
Performance Evaluation of Non-Parallelizable
Client Puzzles for Defeating DoS Attacks in

Authentication Protocols

Suratose Tritilanunt

Computer Engineering Department, Faculty of Engineering, Mahidol University
25/25, Salaya, Phuttamonthol, Nakornpathom, Thailand, 73170

egstl@mahidol.ac.th

Abstract. We provides an evaluation of non-parallelizable puzzles used
to prevent DoS in authentication protocols. With an evaluation based on
a simulation and performance analysis, this approach helps a responder
to resist against DoS, as well as improves the throughput of services
for legitimate clients. Another key strength is that the construction and
verification at the responder is simple and fast.

1 Introduction

Client puzzles in computer network was first introduced by Dwork and Naor [1]
for combating junk emails. Almost a decade, Juels and Brainard [2] adopted
this technique to defeat denial-of-service (DoS) attacks in network protocols.
Later on, many techniques have been proposed for constructing client puzzles,
for examples, Hash-based Reversal Puzzles [2–4], Time-Lock Puzzles [5], and
Diffie-Hellman based Puzzles [6].

Hash-based constructions meet many of the desirable properties of proofs
of work [7], but they also have the property that exhaustive searching of a pre-
image search space is a parallelizable task. Using such a technique in the presence
of an adversary with access to distributed computing resources may leave au-
thentication protocols exposed to DoS. Adopting alternate puzzle constructions,
such as time lock puzzles that are inherently sequential and non-parallelizable,
may need to be considered for protocols that are to be used in an environment
where the adversarial model assumes that significant resources are available to
the attacker.

A client puzzle is non-parallelizable if the solution to the puzzle cannot be
computed in parallel. Non-parallelizable client puzzles can be used to defend
against distributed denial-of-service (DDoS) attacks, where a single adversary
can control a large group of compromised machines. This adversary could dis-
tribute puzzles to other compromised machines to obtain puzzle solutions faster
than the time expected by the server. This kind of attack is identified as strong
attacks [8].

Two examples of a puzzle construction which was implemented for preventing
strong attacks are a hash chain [9,10], and amodified repeated squaring technique

2 Suratose Tritilanunt

[11]. Because a nature of chaining requires a previous value for constructing
the next consecutive items, the construction of hash chain can prevent parallel
searching. In a repeated squaring puzzles, the developer improves a modular
arithmetic calculation of Time-Lock Puzzles [5] to achieves a fast verification
and a non-parallizable feature.

To address the problem of parallelizable client puzzles, this paper proposes
a construction having characteristics comparable to time-lock and hash chain
puzzles but the new scheme requires less computation in the puzzle construction
and verification. Our new puzzle scheme including puzzle construction, puzzle
solving, and puzzle verification, as well as the experimental results which are
examined based on the performance analysis using CPN Tools are provided in
this paper.

2 Non-parallelizable Puzzles based on Subset Sum

Apart from a brute-force searching (that requires a running time of orderO(2nn),
where n represents the number of decision variables) used to solve subset sum
problems, an alternative technique used to successfully break subset sum prob-
lems is called a lattice basis reduction. There are several lattice reduction al-
gorithms but the best method so far for breaking the subset sum problems is
the LLL or L3 algorithm developed by Lenstra et al. [12]. LLL algorithm has
been widely used in breaking subset sum cryptosystems [13,14] because the algo-
rithm is able to terminate in polynomial time. Moreover, it is highly sequential
because the underlying program requires recursive computation. From this per-
spective, LLL is a promising technique to fulfill our requirement in terms of
non-parallelizability and thwart coordinated adversaries from distributing the
client puzzle to calculate the solution in a parallel manner. Details of L3 lattice
basis reduction is beyond our scope of this paper, so we encourage the reader
interested in more detail to read the papers by Nguyen and Stern [14], and Joux
and Stern [13].

2.1 Puzzle Construction, Solving, and Verification

To establish a secure connection to a responderR, I sends a request containing an
identity (IDI) along with a random nonce (NI). The responder chooses a secret
parameter s randomly to make the output unique for each communication, and
decides a puzzle difficulty k depending on the workload condition. The value of
k should be selected to be at least 25 in order to guarantee that the coordinated
adversary requires over a thousand compromised machines to brute-force search
or over a hundred compromised machines to run bounding algorithm on the
subset sum puzzles at the equivalent time to the legitimate user performing LLL
lattice reduction. As a practical choice we suggest to take a value of k between
25 and 100 and then if weights are chosen to be of length 200 bits we can ensure
that the generated knapsack has density at most 0.5. Practical experimental
tests can be found in [15] which support our proposal.

Performance Evaluation of Non-Parallelizable Client Puzzles 3

I R

Precomputed parameters

set of random weight wn

wn = H (wn−1)

. .

1) send request
IDI ,NI−−−−−−−→ choose secret s ∈R Zn

choose puzzle difficulty k → 25 ≤ k ≤ 100

C = LSB(H (IDI ,NI , IDR,NR, s)), k)2

W =
∑k

i=1 Ci · wi

2) verify IDI ,NI IDI ,NI , puzzle = (w1 ,W , k)

generate wk = H (wk−1)
IDR,NR, puzzle←−−−−−−−

form a Basis Set B

run LLL Reduction → get C’

check W
?
=

∑k
i=1 C ′

i · wi

3) return C ′ IDI ,NI , IDR, option 1) checkC ′ ?
= C

NR, puzzle,C
′

−−−−−−−→ option 2) re-generateC

C = LSB(H (IDI ,NI , IDR,NR, s)), k)2

checkC ′ ?
= C

Fig. 1. Subset Sum Puzzles

Figure 1 represents the puzzle construction. The responder R computes a
hash operation (H(·)), and computes (LSB((·), k)2) to obtain k bits from the
output of hash function. Finally, R forms a puzzle by computing a desired weight
(W) that it wants a client to solve from a pre-computed set of random weight
(wn). To save on protocol bandwidth, weights can be generated given the initial
random weight w1 by iterative hashing. Hence, a puzzle contains an initial value
of weight of the first item (w1), a desired weight (W), and puzzle difficulty (k).

Considering the client’s job for solving a puzzle, it begins to generate a series
of random weights, (w1, w2, . . . , wk), by computing a hash chain on an initial
value w1. Then, the client constructs a basis reduction set B as b1 = (1, 0, . . . ,
0, w1), b2 = (0, 1, . . . , 0, w2), bk = (0, 0, . . . , 1, wk); and bk+1 = (0, 0, . . . ,
0, -W). Finally, the client runs a LLL Basis Reduction [16] which is the most
effective method to find moderately short lattice vectors in polynomial time.
It is important to note that, the protocol does not limit the client to use LLL
algorithm to solve the puzzles. However, using other techniques, such as brute-
force search in traditional puzzles, might take an unreasonable interval to solve
our scheme.

In terms of the puzzle granularity, there are two possible options for the
responder to adjust the puzzle difficult; 1) adjusting the item size (n), or 2)
adjusting the density (B). Both modifications affect the running time by a fac-
tor (nα · logβ B), where α and β are real numbers dependent on the version of
LLL basis reduction. Since the complexity of LLL basis reduction is a polyno-

4 Suratose Tritilanunt

mial function, we conclude that our subset sum puzzles provide a polynomial
granularity.

2.2 Comparison of Client Puzzle Properties

Based on the properties of good puzzles defined by Juels and Brainard [2]),
only Repeated-squaring, Hash Chain, and Subset Sum puzzles can provide non-
parallelization. Comparing our construction with the others, we find that both
of them suffer from high computation at construction time which means that a
responder using these puzzles would be susceptible to flooding attacks. Since our
scheme has coarser granularity than Repeated-squaring and Hash Chain puzzles,
this issue could be an interesting open problem for the research community to
explore techniques providing both non-parallelization and linear granularity.

Table 1. Summary of Puzzles in term of Proposed Desirable Properties

Properties for Good Puzzles

Puzzle Type Easy to Construct Easy to Not Require Specialised Solution cannot Server does not Non- Granularity
and Verify Adjust Client Hardware be pre-computed store solution parallelization

Hash-based Reversal
√ √ √ √ √

X Exponential

Hint-Based Hash Reversal
√ √ √ √ √

X Linear

Repeated-Squaring X
√ √ √ √ √

Linear

DH-based X
√ √ √

X X Linear

Trapdoor RSA X
√ √ √

X X Linear

Trapdoor DLP X
√ √ √

X X Linear

Hash Chain X
√ √ √ √ √

Linear

Subset Sum
√ √ √ √ √ √

Polynomial

3 Performance Analysis on Subset Sum Puzzles

By replacing a hash-based reversal scheme with our subset sum puzzles, we set
up a formal time-based model using CPN Tools as our formalism.

3.1 Tolerance of a DoS-resistant Protocol

Evaluating tolerance of the server under DoS attacks is the major purpose of
this experiment. We set up the experiment to measure tolerance of the server
under two different workloads (Z); LOW for the light-load, and HIGH for the
heavy-load, from five types of adversaries as following

Type 1 adversary or ad1 computes a valid first message (may be pre-computed
in practice), and takes no further action in the protocol.

Performance Evaluation of Non-Parallelizable Client Puzzles 5

Type 2 adversary or ad2 completes the protocol normally including search-
ing a correct client puzzle solution C ′ until the third message is sent and
takes no further action after this.

Type 3 adversary or ad3 searches for a correct client puzzle solution C ′ but
randomly chooses the remaining message elements, then takes no further
action in the protocol.

Coordinated Type 3 adversary or Co ad3 is similar to Type 3 adversaries,
except that Coordinated Type 3 adversaries are able to control a group of
compromised machines to solve puzzles in parallel for obtaining the solution
with a certain period.

Type 4 adversary or ad4 is like an adversary type 3, except that the client
puzzle solution C ′ is now also chosen randomly.

Table 2 summarizes experimental results as the percentage of a number of
successful legitimate requests that the responder can serve under different ad-
versarys abilities. While the output from Type 2 and Type 3 adversaries shows
a slight improvement, the most contrast comes from Coordinated Type 3 ad-
versary. Obviously, this is because hash-based reveral client puzzles have not
been designed to tolerate the parallel computation from Coordinated Type 3
adversary.

Table 2. Percentage of Throughput with Hash-based Reversal and Subset Sum Puzzles

Adversaries LOW HIGH

Hash-based Reversal Subset Sum Hash-based Reversal Subset Sum

ad1 100 100 100 100

ad2 71.60 80.65 42.05 48.25

ad3 62.95 70.50 31.45 33.20

Co ad3 18.50 71.50 4.95 35.80

ad4 87.20 99.95 83.20 87.45

3.2 Performance Analysis of Subset Sum Puzzles

To evaluate our mechanism, we apply a performance analysis to investigate our
puzzles. By means of statistical analysis, we pay more attention to quantitative
information about the performance including user processing time compared to
server processing time, queue delay on the server at request messages and puzzle
verification, as well as number of rejected packets of legitimate users. Table 3
represents our experimental result.

1) ad Processing Time: This information represents how much compu-
tation is spent in the attack in comparison with the responder to defend such

6 Suratose Tritilanunt

Table 3. Performance of Adjustable Subset Sum Client Puzzles

Adjustable Subset Sum Puzzles

Performance Factors ad1 ad2 ad3 Co ad3 ad4

LOW HIGH LOW HIGH LOW HIGH LOW HIGH LOW HIGH

ad Processing Time 50 500 75200 2645147.06 40638 2006222.03 150 1500 100 1000

responder Processing Time 42835 176260 69017 216540 103991.06 266340.90 107611.54 281906.65 42885 171704.86

Time Out at MSG1 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Max Delay at MSG1 69 519 69 519 69 519 99.65 523.90 69 519

Max Delay at MSG3 0 0 1481 1494 1858.14 1716.35 2456.12 2265.87 0 1354.50

attacks as quantitative measurement in cost-based analysis of Meadows’ pro-
posal [17]. From Table 3, ad2 takes the longest time because ad2 computes
puzzle solving and signature generation, while ad1 spends less computation to
mount DoS attack since they only create and flood bogus requests at step 1.
However if we compare the result to Table 2, both ad1 and ad2 do not achieve
their DoS attacks. From this point of view, other factors should be combined in
the evaluation.

2) responder Processing Time: It has been used as a cost factor to com-
pare with the adversaries’ processing time for estimating the effect of DoS at-
tacks. As shown in Table 3, the responder wastes maximum computation to
ad3 and Co ad3, while spends lesser computation for ad1, ad2, and ad4 ap-
proximately. This is because the responder can detect the attacks from ad4 and
disregard them very quickly. Considering the former case, ad2 does not cause
much destruction in comparison with ad3 and Co ad3 because ad2 requires to
compute both puzzles and digital signature. Unlike ad2, ad3 and Co ad3 do not
compute the digital signature, so their bogus messages arrive to the responder
quickly and those bogus packets have longer period to stay in the queue before
puzzles expire. Although the responder is able to detect the attacks at signa-
ture verification, it is too late for serving legitimate users since the signature
verification is an expensive operation which requires plenty of time.

3) Time Out at MSG1: It provides information regarding to how effec-
tive are flooding attacks from ad1, which is the most common and easiest DoS
technique. Since most authentication protocols nowadays implement stateless
connection and cookies to thwart TCP SYN flooding attacks, it is more difficult
for adversaries to mount the attacks using this simple techniques. This factor
also refers to the efficiency of the puzzle generation of the responder in order
to deal with large numbers of flooding attacks. As shown in the table, there
are no rejected messages at this state for any attacking strategies because our
puzzle generation is very fast. The puzzle can therefore be a powerful defending
approach as a first line of defense when we combine with other DoS-resistant
mechanisms.

4) Max Delay at MSG1 and MSG3: These two values show the maximum
time delay of incoming packets in the queue at protocol step 1 and step 3 on
the responder. The delay at step 1 indicates the efficiency of the responder to

Performance Evaluation of Non-Parallelizable Client Puzzles 7

generate the client puzzles, while the delay at step 3 can be referred to the
efficiency of the puzzle validation. Not surprisingly the longer delay in the queue
at step 3 is, the more degradation of overall services in the system will be. The
reason is because the jobs at step 3, which primarily consists of puzzle and
signature verification, requires longer time to execute than the job at state 1. In
addition, the delay at state 3 might cause the increment of rejected messages at
step 1 if the accumulation on the incoming messages at step 3 is increasing at a
high rate and keeps the responder busy processing these packets until requests
at state 1 have reached or exceeded the maximum time-out period. From the
performance result, only ad3 and Co ad3 are able to boost up the delay on both
states in our puzzles.

In summary, our subset sum puzzles function properly at least under five pro-
posed attacking strategies. Particularly, they can prevent users from gaining
advantages by searching valid puzzle solutions more quickly by parallel compu-
tation. Moreover, the performance of subset sum puzzle construction and puzzle
generation functions effectively as shown in the performance analysis. This leads
to the improvement of the tolerance under all defined denial-of-service tech-
niques.

4 Conclusion

With regard to lacking of the parallelism characteristic in existing client puzzles,
we proposes a new puzzle construction based on the subset sum problem. Un-
doubtedly, the primary strength over others is non-parallelization. In addition,
the puzzle construction and verification requires simple and fast computation
on the responder as shown in the performance analysis. Evaluation by using
performance analysis under five performance parameters and the percentage of
successful service shows that our new approach improves the throughput in com-
parison with hash-based reversal technique.

References

1. Dwork, C., Naor, M.: Pricing via Processing or Combatting Junk Mail. In: the 12th
Annual International Cryptology Conference on Advances in Cryptology, Springer-
Verlag (1992) Lecture Notes In Computer Science; Vol. 740.

2. Juels, A., Brainard, J.: Client Puzzles: A Cryptographic Defense Against Connec-
tion Depletion Attacks. In: the 1999 Network and Distributed System Security
Symposium (NDSS ’99), San Diego, California, USA (Feb 1999) 151–165

3. Aura, T., Nikander, P., Leiwo, J.: DoS-resistant authentication with client puzzles.
In: Security Protocols Workshop 2000, Cambridge (2000) 170–181

4. Feng, W.: The case for TCP/IP Puzzles. In: ACM SIGCOMM 2003 Workshops,
Karlsruhe, Germany, ACM Press (25-27 Aug 2003) 322–327

5. Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock Puzzles and Timed-release
Crypto. Technical Report TR-684, Massachusetts Institute of Technology, Cam-
bridge, MA, USA (10 Mar 1996)

8 Suratose Tritilanunt

6. Waters, B., Juels, A., Halderman, J.A., Felten, E.W.: New Client Puzzle Outsourc-
ing Techniques for DoS Resistance. In: the 11th ACM Conference on Computer
and Communications Security (CCS 2004), USA, ACM Press (2004)

7. Jakobsson, M., Juels, A.: Proofs of work and bread pudding protocols. In: the IFIP
TC6 and TC11 Joint Working Conference on Communications and Multimedia
Security (CMS 99). (Sep 1999)

8. Bocan, V., Cosma, M.F.: Adaptive Threshold Puzzles. In: EUROCON 2005 - The
International Conference on Computer as a tool, Belgrade, Serbia and Montenegro
(Nov, 22-24 2005)

9. Ma, M.: Mitigating denial of service attacks with password puzzles. In: Inter-
national Conference on Information Technology: Coding and Computing, 2005.
(ITCC 2005). Volume 2. (2005) 621–626

10. Groza, B., Petrica, D.: On Chained Cryptographic Puzzles. In: 3rd Romanian-
Hungarian Joint Symposium on Applied Computational Intelligence (SACI),
Timisoara, Romania (May 25-26 2006)

11. Jeckmans, A.J.P.: Practical client puzzle from repeated squaring. Master’s thesis
(September 2009)

12. Lenstra, A.K., Jr., H.W.L., Lovász, L.: Factoring Polynomials with Rational Co-
efficients. Mathematische Annalen 261(4) (Dec 1982) 515–534

13. Joux, A., Stern, J.: Lattice Reduction: A Toolbox for the Cryptanalyst. Journal of
Cryptology: the journal of the International Association for Cryptologic Research
11(3) (1998) 161–185

14. Nguyen, P.Q., Stern, J.: Lattice Reduction in Cryptology: An Update. In: ANTS-
IV: Proceedings of the 4th International Symposium on Algorithmic Number The-
ory, London, UK, Springer-Verlag (2000) 85–112

15. Tritilanunt, S., Boyd, C., Foo, E., Nieto, J.M.G.: Toward Non-Parallelizable Client
Puzzles. In: CANS’07: 6th International Conference on Cryptology & Network
Security, Singapore (Dec 8 - 10 2007)

16. Coster, M.J., Joux, A., LaMacchia, B.A., Odlyzko, A.M., Schnorr, C., Stern, J.:
Improved low-density subset sum algorithms. Computational Complexity 2(2)
(1992) 111–128

17. Meadows, C.: A Cost-Based Framework for Analysis of DoS in Networks. Journal
of Computer Security 9(1/2) (Jan 2001) 143–164

