
Constructing Key Assignment Schemes from
Chain Partitions

Jason Crampton, Rosli Daud, and Keith M. Martin

Information Security Group, Royal Holloway, University of London

Abstract. In considering a problem in access control for scalable mul-
timedia formats, we have developed new methods for constructing key
assignment schemes. Our first contribution is to improve an existing cryp-
tographic access control mechanism for scalable multimedia formats. We
then show how our methods can be applied to a chain partition to de-
velop alternative mechanisms for scalable multimedia formats and how
these methods can themselves be extended to create a new type of key
assignment scheme.

1 Introduction

Scalable multimedia formats, such as MPEG-4 [1] and JPEG2000 [2], consist
of two components: a non-scalable base component and a scalable enhancement
component. Decoding the base component will yield low quality results. The
quality of the decoded data can be improved by decoding the enhancement
component as well as the base component. The enhancement component may
comprise multiple “orthogonal” layers, orthogonal in the sense that each layer
controls a distinct aspect of the quality of the encoded content. The MPEG-4
FGS (fine granularity scalability) format [1], for example, has a bit-rate layer
and a peak signal-to-noise ratio (PSNR) layer.

Zhu et al proposed a layered access control scheme for MPEG-4 FGS called
SMLFE (scalable multi-layer FGS encryption) [3]. The purpose of SMLFE is to
provide different end-users with access to the same content at different levels of
quality (by controlling access to the enhancement component).

SMLFE assumes that each enhancement frame is decomposed into different
segments, each of which is associated with some bit-rate level and some PSNR
level. In other words, the enhancement component stream (a sequence of en-
hancement frames) is split into a number of distinct segment streams. Each of
these segment streams is encrypted with a different key, and the ability of an
end-user (or, more accurately, the decoder available to the end-user) to recon-
struct the enhancement component is determined by the keys that are accessible
to the user.

However, SMLFE had a number of inadequacies and subsequent research
sought to address these deficiencies [4–6]. This later research uses a labeling
technique, which associates each segment with a k-tuple and then uses itera-
tive hashing to derive key components for each segment. Most of these labeling

2 Jason Crampton et al.

schemes suffer from the distinct disadvantage that different users can combine
their respective key components to derive keys for which no single user is autho-
rized. The one exception [5] uses a very complicated labeling process that makes
it very difficult to reason about the properties of the scheme (including whether
it is secure against colluding users or not). Our first contribution is to construct
a labeling scheme that can be proved to be secure against colluding users and has
other significant advantages over existing schemes. We discuss labeling schemes
in Sec. 3.

We then consider alternative approaches to the problem of layered access
control for scalable multimedia formats. Our second contribution is to define
several schemes in Sec. 4 that make use of chain partitions. One of our construc-
tions makes use of the labeling scheme we introduce in Sec. 3. The constructions
in Sec. 4 have demonstrable advantages, in the context of layered access control,
over labeling schemes and existing approaches to cryptographic access control.

It can be shown that the enforcement of layered access control for scalable
multimedia formats can be regarded as a instance of a key assignment scheme.
Such schemes are used to enforce a no-read-up information flow policy using
cryptographic techniques. A recent survey of such schemes proposed a classifica-
tion into four generic types of scheme [8]. These schemes offer different trade-offs
in terms of the amount of storage required and the complexity of key derivation.
Our final contribution, presented in Sec. 5, is to show that the schemes in Sec. 4
can be generalized to create new types of generic key assignment schemes. These
generic schemes offer different trade-offs from existing schemes, which may prove
useful for certain applications.

We conclude the paper with some suggestions for future work. Before pro-
ceeding further, we introduce some relevant background material.

2 Background

In this section, we first recall some relevant concepts from mathematics and
cryptography. The section concludes with a more formal statement of the prob-
lem of layered access control and a discussion of its relationship to work on key
assignment schemes.

2.1 Definitions and Notation

A partially ordered set (or poset) is a pair (X,6), where 6 is a reflexive, anti-
symmetric, transitive binary relation on X. X is a total order (or chain) if for
all x, y ∈ X, either x 6 y or y 6 x. We say A ⊆ X is an antichain if for all
x, y ∈ A, x ̸6 y and x ̸> y. We may write y < x if y 6 x and y ̸= x, and we may
write x > y if y 6 x.

The (directed, acyclic) graph (X,6) would include all “reflexive edges” and
all “transitive edges”, so it is customary to represent a poset using a smaller
set of edges. We say x covers y, denoted y l x, if y < x and there does not
exist z ∈ X such that y < z < x. Then the Hasse diagram of a poset (X,6) is

Constructing Key Assignment Schemes from Chain Partitions 3

defined to be the (directed, acyclic) graph (X,l) [9]. A simple Hasse diagram is
shown in Fig. 1(a). Note that all edges in the diagram are assumed to be directed
upwards.

A partition of a set X is a collection of sets {Y1, . . . , Yk} such that (i) Yi ⊆ X
(ii) Y1 ∪ · · · ∪ Yk = X, and (iii) Yi ∩ Yj ̸= ∅ if and only if i = j. The greatest
common divisor of x and y is written gcd(x, y); we say x and y are co-prime if
gcd(x, y) = 1.

We assume the existence of an RSA key generator [10], a randomized algo-
rithm that takes a security parameter k as input and outputs a triple (N, e, d)
such that:

– N = pq, where p and q are distinct odd primes;
– e ∈ Z∗

ϕ(N), where ϕ(N) = (p− 1)(q − 1), e > 1, and gcd(e, ϕ(N)) = 1;

– d ∈ Z∗
ϕ(N), where ed ≡ 1 mod ϕ(N).

Finally, let h : {0, 1}∗ → {0, 1}ℓ be a hash function and let k > 0 be an integer.

Then we define the iterative hash function hk : {0, 1}ℓ → {0, 1}ℓ in the following
way: h0(x) = x and hk(x) = h(hk−1(x)).

2.2 Key Assignment Schemes

We now rephrase the problem at hand in more formal terms and illustrate how
this problem is related to existing work on key assignment schemes. Let us as-
sume that we are concerned with a scalable multimedia format with two distinct
layers (such as bit-rate and PSNR), containing m and n levels respectively.

Define Rm,n = {(x, y) : 1 6 x 6 m, 1 6 y 6 n} and define (x1, y1) 6 (x2, y2)
if and only if x1 6 x2 and y1 6 y2. Then (Rm,n,6) is a partially ordered set.
Each segment (and segment stream) represents a distinct protected object and
is labeled with a pair (i, j) indicating the corresponding levels in the bit-rate
and PSNR layers, respectively. Each pair (i, j) ∈ Rm,n is associated with an
encryption key κi,j . Segment streams are encrypted with the corresponding key.
Each user is authorized to access layered multimedia of some quality qi,j , which
implies that such a user must be able to compute κx,y for all x 6 i and all y 6 j
in order to decode the relevant segment streams. Figure 1(a) illustrates the poset
R3,4.

Clearly the access control requirements described above closely resemble the
“no-read-up” component of an information flow policy [11, 12]. There are many
schemes in the literature for enforcing an information flow policy using crypto-
graphic techniques (see the survey paper of Crampton et al [8], for example).
Given a security lattice (L,6), a set of subjects U , a set of protected objects O,
and a security function λ : U ∪ O → L, we define a set of cryptographic keys
{κ(x) : x ∈ L}. Then, adopting a cryptographic approach to policy enforcement,
we encrypt object o with (symmetric) key κ(λ(o)). In order to correctly imple-
ment the information flow policy, a user u with security label should be given,
or be able to derive, κ(y) for all y 6 x. There are several generic solutions, the
most obvious of which is to give u the set of keys {κ(y) : y 6 λ(u)}.

4 Jason Crampton et al.

r(1, 1)

r(1, 2)

r(1, 3)

r(1, 4)

r(2, 4)

r(3, 4)

r(2, 1)

r(3, 1)r(2, 2)

r(2, 3) r(3, 2)

r(3, 3)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

(a) R3,4

r(1, 1) rC1

r(1, 2)

r(1, 3)

r(1, 4)

r(2, 4)

r(3, 4)

r(2, 1) rC2

r(3, 1) rC3
r(2, 2)

r(2, 3) r(3, 2)

r(3, 3)

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

@
@

(b) Canonical chain decomposition

Fig. 1. A typical poset used in layered access control for scalable multimedia formats

More commonly, we give u a single key κ(λ(u)) and publish additional infor-
mation that enables the user to derive κ(y) whenever y < λ(u). The additional
information “encrypts edges” in the graphical representation of L: that is, if
G = (L,E), then we publish Encκ(x)(κ(y)) for all (x, y) ∈ E. There are two
obvious choices for E: the edge set corresponding to the full order relation 6,
in which case, key derivation can be performed in a single step; or the edge set
corresponding to the cover relation l, in which case key derivation may take
several steps. We call the former a direct key encrypting (DKE) key assignment
scheme and the latter an iterative key encrypting (IKE) scheme [8]. Clearly, there
is a trade-off between the amount of storage required and the number of steps
required for key derivation.

Any key assignment scheme for enforcing an information flow policy should
satisfy two criteria.

– The scheme is correct if for all y, κ(x) can be derived from σ(y) and the
public information if y > x.1

– The scheme is collusion secure if, for all x ∈ X and all Y ⊆ X such that
for all y ∈ Y , y ̸> x, it is not possible to derive κ(x) from {σ(y) : y ∈ Y }
and the public information. Note that this definition includes the case of a
singleton subset Y , which corresponds to a single user “colluding” to recover
a key for which she is not authorized.2

1 It should be emphasized here that “derived from” means “derived from in a feasible
amount of time”. Very few cryptographic schemes provide unconditional security in
an information-theoretic sense; rather, they guarantee with a high probability that
a scheme is secure against an adversary with reasonable resources. The interested
reader is referred to the literature for a more detailed discussion of these issues [10].

2 Recent work has introduced the notions of key recovery and key indistinguishabil-
ity [13]. A proof that a scheme is secure against key recovery is analogous to proving
that a scheme is collusion secure. The main difference is that collusion security as-
sumes that colluding users will try to compute a key using the particular methods of

Constructing Key Assignment Schemes from Chain Partitions 5

Clearly, the problem of enforcing layered accessed control for scalable mul-
timedia formats can be addressed by defining an appropriate key assignment
scheme for the partially ordered set (Rm,n,6). However, because of the partic-
ularly simple structure of Rm,n, in the next two sections we consider some key
assignment schemes that are tailored to the problem of layered access control for
scalable multimedia formats. In Sec. 3, we consider labeling schemes, in which
each key is defined by a set of key components, each of which is obtained by
iteratively hashing some secret value. In Sec. 4, we consider some alternative
approaches using chain partitions of Rm,n.

3 A New Labeling Scheme for Layered Access Control

Apart from SMLFE [3], all existing schemes for layered access control (to our
knowledge) associate a distinct k-tuple with each element of Rm,n [4–6]. This
k-tuple is used to construct k key components using iterative hashing. We write
ϕ(x, y) ∈ Zk to denote the label assigned to (x, y) ∈ Rm,n and we write ϕi(x, y)
to denote the ith co-ordinate of ϕ(x, y). In this section, we first summarize the
basic technique and then describe our new labeling scheme and compare it to
existing work.

First we introduce some additional definitions. Let a = (a1, . . . , ak) and b =
(b1, . . . , bk) be elements of Zk. Then we define (a1, . . . , ak) 6 (b1, . . . , bk) (in Zk)
if and only if ai 6 bi for all i, and we define a − b = (a1 − b1, . . . , ak − bk). We
say a is positive if ai > 0 for all i.

Labeling schemes have the property that (x, y) > (x′, y′) in Rm,n if and only
if ϕ(x′, y′) − ϕ(x, y) is positive. It is this property that ensures the correctness
of each scheme, since ϕ(x′, y′) − ϕ(x, y) is used to construct k secrets per node
using iterative hashing.

The content provider, hereafter called the scheme administrator, chooses a
hash function h : {0, 1}∗ → {0, 1}ℓ and k secrets σ1, . . . , σk ∈ Zℓ. Then the secret
σx,y assigned to (x, y) ∈ Rm,n comprises k key components:

σx,y
def
= (hϕ1(x,y)(σ1), . . . , h

ϕk(x,y)(σk)).

For brevity, we may abuse notation and write hϕ(x,y)(σ) to denote σx,y. We
define the key assigned to (x, y) to be

κx,y
def
= h(hϕ1(x,y)(σ1) ∥ · · · ∥ hϕk(x,y)(σk)),

where s1 ∥ s2 denotes the concatenation of s1 and s2.
3 Again, we may abuse

notation and write h(σx,y) to denote κx,y.

key derivation associated with the scheme, whereas a proof of security against key
recovery establishes that the recovery of a key is as difficult as solving some known
hard problem. While formal security proofs of this nature are certainly important
in modern cryptographic research, space constraints mean they are out of scope for
this paper.

3 The schemes in the literature simply define the “key” associated with (x, y) to be
the concatenation of the key components. We take the hash of the concatenation of

6 Jason Crampton et al.

Correctness. By construction (x, y) > (x′, y′) if and only if ϕi(x
′, y′) − ϕi(x, y)

is positive. Now the ith key component of κx,y is hϕi(x,y)(σi) and the ith key

component of κx′,y′ is hϕi(x
′,y′)(σi). Hence, if (x, y) > (x′, y′), then we simply

hash the ith component of κx,y a total of ϕi(x
′, y′) − ϕi(x, y) times to obtain

the ith key component of σx′,y′ . Conversely, if (x, y) ̸> (x′, y′), then for some i,
ϕi(x

′, y′)−ϕi(x, y) < 0, which implies that we can only obtain the ith component
of κx,y by inverting h, which is computationally infeasible provided h is chosen
appropriately.

The IWFK-1 scheme [6, §3.1.1], for example, simply defines ϕ(x, y) for
(x, y) ∈ Rm,n to be (m − x, n − y). So, for example, ϕ(2, 4) = (1, 0) and
ϕ(1, 1) = (2, 3) in R3,4. Then σ2,4 = (h(σ1), σ2) and σ1,1 = (h2(σ1), h

3(σ2)).
Hence, σ2,4 can be used to derive σ1,1 by hashing the first component of σ2,4

once and hashing the second component twice.

Collusion Security. It is known that all but one of the schemes in the literature
are not collusion secure. Indeed, it is trivial to find examples that break each of
the schemes: in the IWFK-1 scheme for R3,4, for example, σ2,4 = (h(σ1), σ2) and
σ3,3 = (σ1, h(σ2)); clearly these keys can be combined to recover (σ1, σ2) = σ3,4.
The IFAK scheme is claimed to be collusion secure [5], although no proof of this
claim is given.

3.1 The CDM Scheme

We now explain how our scheme works, which we call the CDM scheme for ease
of reference.

Definition 1. Let (x, y) ∈ Rm,n. Then we define the CDM label of (x, y) to be

ϕCDM(x, y)
def
= (n− y, . . . , n− y︸ ︷︷ ︸

x

, n, . . . , n︸ ︷︷ ︸
m−x

).

Henceforth, we will simply write ϕ(x, y) to denote the CDM labeling of
(x, y) ∈ Rm,n. Note the CDM labeling has m components. We now state several
elementary results concerning the properties of the CDM labeling.4

Proposition 1. Let (x, y), (x′, y′) ∈ Rm,n. Then ϕ(x′, y′)−ϕ(x, y) is positive if
and only if (x, y) > (x′, y′).

Proposition 2. Let (x, y), (x′, y′) ∈ Rm,n such that (x, y) > (x′, y′). Then σx′,y′

can be derived from σx,y using precisely xy − x′y′ hash computations.

those components to make the distinction between key and key components clearer.
It also means that we have fixed-length, short symmetric keys, determined by the
size of h’s output.

4 Lack of space precludes the inclusion of proofs in this version of the paper: the
interested reader is referred to the extended version of the paper [7] for the relevant
details.

Constructing Key Assignment Schemes from Chain Partitions 7

Corollary 1 The number of hash computations required is bounded by mn− 1.

We now give some intuition behind the labeling and an example. The element
(x, y) ∈ Rm,n defines a sub-rectangle Rx,y. Removing Rx,y truncates the first
i chains and leaves the remaining chains intact. Our labeling simply records
the lengths of the chains that are left following the removal of Rx,y. Hence, for
example, ϕ(2, 4) = (0, 0, 4) and ϕ(1, 1) = (3, 4, 4). Note that 3+4 = 7 operations
are required to derive κ1,1 from κ2,4 (as we would expect from Proposition 2).

The geometric intuition behind the scheme also provides some understanding
of why our scheme is collusion secure.

Proposition 3. Let (x1, y1), . . . , (xj , yj) ∈ Rm,n such that (xi, yi) ̸> (x, y) for
all i. Then there exists t, 1 6 t 6 m, such that ϕt(x, y) < ϕt(xi, yi) for all i.

Hence, no set of m colluding users can recover the tth component of σx,y. In
other words, we have the following corollary.

Corollary 2 The CDM scheme is collusion secure.

3.2 Related Work

Table 1 provides a summary of the four schemes in the literature for layered
access control (IWFK-1 [6, §3.1.1], IWFK-2 [6, §3.2.3], IFAK [5], and HIFK [4]),
presented in chronological order and identified by the initial letters of the au-
thors’ surnames. Each component of σx,y = hϕ(x,y)(σ) is a distinct secret key
component, as each component has to be hashed independently of the others.
Hence, we believe it is appropriate to minimize the number of key components
and the number of derivation steps that are required. The table reports precise
storage requirements (given by the number of key components k) and worst case
derivation (in terms of the number of hash computations required).

All of these schemes are correct, but only the IFAK scheme is claimed to be
collusion secure, in the sense that a set of collaborating users cannot combine the
secret components of their respective keys (and possibly use iterative hashing)
to derive a key for which no one of them was authorized.

Table 1. A summary of labeling schemes for layered access control

Scheme k Key derivation
Collusion

secure

IWFK-1 2 m+ n− 2 N

IWFK-2 3 m+ 2n− 3 N

IFAK m+ n− 1 1
2
(m+ n− 2)(m+ n− 1) Y

HIFK 3 2m+ 2n− 4 N

CDM m mn− 1 Y

8 Jason Crampton et al.

The characteristics of our scheme are shown in the last row of the table. Our
scheme is collusion secure under the same assumptions that the IFAK scheme
is (claimed to be) secure. However, we use a smaller value of k and we require
fewer derivation steps. Moreover, we have a systematic and easily implementable
way of generating our labels (unlike the IFAK scheme); because of this we can
also compute the number of derivation steps required for any (x, y), (x′, y′) ∈
Rm,n and prove that our scheme is collusion secure. IFAK, in contrast, has an
extremely complicated labeling scheme, which makes it difficult to reason about
(i) the number of derivation steps required in the general case (ii) the collusion
security of the scheme.

4 New Schemes for Layered Access Control

In this section, we propose a number of key assignment schemes for implementing
layered access control for scalable multimedia formats. These schemes assume
that the poset (Rm,n,6) has been partitioned into chains. Dilworth’s Theo-
rem [14] asserts that every partially ordered set (X,6) can be partitioned into
w chains, where w is the width of X.5

Evidently, there are many different ways to partition the poset Rm,n into
chains, but we choose a particular partition that enables us to define two very
simple schemes. We assume without loss of generality that m 6 n, and we
define the canonical partition of Rm,n into chains to be {C1, . . . , Cm}, where
Ci = {(i, j) : 1 6 j 6 n}. Figure 1(b) illustrates the canonical partition of R3,4

into chains.

4.1 Schemes with No Public Information

Generally, key assignment schemes rely on public information for key deriva-
tion [8]. An interesting feature of the schemes in the previous section is that no
public information is used. In this section we consider two different schemes that
require no public information – one based on hash functions and one based on
RSA – and have lower storage requirements than the CDM scheme.

A Scheme Based on Hash Functions. The scheme administrator first selects
a family of m hash functions hi : {0, 1}∗ → {0, 1}ℓ, 1 6 i 6 m. The scheme

administrator also selects m secret values, σ1, . . . , σm ∈ {0, 1}ℓ, where σi is
associated with chain Ci. The scheme administrator then computes a secret
key for each element in Rm,n, where κi,j is defined to be hn−j

i (σi). Then a
user authorized for content quality qi,j is given the keys {κx,j : 1 6 x 6 i}. For
reasons that will be apparent from the above description, we call this a multiple-
key iterated hash scheme.

5 The width of X is the cardinality of the largest antichain in X. Clearly, any partition
into chains must contain at least w chains. It is harder to prove that no more than
w are required.

Constructing Key Assignment Schemes from Chain Partitions 9

Correctness. We first show that a user can derive all keys for which she is
authorized. Suppose that a user is authorized for quality qi,j . (Equivalently, the
user is associated with label (i, j) ∈ Rm,n.) Henceforth, we will simply write ui,j

for such a user. Then ui,j must be able to derive all keys in the rectangle Ri,j .
Now, by construction, ui,j has κx,j for all x 6 i. Moreover, κx,y = hj−y

x (κx,j),
1 6 y < j. Hence, a user ui,j can derive any key in Ri,j in no more than j − 1
steps.

Collusion Security. Any “good” hash function will have the property that it is
computationally hard to compute x given y = h(x) (that is, pre-image resis-
tance). Since keys are obtained by successively hashing elements in a chain, it
is computationally hard to recover κi,j+1 from κi,j , as this would require the
computation of the pre-image of κi,j . Hence, a user certainly cannot use a key
from one key chain to derive a key higher up the same key chain (and hence
for which she is not authorized), providing the scheme administrator chooses a
suitable hash function. However, a user may have several keys: assuming that
the key chains are independent – in the sense that knowledge of an element in
Ci provides no information about any element in Cj , for all j ̸= i – then it is
not possible for the user to derive any keys for which she is not authorized. We
have chosen a different hash function for each chain in order to provide this key
chain independence.

If two or more users collude – equivalently, if an adversary is able to obtain
the keys of several users – then the set of keys available do not correspond to the
nodes of a sub-rectangle (as they do for a single user). Suppose that an adversary
(whether it is a group of colluding users or a single malicious entity) collectively
has the keys κ1,j1 , . . . , κm,jm . Then κi,ji cannot be used to recover κi,ji+k for
any k > 0 if hi has pre-image resistance. Hence, assuming the independence of
key chains, as before, we see that such an adversary has no additional advantage
over a single user.

A Scheme Based on RSA. In this scheme, we make use of a special case of
the Akl-Taylor scheme [15], which can be applied to any poset. Specifically, we
apply the scheme to each of the chains in the partition.

The scheme administrator first obtains m large compound integers
N1, . . . , Nm using an RSA key generator and makes these values public. For
each chain Ci, the scheme administrator:

– chooses a secret σi ∈ Z∗
Ni
, such that for all σi and σj are co-prime if i ̸= j;

– defines κi,j = (σi)
2n−j

mod Ni.

We call the sequence of keys

κi,n = (σi)
1, κi,n−1 = (σi)

2 mod Ni, . . . , κi,1 = (σi)
2n−1

mod Ni

an RSA key chain. As before, user ui,j is given the keys {κx,j : 1 6 x 6 i}. Hence-
forth, for reasons of clarity and brevity, we will write x rather than x mod Ni,
when Ni is clear from context.

10 Jason Crampton et al.

Correctness and Collusion Security. Key derivation is quite different using RSA
key chains. To obtain κx,y, where x < i and y < j, the user selects κx,j and then
computes

(κx,j)
2j−y

= (κx,j)
2n−y

2n−j =
(
(σx)

2n−j) 2n−y

2n−j = (σx)
2n−y

= κx,y

To illustrate, consider Fig. 1(b) and suppose that the keys for C2 are

κ2,4 = σ2, κ2,3 = σ2
2 , κ2,2 = σ4

2 , κ2,1 = σ8
2 .

Suppose we wish to derive κ2,1 and we have κ2,3. Then we compute

(κ2,3)
23−1

= κ4
2,3 = (σ2

2)
4 = σ8

2 = κ2,1.

However, user with key κi,j cannot derive κi,y if y > j, since this would
require the user to solve the RSA problem.6 Similarly, no collection of keys that
includes κi,j (but no key higher up the ith chain) can be used to derive κi,y.

4.2 Schemes with Single Keys

Most key assignment schemes in the literature require the end-user to store a
single key. The multiple-key schemes described above clearly do not satisfy this
criterion.

In this section, we describe schemes that only require the end user to store a
single key. The trade-off is that such schemes require a certain amount of public
information.

A Scheme Based on Hash Functions. The scheme we now describe could
be considered to be a hybrid of an iterative key encrypting (IKE) scheme [8]
and a hash chain. Atallah et al , for example, define a concrete construction of
an IKE scheme [13].

In our scheme, the content provider selects m hash functions h1, . . . , hm

and m secrets σ1, . . . , σm, and defines key κi,j = hn−j
i (σi), as before.

Now, however, the content provider publishes enough information to en-
able the computation of κx,j from κi,j for all x < i, by publishing{
Encκi,j (κi−1,j) : 1 < i 6 m, 1 6 j 6 n

}
. Hence, we require (m − 1)n items of

public information.

Correctness and Collusion Security. Again, it is very easy to demonstrate that
a user ui,j can derive the key for any node in Ri,j . First, ui,j is given κi,j and
this key, in conjunction with the public information, can be used to derive κx,j

for all x < i. Moreover, κx,y can be obtained from κx,j by j − y applications of
h. Hence, ui,j can obtain κx,y in no more than i− 1 + j − 1 = i+ j − 2 steps.

Collusion security follows from the fact that pre-image resistance of the hash
function prevents the computation of κi,j+k from κi,j for any k > 0. The as-
sumption that it is computationally hard to decrypt without knowledge of the
secret key ensures that κi+k,j cannot be derived from κi,j .

6 That is, given N , y ∈ Z∗
N and an integer e > 0 that is co-prime to ϕ(N), compute

y1/e mod N .

Constructing Key Assignment Schemes from Chain Partitions 11

A Scheme Based on RSA. Finally, we note that we can use the CDM labeling
(Definition 1), in which modular exponentiation is used to recover keys. It is
important to note that this scheme does not rely on the idea of encrypting
edges, and is therefore quite different from the schemes described above. (It is,
however, closely related to the Akl-Taylor scheme [15].)

Recall that we associate each (x, y) ∈ Rm,n with a CDM label ϕ(x, y) ∈ Zm.
Moreover, ϕ(x′, y′)−ϕ(x, y) is positive if and only if (x, y) > (x′, y′). In this new
scheme the scheme administrator

– obtains a large compound integer N using the RSA key generator;
– chooses small, distinct primes p1 = 2, p2 = 3, . . . , pm ∈ Z∗

N and makes them
public;

– chooses a master secret σ ∈ Z∗
N ;

– defines

π(x, y) =
m∏
i=1

p
ϕi(x,y)
i ;

– defines κx,y = σπ(x,y) mod N .

Correctness and Collusion Security. Consider (x, y) and (x′, y′), where (x, y) >
(x′, y′). Then ϕ(x′, y′)− ϕ(x, y) is positive and

π(x′, y′)

π(x, y)
=

m∏
i=1

p
ϕi(x

′,y′)−ϕi(x,y)
i =

x′∏
i=1

py−y′

i

x∏
i=x′+1

pyi

Hence,

(κx,y)
π(x′,y′)
π(x,y) = (σπ(x,y))

π(x′,y′)
π(x,y) = σπ(x′,y′) = κx′,y′

In other words, if ϕ(x′, y′)− ϕ(x, y) is positive, we can compute κx′,y′ from κx,y

since we can compute π(x′,y′)
π(x,y) . Specifically, given κx,y:

1. compute ϕ(x, y) and ϕ(x′, y′), which is trivial if m and n are known;
2. compute ϕ(x′, y′)− ϕ(x, y) and hence π(x′, y′)/π(x, y);
3. finally, compute κx′,y′ .

We cannot compute κx′′,y′′ from κx,y if (x, y) ̸> (x′′, y′′) since this would imply
that ϕ(x′′, y′′) − ϕ(x, y) is not positive and we would have to compute integral
roots modulo N to compute κx′′,y′′ . (In other words, solve the RSA problem.)
Moreover, Proposition 3 implies that any adversary with keys κx1,y1 , . . . , κxj ,yj ,
such that (xi, yi) ̸> (x, y), would have to solve the RSA problem to compute
κx,y.

4.3 Related Work

In Table 2, we summarize the properties of several schemes in the literature
and compare them to the schemes we have introduced in this section. The table
includes, for ease of reference, the best labeling scheme from Sec. 3. We also

12 Jason Crampton et al.

include IKE and DKE schemes for Rm,n. Atallah et al have demonstrated how
an IKE scheme (and hence a DKE scheme) can be implemented using hash
functions [13]; we will assume that this implementation is used for the purposes
of our comparison. We write MKIH to denote the multiple-key iterative hash
scheme and MKRSA to denote the multiple-key RSA scheme and replace ‘M’
with ‘S’ for the equivalent single-key schemes.

We write THsh to denote the time taken to compute a hash function and
TMul to denote the time taken to perform a modular multiplication. (Recall
that the modular exponentiation an can be performed by a square-and-multiply
algorithm using no more than 2 log2 n modular multiplications.) We assume that
our unit of storage is 128 bits. That is, all storage costs in Table 2 are expressed
as multiples of 128 bits. We assume that the output of each hash function is 128
bits, and the RSA modulus is 1024 bits (that is, 8 units of storage). The table
reports the worst case for storage costs and the number of key derivation steps.

Table 2. A summary of related work and a comparison with our schemes

Scheme
Private
storage

Public storage Key derivation

CDM m 0 (mn− 1)THsh

IKE 1 (m− 1)n+m(n− 1) (m+ n− 2)THsh

DKE 1 1
4
mn((m+ 1)(n+ 1)− 4) THsh

MKIH m 0 (m− 1)THsh

MKRSA 8m 0 (m− 1)TMul

SKIH 1 (m− 1)n (m+ n− 2)THsh

SKRSA 8 8m (2n
∑m

i=1 log2 pi)TMul

It is clear that even the best labeling scheme (CDM) does not compare well
with either the generic schemes in the literature or the schemes we have intro-
duced in this section. The main reason for this is that the key components in the
labeling schemes do not provide as much information about keys as the other
schemes do. In MKIH, for example, a single key is required to derive all the keys
on any particular chain in the canonical decomposition, in contrast to the label-
ing schemes. We can see from the table that the RSA-based schemes, although
attractive in principle, are unlikely to be as attractive in practice: the storage
required per key is an order of magnitude greater than hash-based schemes and
the key derivation method requires the comparatively expensive modular multi-
plication operation.

5 New Key Assignment Schemes

Our original motivation was to construct better schemes for layered access con-
trol. However, it became apparent that the schemes described in the preceding

Constructing Key Assignment Schemes from Chain Partitions 13

section could be generalized to create key assignment schemes that could be ap-
plied to any poset. Moreover, the resulting schemes do not fit into the taxonomy
of generic key assignment schemes proposed by Crampton et al [8]. In this sec-
tion, we describe briefly how two of our schemes for layered access control can
be extended to create generic key assignment schemes.

Given a poset X, we first select a partition of X into chains {C1, . . . , Cw},
where w is the width of X.7 We denote the length of Ci by ℓi, 1 6 i 6 w. We
regard the maximum element of Ci as the first element in Ci and the minimum
element as the last (or ℓith) element.

Let C = x1 m x2 m · · · m xm be any chain in X. Then we say any chain of
the form xj m · · · m xm, 1 < j 6 m, is a suffix of C. Now, for any x ∈ X, the

set ↓x def
= {y ∈ X : y 6 x} has non-empty intersection with one or more chains

C1, . . . , Cw. We now prove that the intersection of ↓x and a chain Ci is a suffix
of Ci. This result enables us to define the keys that should be given to a user
with label x.

Proposition 4. For all x ∈ X and any chain C ⊆ X, either ↓x ∩ C is a suffix
of C or ↓x ∩ C = ∅.

The above proposition indicates how we should allocate keys to users. Since
{C1, . . . , Cw} is a partition of X into chains, {↓x ∩ C1, . . . , ↓x ∩ Cw} is a disjoint
collection of chain suffixes. Moreover, the keys for each element in X have been
chosen so that the key for the jth element of a chain can be used to compute
all lower elements in that chain. Hence, we can see that a user with label x
must be given the keys for the maximal elements in the non-empty suffixes
↓x∩C1, . . . , ↓x∩Cw. Given x ∈ X, let x̂1, . . . , x̂w denote these maximal elements,
with the convention that x̂i = ⊥ if ↓x ∩ Ci = ∅. Clearly the number of x̂i such
that x̂i ̸= ⊥ is no greater than w. The above result and observations provide the
foundations of both the schemes that follow.

5.1 Multiple-Key Iterated Hash Scheme

We first consider the use of iterated hashing. The scheme administrator

– selects a chain partition of X into w chains C1, . . . , Cw;
– selects w secret values σ1, . . . , σw and w hash functions h1, . . . , hw;
– defines the key for the maximum element of chain Ci to be σi;
– for each pair x, y ∈ Ci such that xl y, defines κ(x) = hi(κ(y));
– for each x ∈ X, defines the private information for x to be {κ(x̂i) : x̂i ̸= ⊥}.

We denote the key for the jth element of Ci by κi,j . Clearly (as in Sec. 4), a
user in possession of κi,j can compute κi,y, for any y > j, by y − j iterative
hash computations. Figure 2 illustrates a poset X of width 4 and one possible
partition of X into 4 chains. If the chain x11 > x8 > x4 > x1 is associated with
the secret value σ, for example, then κ(x11) = σ and κ(x8) = h(σ), etc.

7 Unlike Rm,n, there is no canonical partition for an arbitrary poset X. At this stage,
we do not consider what features a “good” partition might have. We return to this
question towards the end of the section.

14 Jason Crampton et al.

rx1 �
�
�

rx2@
@

@
�
�
� rx3@

@
@

rx4 �
�
� rx5@

@
@

�
�
� rx6@

@
@

rx7 �
�
� rx8@

@
@

�
�
� rx9@

@
@

rx10 �
�
� rx11@

@
@
rx12

(a) A poset X

rx1 �
�
�

rx2@
@

@ rx3@
@

@
rx4 �
�
� rx5 rx6@

@
@

rx7 �
�
� rx8 �

�
� rx9

rx10 �
�
� rx11

rx12

(b) A partition of X into chains

Fig. 2. Partitioning an arbitrary poset into chains

Clearly, the number of steps required for key derivation is bounded by the
length of the longest chain in the partition. With this is mind, it might be
sensible to choose a chain partition in which the chains are as similar in length
as possible. In terms of correctness and collusion security, the MKIH scheme for
arbitrary posets is no different from the corresponding schemes for Rm,n.

5.2 Multi-Key RSA Scheme

In the second scheme, we use RSA key chains. The scheme administrator gen-
erates and publishes N1, . . . , Nw (as in Sec. 4.1). As in Sec. 5.1, the scheme
administrator selects a chain partition of X and defines the key for the maxi-
mum element of the ith chain to be σi. Now, for each pair x, y ∈ Ci such that
x l y, the scheme administrator defines κ(x) = (κ(y))2 mod Ni. Finally, the
private information associated with x ∈ X is defined to be {κ(x̂i) : x̂i ̸= ⊥} (as
in the preceding scheme).

5.3 Related Work

In Table 3, we summarize the differences between our schemes and existing
generic key assignment schemes. We also compare the performance of these
schemes for the poset and chain partition illustrated in Fig. 2. We write c for
the cardinality of the cover relation l and r for the cardinality of the order
relation 6. For example, DKE, in general, requires a single key, r items of public
information, and one step to derive a key; the scheme requires 51 items of pub-
lic information for the poset illustrated in Fig. 2. The table states the storage
in terms of number of keys and number of operations. For simplicity we omit
MKRSA from the comparison, enabling us to assume that all keys have the same
length.

Constructing Key Assignment Schemes from Chain Partitions 15

Table 3. A comparison of our schemes with existing generic key assignment schemes

Scheme
Private storage

Public storage
Key derivation

x x12 x10 x9 x x12 x10 x9

Trivial |↓x| 12 7 5 0 0

DKE 1 r 51 1

IKE 1 c 14 d 5 4 3

MKIH 6 w 4 3 3 0 6 d 3 2 2

The MKIH scheme provides a different trade-off from the three existing
schemes: users may have multiple keys8 but no public information is required
and key derivation will generally be quicker than for an equivalent IKE scheme.9

6 Conclusion

We have shown how to construct a new type of generic key assignment scheme
using chain partitions, the inspiration for the original constructions being pro-
vided by the problem of enforcing layered access control in scalable multimedia
formats. Our schemes, both for layered access control and as generic key assign-
ment schemes, compare favorably with those in the literature.

We have many ideas for future work. Of primary interest is whether we can
prove that our schemes are secure against key recovery [13], a more exacting
criterion than that of collusion security used in this paper. We also hope to
gain some insight, either from a mathematical analysis or through experimental
work, into what might be the best choice(s) of chain partition for an arbitrary
poset. A third area for potential research is to generalize our constructions to
more than two scalable components (most likely using a recursive construction
with one of our schemes from Sections 3 and 4 as a base case). Finally, we would
like to apply our schemes to access control for geo-spatial data [17], because the
policies used are rather similar to those for scalable multimedia formats.

Acknowledgements. The authors would like to thank the anonymous referees for
their valuable comments.

8 Schemes with multiple keys were usually disregarded in the early literature [8], al-
though several recent schemes have made use of multiple keys [13, 17].

9 Note that key derivation in our multi-key iterative hash scheme cannot be worse
than key derivation in IKE and, in many cases, will be considerably better. As
we observed earlier, it would be sensible to choose a chain partition in which all
chains have approximately the same length. If this is possible, key derivation is
approximately |X| /w. The poset in Fig. 2, for example, can be partitioned into 4
chains of length 3. Then any key can be derived in no more than 2 hops, whereas an
IKE scheme would require 5 hops to derive κ(x1) from κ(x12).

16 Jason Crampton et al.

References

1. Li, W.: Overview of fine granularity scalability in MPEG-4 video standard. IEEE
Transactions on Circuits and Systems for Video Technology 11(3) (2001) 301–317

2. Christopoulos, C., Skodras, A., Ebrahimi, T.: The JPEG2000 still image coding
system: An overview. IEEE Transactions on Consumer Electronics 46(4) (2000)
1103–1127

3. Zhu, B., Feng, S., Li, S.: An efficient key scheme for layered access control of
MPEG-4 FGS video. In: Proceedings of the 2004 IEEE International Conference
on Multimedia and Expo. Volume 1. (2004) 443–446

4. Hashimoto, N., Imaizumi, S., Fujiyoshi, M., Kiya, H.: Hierarchical encryption
using short encryption keys for scalable access control of JPEG 2000 coded images.
In: Proceedings of the 2008 IEEE International Conference on Image Processing.
(2008) 3116–3119

5. Imaizumi, S., Fujiyoshi, M., Abe, Y., Kiya, H.: Collusion attack-resilient hier-
archical encryption of JPEG 2000 codestreams with scalable access control. In:
Proceedings of the 2007 IEEE International Conference on Image Processing. Vol-
ume 2. (2007) 137 –140

6. Imaizumi, S., Watanabe, O., Fujiyoshi, M., Kiya, H.: Generalized hierarchical
encryption of JPEG 2000 codestreams for access control. In: Proceedings of the
2005 IEEE International Conference on Image Processing. Volume 2. (2005) 1094–
1097

7. Crampton, J., Daud, R., Martin, K.: Constructing key assignment schemes from
chain partitions. Technical Report RHUL-MA-2010-10, Royal Holloway, Univer-
sity of London (2010) Available at http://www.ma.rhul.ac.uk/static/techrep/
2010/RHUL-MA-2010-10.pdf.

8. Crampton, J., Martin, K., Wild, P.: On key assignment for hierarchical access
control. In: Proceedings of 19th Computer Security Foundations Workshop. (2006)
98–111

9. Davey, B., Priestley, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge, United Kingdom (1990)

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC (2007)

11. Bell, D., LaPadula, L.: Secure computer systems: Unified exposition and Multics
interpretation. Technical Report MTR-2997, Mitre Corporation, Bedford, Mas-
sachusetts (1976)

12. Denning, D.: A lattice model of secure information flow. Communications of the
ACM 19(5) (1976) 236–243

13. Atallah, M., Blanton, M., Fazio, N., Frikken, K.: Dynamic and efficient key man-
agement for access hierarchies. ACM Transactions on Information and System
Security 12(3) (2009) 1–43

14. Dilworth, R.: A decomposition theorem for partially ordered sets. Annals of
Mathematics 51 (1950) 161–166

15. Akl, S., Taylor, P.: Cryptographic solution to a problem of access control in a
hierarchy. ACM Transactions on Computer Systems 1(3) (1983) 239–248

16. Atallah, M., Blanton, M., Frikken, K.: Key management for non-tree access hier-
archies. In: Proceedings of 11th ACM Symposium on Access Control Models and
Technologies. (2006) 11–18

17. Atallah, M., Blanton, M., Frikken, K.: Efficient techniques for realizing geo-spatial
access control. In: Proceedings of the 2007 ACM Symposium on Information,
Computer and Communications Security. (2007) 82–92

