Preserving Integrity and Confidentiality of a
Directed Acyclic Graph Model of Provenance

Amril Syalim, Takashi Nishide, and Kouichi Sakurai

Department of Informatics, Kyushu University, Fukuoka, Japan
amr@itslab.csce.kyushu-u.ac. jp,{nishide, sakurai}@inf.kyushu-u.ac.jp

Abstract. This paper describes how to preserve integrity and confiden-
tiality of a directed acyclic graph (DAG) model of provenance database.
‘We show a method to preserve integrity by using digital signature where
both of the provenance owner and the process executors (i.e. contribu-
tors) sign the nodes and the relationships between nodes in the prove-
nance graph so that attacks to integrity can be detected by checking
the signatures. To preserve confidentiality of the nodes and edges in the
provenance graph we propose an access control model based on paths
on the provenance graph because an auditor who need to audit a result
normally need to access all nodes that have causal relationship with the
result (i.e. all nodes that have a path to the result). We also complement
the path-based access control with a compartment-based access control
where each node is classified into compartments and the auditor is not
allowed to access the nodes included in a compartment that can not be
accessed by him/her (because of the sensitivity of the compartment).
We implement the path-based access control by encrypting the nodes
and later store encrypted encryption’s keys in the children of the nodes.
The compartment-based access control is implemented by encrypting the
nodes in different compartments with different keys. We developed a pro-
totype of the model and performed experiments to measure the overhead
of digital signature and the double encryptions.

1 Introduction

In a system where we need to understand the processes that have been executed
to produce a result we need to record provenance of the execution [1,2]. By
recording provenance we may trace who have contributed to the creation of the
result [3, 4]. This feature is very important whenever we need to verify the process
of result’s creation, for example in a distributed system (i.e. a grid system), where
a result may be produced by many parties in different computers [5]. Another
real life example is in a hospital, a medicine prescription may be created by
a doctor based on the examination result of another doctor. The result of the
another doctor may be based on the examination results of the other doctors
working in the same or other hospitals. Whenever there is something wrong with
the prescription we need to trace who produce incorrect examinations. By using
provenance of examination we can trace the process to create the prescription.

2 Amril Syalim et al.

To be useful, the process executors (i.e doctors) should not have ability to alter,
delete or add the provenance of their examination results with intention to make
errors go to other doctors. The doctors also can not deny their examination
results.

For a sequential execution of processes, provenance can be represented in a
form of chain [3,4]. A more expressive model that is suitable for a parallel execu-
tion is a directed graph model where nodes in the graph represent processes and
the edges represent relationships between the processes (nodes) [6,7]. Because
provenance is tightly associated with time, many models of provenance take the
form of a directed acyclic graph (DAG) [8].

In this paper, we are focusing on securing a directed acyclic graph model
of provenance in terms of integrity and confidentiality. To ensure integrity of
the provenance graph (i.e. nodes and edges) we need to assure immutability
and non-repudiation properties of each node and edge in the provenance graph.
The contributors (i.e. the people or processes that contribute in the provenance
graph) can not cheat for any purposes. The other parties in the provenance sys-
tem (i.e. the manager of the provenance graph that we refer in this paper as
the provenance owner), although powerful enough to manage access to prove-
nance, also can not cheat (i.e by changing the provenance graph) without being
detected. We propose a method to protect integrity of provenance by employ-
ing digital signature. Using this method, the contributors and provenance owner
both sign the provenance’s nodes and edges. To alter the nodes and edges with-
out detected needs collusion from the two parties which means to repeat the
process execution from beginning.

To support confidentiality of the provenance graph we need to define ac-
cess control model to provenance and how to enforce the access control model.
Provenance should only be accessed by the person who has the right to ac-
cess, for example an auditor who need to audit the process [3,4]. The system
should support restricting access to only some parts of the provenance [1]. Many
access control models employ grouping mechanism to improve efficiency and se-
curity (i.e. by using groups, roles, security levels/compartments). We propose
a grouping mechanism for access control to provenance by utilizing two group-
ing methods: grouping of entities in the provenance graph based on paths and
grouping entities based on compartments. Grouping by paths is useful because
the auditors who audit the process should be interested in the causal relationship
in the provenance graph. However access control by paths alone is not expres-
sive to enforce a more specific policies (i.e. an auditor only can access a part of
nodes/edges in the paths). We complement the paths-based access control with
a compartment-based access control so that we can enforce such policies. By
using a compartment-based access control, each node is assigned with a com-
partment and the provenance owner grants access to the nodes in a compartment
by granting access to that compartment.

Preserving Integrity and Confidentiality of Provenance 3
2 Related Works

Hasan et al. [9,4, 3] show a threat model to a chain model of provenance and
the method to prevent/detect the attacks associated with the threats by using
digital signature and broadcast/threshold encryption. Our method extends their
method by applying the digital signature method to a directed acyclic graph
model of provenance. While Hasan et. al need to sign the provenance record in
the provenance chain and including checksum of previous provenance record in
the chain to maintain the integrity of record and the chain structure, we need to
sign the nodes in the provenance graph and including the signed checksum of the
parent nodes. Hasan et. al use a broadcast and threshold encryption to support
confidentiality so that they do not propose a specific access control model, while
we propose a specific access control model based on paths and compartments.

Braun et.al. argue that provenance needs new security model [8]. They also
propose a security model for provenance based on observation of the usage of
provenance [10]. They focus on security model but do not deeply discuss how to
guarantee integrity of provenance. Their main proposal is that we need to control
access to edges (head and tail) and nodes (attributes). Their access control is
more expressive because we can define access to the level of a head and tail of an
edge. However, there is no analysis of efficiency of the model and the mechanism
to implement the access control model.

3 Integrity Mechanism: Digitally Signing the Provenance
Graph and Its Security Analysis

An example of provenance graph with six contributors is shown in the Figure
1. The Figure 1 shows that to produce the final result, the contributor C5 uses
the outputs of contributors C1 and C2 while contributor C6 uses the output of
contributors C3 and C4. Contributor C7 uses the output of C5 and C6 which
later used by C8 and C9. The final process is executed by C10 that processes
the outputs of C8 and C9. After each process is executed and the provenance
of the process (i.e. node) is created/generated, the provenance is stored in the
provenance database. The other papers [1,5, 11-13] call the provenance database
as a provenance store.

Fig. 1. Provenance graph

4 Amril Syalim et al.

We identify three groups of active entities involved in a provenance system:
provenance owners, contributors, and auditors. A provenance owner is the owner
of provenance that mediates the provenance recording process and manages ac-
cess to the provenance. The contributors are the people who execute process and
contribute the results. Auditors are the people who need to access the provenance
graph, for example for reviewing or auditing the process’s execution.

Provenance is recorded after each process is executed by the contributor. In
a distributed system, before executing the distributed process, a worflow (i.e. a
distributed execution plan) should be defined and sent to the provenance owner.
The process to create a workflow may involve some or all of contributors. Based
on the workflow, provenance owner sends each contributor information that is
needed by the contributor to execute each process in the workflow (i.e inputs
of the process). After a contributor execute a process, the contributor should
produce outputs which we refer as a document. The provenance of the document
is documentation of process execution to produce the document. The provenance
can be automatically generated by the system where the contributor execute the
process or manually created by the contributor. After execution of a process, the
document and provenance of the document are sent to the provenance owner
which later record them as a node in the provenance database. The provenance
owner may also send the document to contributors that need the documents for
their inputs.

After the provenance is recorded, there are some possible integrity problems
with provenance. We identify four main problems: repudiation, alteration, dele-
tion, and addition. A contributor may deny that she/he has contributed the
document and its provenance. The document and provenance (i.e. nodes) may
be altered by an attacker so that they do not reflect original process. Attacker
may also delete a node or add a fake node.

The basic idea of the digital signature mechanism is whenever a provenance of
a document is recorded, both of the contributor and provenance owner sign the
document and the provenance before storing the provenance to the database.
Whenever a contributor uses an output document of other contributor as an
input, the contributor should create the hash/checksum of the input and store
them as a provenance of the process executed by the contributor.

We assume that each contributor, auditor and provenance owner has a pair
of public key and private key and each party can retrieve the public keys of the
other parties securely. The private keys can only be accessed by the owner of
the key. Let D,, is the document created by a contributor identified by n and
P, is a provenance of the document. The function H(D,) is a function that
produce hash value of D,,. The function S,, is a signing function where S,,(D,,)
is a function that produce digital signature of contributor n to document D,,.

If a contributor n needs to use a document (i.e. D, _;) produced by another
contributor (i.e. contributor n — 1) as input, before the contributor n executes
the process, the provenance owner sends the input that has been signed by the
provenance owner and the another contributor: S,(Sy,—1(Dn—1)). After verifying
the document and the signatures, the contributor n execute the process. The con-

Preserving Integrity and Confidentiality of Provenance 5

tributor n signs the result D,,, its provenance P, and hash of the input H(D,,_1).
The signed result, its provenance and hash of the input is Sy, (P, Dy, H(Dp—1)).
The contributor sends them to the provenance owner. The provenance owner
signs them and store them in the database.

This scheme supports integrity by preventing contributor deny a node after
committing the node and detecting other attacks: alteration, deletion, and ad-
dition. A contributor cannot deny a node after committing the node because if
the contributor deny a node means that the signature has been forged which is
very unlikely. As for alteration, the possibilities are as follow:

1. A contributor alters the content of the nodes (i.e. documents or provenances)
and create a new signature. The attack is not possible because the contrib-
utor cannot create a new signature of the provenance owner.

2. A provenance owner alters the content of the nodes and create the new
signature. The attack is not possible because the provenance owner can not
create a new signature for the contributor.

3. The other people accessing the system alter the nodes. The attack is not pos-
sible because they can not create the signatures of contributors and prove-
nance owners.

4. The provenance owner and a contributor collude to alter a node, they still
need to collude with all successors of the node because the children of the
node include the hash of the parent’s documents in their provenance. Col-
luding with all children mean repeating the process from the beginning.

As for addition, the possibilities are as follow:

1. If the provenance owner adds a new node, the provenance owner cannot
create the contributor’s signature of the new node.

2. If a contributor inserts a node between a parent and its children and change
the references in the nodes so that the new node become the children of
the parent and the previous children become the children of the new node,
she cannot create the signature of the previous children so that the previous
children are still refer to the original parent as their parent. The contributor
also can not forge the signature of the provenance owner.

For deletion, the possibilities are as follow:

1. If a contributor or provenance owner deletes a node and want to change the
relationship so that the children of the node become the children of any other
nodes. They cannot change the signature consistently without colluding with
all contributors of successors of the node.

2. The other people deletes the nodes. The attack is not possible because they
can not create the signatures of contributors and provenance owners.

4 Confidentiality Mechanism: Path-based Access Control
and Encrypting the Provenance Graph

To protect confidentiality of provenance we need to prevent confidential prove-
nance information be accessed by unauthorized people accessing the system.

6 Amril Syalim et al.

However, the system should also support authorized access to provenance (i.e.
authorized auditors who need to access provenance to do audit and verify the
process of object creation). We propose an access control model based on path
on the provenance graph. The arguments of our proposal is that an auditor
normally needs to access all nodes that have a path to the result because the
nodes have causal relationship to the result. We believe that this model is more
efficient and comfortable because the provenance owner can easily create access
based on paths in the provenance graph.

However, by using path-based only access control, we can not create a more
expressive policy (for example an auditor can only access a part of the paths). We
combine path-based policy with another access policy based on compartments.
Compartments define separation between nodes in different security level/classes
and the auditors that can access those compartments.

We propose to implement the access control model by using cryptographic
mechanisms (i.e. encryption). This method is especially important if we store the
provenance in an untrusted server (i.e. the provenance owner wants to outsource
the storage of provenance to a third party who may be not trusted). This method
can also be used if the provenance owner wants to implement cryptographic-
based access control (where the data is encrypted and access rights are granted
by giving the encryption keys). The idea of our implementation for path-based
access control is to encrypt the nodes and store the encryption keys in the
children of the nodes. Below of the detail of the encryption process (see Figure
2).

Kn-1 Kkl Kn Kk
K_C KC
[| o | e e]

Fig. 2. Encrypting the Provenance Graph

Let P, is the node that has been signed by the contributor n and the prove-
nance owner o and let Ex(P,) is an encryption function that encrypt P, with
private key k. To encrypt the node P,, the provenance owner define compart-
ment of the node and find the parent nodes. The provenance owner retrieves
the key associated with the compartment K¢, the keys to encrypt the parent
nodes K,,_; and the key to encrypt the grandparent node Kj_;. The provenance
owner generates two random keys: node’s key K, and parent-key’s key K} and
store the keys in a key database managed by the provenance owner. The prove-
nance owner encrypts the node P, with key K. Then the provenance owner
re-encrypts the node with the key K,,. After that the provenance owner encrypts
the keys K, _1 and Kj_1 with parent-key Kj. Encrypted form of the node is

Preserving Integrity and Confidentiality of Provenance 7

Ek, (Exe(Pn)|Ek, (Kn-1|Kk—1). The provenance owner stores encrypted form
of the node in the provenance database.

The provenance owner may combine both path-based access and compart-
ment access policy or only use a path-based access policy. To create a policy, the
provenance owner first define the compartment of each provenance and encrypt
the provenance with key K¢ for that compartment. The provenance owner as-
signs which compartment that can be accessed by an auditor by giving the K¢
to the auditor.

The provenance owner can define the policy of access of the auditor to the
nodes based on the document that should be audited by the auditor. There are
two keys in each node: K, for encrypting provenance in the node and Kj is
the key for encrypting the parent nodes (i.e. the nodes that have paths to the
current node). By providing/not providing the keys K,, and K, there are four
possible access policies of an auditor to a node:

1. The auditor cannot access any component of the node (provenance and the
parent nodes). In this case the auditor is not provided any keys.

2. The auditor can access the node but not the parent node. In this case the
auditor should be provided the key K.

3. The auditor cannot access the the node but can access the parent nodes. In
this case the auditor should be provided with the key K.

4. The auditor can access the node and also the parent nodes. In this case the
auditor should be provided both of the key K,, and Kj.

5 Experimental Results

We implemented the digital signature and encryption scheme and did two exper-
iments to measure the overhead of the digital signature and encryption mech-
anisms. In the first experiment, we stored the provenance without first signing
and encrypting the provenance. In the second experiment, we stored the iden-
tical provenance and used the digital signature and encryption scheme to sign
and encrypt the provenance.

We performed experiments for workflows that produce provenance with the
number of nodes 8, 16, 32, 64 and 128. The size of documents and provenance of
the documents were between 100KB to 150KB. We measured the time to sign,
encrypt, and store documents and provenance (the time to execute the process to
produce the documents was not measured). The program was implemented with
Java version 1.6 and used DSA for digital signature and AES for encryption. In
the experiments, we executed the program on a Linux machine (Linux version
2.6.31) with Intel Core 2 Duo 2.00GHz processor and main memory 2GB. The
documents and provenance were stored in a Postgresql database (version 8.4) run
on another machine (a Linux version 2.6.31 with Pentium Dual-Core 2.50GHz
processor and main memory 2GB) connected by a Wireless Local Area Network
(speed 54Mbps). For each experiment and the number of nodes we executed and
measured the execution times three times.

Amril Syalim et al.

70000 -
. Plain ——
60000 SignCrypt -

50000
40000
30000
20000
10000

/

0
0 20 40 60 80 100 120 140

Fig. 3. Execution time (ms)

The Figure 3 shows the experimental results. The X axis is the number of

nodes, the Y axis is the times to store the provenance (in milliseconds). From
the table we can find that the overhead to sign and encrypt provenance is about
5 times in compare to store provenance without signing and encrypting. This
overhead shows that to sign and encrypt provenance graph takes time much
higher than the process to store plain provenance graph to the database.

References

10.

11.

12.

13.

Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An
architecture for provenance systems. Technical report, University of Southampton
(November 2006)

. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data

provenance. In: ICDT. (2001) 316-330

Hasan, R., Sion, R., Winslett, M.: Preventing history forgery with secure prove-
nance. ACM Transactions on Storage 5(4) (December 2009) 12:1-12:43

Hasan, R., Sion, R., Winslett, M.: The case of the fake picasso: Preventing history
forgery with secure provenance. In: FAST. (2009) 1-14

Groth, P., Luck, M., Moreau, L.: A protocol for recording provenance in service-
oriented grids. In: Proceedings of the 8th International Conference on Principles
of Distributed Systems (OPODIS04. (2004) 124-139

Moreau, L., Freire, J., Futrelle, J., McGrath, R.E., Myers, J., Paulson, P.: The
open provenance model: An overview. In: Second International Provenance and
Annotation Workshop, IPAW 2008. (June 2008)

Shawn Bowers, T.M.M.B.L.S.C.S.B.D.: A model for user-oriented data provenance
in pipelined scientific workflows. In: IPAW 2006. (2006) 133-147

Braun, U., Shinnar, A., Seltzer, M.I.: Securing provenance. In: HotSec. (2008)
Hasan, R., Sion, R., Winslett, M.: Introducing secure provenance: problems and
challenges. In: StorageSS. (2007) 13-18

Braun, U., Shinnar, A.: A security model for provenance. Technical report, Harvard
University (2006)

Paul Groth, S.M., Moreau, L.: Preserv: Provenance recording for services. In: UK
e-Science All Hands Meeting 2005. (September 2005)

Altintas, 1., Barney, O., Jaeger-Frank, E.: Provenance collection support in the
kepler scientific workflow system. In: IPAW. (2006) 118-132

Chapman, A., Jagadish, H.V., Ramanan, P.: Efficient provenance storage. In:
SIGMOD Conference. (2008) 993-1006

