his query.

5 A Control Mechanism for Open Queries

We now sketch an algorithmic implementation of static CQE for open queries.
We assume a single query rather than a query sequence which is justified by
the remark to Theorem ??. Our implementation makes use of “classification in-
stances”, introduced in [?]. A classification instance is a relational representation
of a policy: each secret from pol is represented by a tuple where existentially
bound variables are replaced by the symbol #.

Static CQE for open queries

input : database instance r, policy pol = {Ψ1, Ψ2, . . . , Ψm}, query Φ
output : controlled answer ans

1. Preprocessing
For each potential secret11 Ψi ≡ (∃X1) . . . (∃Xl1)R(X1, . . . , Xl1︸ ︷︷ ︸

bound variables

, c1, . . . , cl2):

Add a tuple µ = Rc(#, . . . ,#︸ ︷︷ ︸
l1 times

, c1, . . . , cl2) to the classification instance rc.

2. Answering Queries
(a) If Φ is a closed query:

11 The positions of variables and constants are w. l. o. g.
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If exists µ ∈ rc such that for all attributes A:
– if Φ[A] ∈ Const then µ[A] ∈ {Φ[A],#} (*)
– if Φ[A] ∈ Var then µ[A] = # (**)

then return mum,
else set ans := eval∗(Φ)(r).

(b) If Φ(V ) is an open query:
i. Compute the ordinary query evaluation eval∗(Φ(V ))(r).
ii. Set ref (Φ(V ), pol) := ∅.
iii. For each Φ(c) ∈ eval∗(Φ(V ))(r):

If exists µ ∈ rc satisfying (*) and (**) for all attributes A,
then set ref (Φ(V ), pol) := ref (Φ(V ), pol) ∪ {Φ(c)}.

iv. Set ans := eval∗(Φ(V ))(r)\ref (Φ(V ), pol).
(c) Return ans.

In the first step the policy is converted into the classification instance which
can be done in linear time (in the size of the policy). The second step differs
depending on Φ being a closed query or an open query. If Φ is closed, rc is
searched for a tuple satisfying (*) and (**) (Φ |= Ψ for a Ψ ∈ pol iff there exists
such a tuple). This can be done by constructing a set PΦ that contains all tuples
satisfying (*) and (**) and then checking whether rc ∩PΦ is non-empty. With n
denoting the number of attributes in R, we get |PΦ| ≤ 2n and when storing rc in
a suitable data structure like a B-tree the control mechanism has a runtime of
O(2n·log(m)) or O(log(m)) if we consider the number of attributes in R fixed and
reasonably small (cf. [?]). If Φ is open, a set PΦ(c) can be constructed analogously
for each c with Φ(c) ∈ eval∗(Φ(V ))(r). The runtime can then be estimated by
O(k · log(m)) with k denoting the number of tuples in eval∗(Φ(V ))(r).

6 Conclusion and Future Work

We presented an inference control approach for open relational database queries
which is static in the sense that the goals of computationally expensive inference
control can be reached at runtime by actually performing an efficient filtering
mechanism. We developed our approach in the framework of CQE. It turned out
that assuming the user to be aware of the confidentiality policy is incompatible
with open queries but we formally showed that hiding the policy is sufficient to
preserve confidentiality. We also proposed an implementation of our mechanism
with a linear preprocessing time (in the size of the policy) and a runtime of
O(k · log(m)) per query (with k denoting the answer size and m denoting the
policy size).

Future research should address several enhancements. For example, more
expressive query and policy languages could be investigated, allowing for con-
junction, disjunction and negation. Also further kinds of constraints like (intra-
relational) multivalued dependencies or (inter-relational) inclusion dependencies
could be taken into account. Finally, an implementation of our approach with ac-
tually employed access control mechanisms like Oracle’s virtual private databases
would be desirable.
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