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Abstract. The problem of role mining, a bottom-up process of dis-
covering roles from the user-permission assignments (UPA), has drawn
increasing attention in recent years. The role mining problem (RMP)
and several of its variants have been proposed in the literature. While
the basic RMP discovers roles that exactly represent the UPA, the in-
exact variants, such as the δ-approx RMP and MinNoise-RMP, allow for
some inexactness in the sense that the discovered roles do not have to
exactly cover the entire UPA. However, since data in real life is never
completely clean, the role mining process is only effective if it is robust
to noise. This paper takes the first step towards addressing this issue.
Our goal in this paper is to examine if the effect of noise in the UPA
could be ameliorated due to the inexactness in the role mining process,
thus having little negative impact on the discovered roles. Specifically,
we define a formal model of noise and experimentally evaluate the pre-
viously proposed algorithm for δ-approx RMP against its robustness to
noise. Essentially, this would allow one to come up with strategies to
minimize the effect of noise while discovering roles. Our experiments on
real data indicate that the role mining process can preferentially cover
a lot of the real assignments and leave potentially noisy assignments for
further examination. We explore the ramifications of noisy data and dis-
cuss next steps towards coming up with more effective algorithms for
handling such data.

1 Introduction

Today, Role Based Access Control (RBAC) is the de facto model used for ad-
vanced access control, and is widely deployed in diverse enterprises of all sizes.
Under RBAC, roles represent organizational agents that perform certain job
functions within the organization. Users, in turn, are assigned appropriate roles
based on their responsibilities and qualifications [1, 2]. Essentially, a role, can be
viewed as a set of permissions. One main benefit of RBAC is simplified security
administration as the role configuration need not be changed when users join or
leave the organization.

Deploying RBAC requires first defining a complete and correct set of roles.
This process, known as role engineering [3], has been identified as one of the
costliest and most time consuming components in realizing RBAC [4]. The
problem of role mining, a bottom-up process of discovering roles from the user-
permission assignments (UPA), has drawn increasing attention in recent years.
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Unlike the top-down approach where roles are defined by carefully analyzing and
decomposing business processes into smaller units in a functionally independent
manner, role mining has the advantage of automating the role engineering pro-
cess. Role mining can be used as a tool, in conjunction with a top-down approach,
to identify potential or candidate roles that can then be examined to determine
if they are appropriate, given existing functions and business processes.

Work has been carried out on the top-down approach to role engineering[3,
5, 6], though it requires significant manpower effort to do correctly. To alleviate
this, there have been several attempts to propose good bottom-up techniques to
finding roles [7, 8]. More recently, researchers [9–15] have begun formally defin-
ing the role mining problem (RMP) and proposed a number of RMP variants.
There has also been some work on hybrid mining of roles[16, 17]. The basic-RMP
problem has been shown to be equivalent to a number of known problems in-
cluding matrix decomposition and minimum biclique cover problem in graphs,
among others. The basic-RMP as a matrix decomposition problem is as follows.
Given m users, n permissions, then UPA can be represented as an m×n boolean
matrix M(UPA) where a 1 in cell {ij} indicates the assignment of permission
j to user i. If there are k roles, the user-to-role mapping (UA) can be repre-
sented as an m× k boolean matrix M(UA) where a 1 in cell {ij} indicates the
assignment of role j to user i. Similarly, the role-to-permission mapping (PA)
can be represented as a k × n boolean matrix M(PA) where a 1 in cell {ij}
indicates the assignment of permission j to role i. The basic-RMP is to decom-
pose M(UPA) into a m×k matrix M(UA) representing UA and a k×n matrix
M(PA) representing PA, such that k is minimal.

Apart from basic-RMP, other role mining problems have been defined with
different minimization objectives. One objective is to discover roles in such a
way that the total number of user-to-role assignments and role-to-permission
assignments (|UA|+ |PA|) is minimal. This, known as the Edge-RMP, has been
studied by Vaidya et al. [9] and Ene et al. [12], among others. Other variants
[14, 10] focus on discovering optimal roles as well as role hierarchies.

While the above RMP problems attempt to discover roles that exactly de-
scribe the original UPA, this may be unnecessary. With this in mind, some
inexact variants of RMP have been identified, which do not exactly describe the
original UPA, but allow for some inexactness. This is justified since mistakes
can always be made, and asking for roles to match those mistakes would actually
worsen the situation. Moreover, in some sense, it may be possible to find more
“fundamental roles” by only trying to match a certain percentage of the original
UPA. To describe this. Vaidya et al. [18] have proposed two inexact variants of
RMP, called the δ-consistent RMP and MinNoise RMP.

Any given UA, PA, and UPA are considered to be δ-consistent, if and only
if the UPA derived from UA and PA matches the original UPA within δ. Now,
the δ-approx RMP can be defined [18] as the problem of finding the minimal
set of roles such that the discovered UA and PA and the original UPA are
δ-consistent. As a problem formulation, the δ-approx Role Mining Problem is
always better than the Basic Role Mining Problem when noise is present. This
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Table 1. User-Permission Assignment

(a) Without Noise

p1 p2 p3 p4 p5

u1 1 1 1 0 0
u2 0 0 1 0 1
u3 1 1 1 0 1
u4 1 1 1 0 0

(b) With Noise

p1 p2 p3 p4 p5

u1 1 1 1 1 1
u2 0 0 1 0 1
u3 0 1 1 0 1
u4 1 1 1 1 0

is so, because, setting a nonzero value of δ gives the leeway to correct for the
present noise errors. In this sense, any UPA divergent within δ from the original
UPA satisfies the δ-approx definition. Obviously, all such formulations are not
equally good. A good algorithm gives a UPA′ that preferentially removes noise
rather than making errors.

Another approach for inexactness could be by bounding the number of roles,
and minimizing the approximation. This is the Minimal Noise Role Mining Prob-
lem (MinNoise RMP). This fixes the number of roles that one would like to find,
but finds those roles that incur minimal difference with respect to the original
user-permission matrix (UPA).

Since data in real life is never completely clean, the role mining process is
only effective if it is robust to noise. By noise, we mean a permission being
recorded as a denial or a denial being recorded as a permission. Our goal in this
paper is to examine if the effect of noise in the UPA could be ameliorated due
to the inexactness in the role mining process, thus having little negative impact
on the discovered roles.

In the following, we provide a concrete example to justify our argument. Ta-
ble 1(a) shows a sample user-permission assignment (UPA), for 4 users and 5
permissions. Table 1(b) shows the UPA with noise. Specifically, user u1 has the
extra permissions p4, p5, user u3 has lost the permission p1, while user u4 gains
the extra permission p4 (i.e., cells (u1, p4), (u1, p5), and (u4, p4) are flipped from
0 to 1, while cell (u3, p1) is flipped from 1 to 0). This may happen due to the
security administrator forgetting to remove old permissions that are no longer
necessary (in the 0 to 1 case), or by mistake temporarily revoking a necessary
permission (in the 1 to 0 case). Tables 2(a) and 2(b) depict a user-role assign-
ment (UA) and role-permission assignment (PA) that completely describe the
given (noisy) user-permission assignment (i.e., M(UA)⊗M(PA) = M(UPA)).
Indeed, the given UA, PA, and ROLES are optimal. It is not possible to com-
pletely describe the given UPA with less than 3 roles. As one can see, Table
2, representing the basic-RMP approach, actually matches exactly reconstructs
the input noisy UPA and in effect, matches all 4 noisy bits as well.

On the other hand, Tables 3(a) and 3(b) depict the optimal UA and PA,
which cover none of the noisy bits and accurately cover (without introducing
errors) all of the 1’s. In fact, as one can see, this is actually the optimal decom-
position of the original (clean) UPA, which unfortunately is never seen. This
clearly shows that the optimal solution for basic-RMP is not always a better
choice when noise is present.
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Table 2. Optimal role set for Basic-RMP over noisy data

(a) UA

r1 r2 r3
u1 1 1 1
u2 0 1 0
u3 1 1 0
u4 1 0 1

(b) PA

p1 p2 p3 p4 p5

r1 0 1 1 0 0
r2 0 0 1 0 1
r3 1 0 0 1 0

Table 3. Optimal role set for Basic-RMP over Clean data

(a) UA

r1 r2
u1 1 0
u2 0 1
u3 1 1
u4 1 0

(b) PA

p1 p2 p3 p4 p5
r1 1 1 1 0 0
r2 0 0 1 0 1

In fact, noise can cause multiple problems in the process of role mining. First,
as shown above, we may get a suboptimal (i.e., larger) number of roles. Worse,
the discovered role set reconstitutes noisy bits. Since the discovered roles are
also contaminated with noise, they perpetuate the existing errors. For example,
in Table 2 role r3 consists of {p1, p4}. Since bit p4 is actually noisy, in effect any
user who will now be assigned r3 will also have the same error. Thus, due to the
noise, not only is the wrong UPA reconstituted, but also, the error affects future
users who may be mistakenly given over and underpermissions right from the
start. This can create great problems and reduce the benefits of using RBAC in
the first place.

In this paper, first we define a formal model of noise and then experimentally
evaluate the previously proposed algorithm for the δ-approx RMP. Essentially,
this would allow one to come up with strategies to minimize the effect of noise
while discovering roles. Our experimental results indicate that if one sets the
level of δ equal to the level of noise, the impact of noise is minimal in discovering
roles. We evaluate the robustness of the algorithm using the standard F-score
measure. Our results indicate that, under the presence of noise, the F-score for
δ-approximate RMP is fairly uniform with increasing noise levels, whereas the
F-score for basic-RMP deteriorates.

The rest of this paper is organized as follows. In Section 2, we review the
RBAC model and the formal definitions of δ-approx RMP, and MinNoise RMP.
In Section 3, we present an appropriate noise model, which include the definition
of noise, degree of noise and the robustness measure. In Section 4, we illustrate
the δ-approx RMP. In Section 5 we discuss our noise robustness evaluation ap-
proach. In Section 6, we present the results of our experimental evaluation of the
δ-approx RMP algorithm against noise robustness. In Section 7 we provide an
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insight into alternative strategies for reducing the effect of noise. Finally, Section
8 concludes the paper.

2 Preliminaries

In this section, we review the basic RBAC model and the formal role mining
problem identified in [18].

2.1 Role Based Access Control Model

We adopt the NIST standard of the Role Based Access Control (RBAC) model
[2]. For the sake of simplicity, we do not consider sessions, role hierarchies or
separation of duties constraints in this paper.

Definition 1 (RBAC).

– U,ROLES,OPS, and OBJ are the set of users, roles, operations, and objects.
– UA ⊆ U ×ROLES, a many-to-many mapping user-to-role assignment relation.
– PRMS (the set of permissions) ⊆ {(op, obj)|op ∈ OPS

∧
obj ∈ OBJ}

– PA ⊆ ROLES × PRMS, a many-to-many mapping of role-to-permission assign-
ments. 1

– UPA ⊆ U×PRMS, a many-to-many mapping of user-to-permission assignments.
– assigned users(R) = {u ∈ U |(u,R) ∈ UA}, the mapping of role R onto a set of

users.
– assigned permissions(R) = {p ∈ PRMS|(p,R) ∈ PA}, the mapping of role R

onto a set of permissions.

2.2 The Inexact RMP Variants

We review the formal definitions [18] of the δ-approx RMP and the MinNoise
RMP as these inexact RMP variants are the focus of this paper.

Definition 2 (δ-approx RMP). Given a set of users U , a set of permissions
PRMS, a user-permission assignment UPA, and a threshold δ, find a set of
roles, ROLES, a user-to-role assignment UA, and a role-to-permission assign-
ment PA, δ-consistent with UPA and minimizing the number of roles, k.

The basic-RMP is the case where δ = 0 [18]. Given the user-permission
matrix (UPA), the basic-RMP is to find a user-to-role assignment UA and a
role-to-permission assignment PA such that UA and PA describe UPA while
minimizing the number of roles. The notion of δ-consistency is useful, since it
helps to bound the degree of approximation. The MinNoise RMP bounds the
number of roles, which is defined as follows.

Definition 3 (MinNoise RMP). Given a set of users U , a set of permis-
sions PRMS, a user-permission assignment UPA, and the number of roles
k, find a set of k roles, ROLES, a user-to-role assignment UA, and a role-
to-permission assignment PA, minimizing ∥ M(UA)⊗M(PA)−M(UPA) ∥1
where M(UA),M(PA), and M(UPA) denote the matrix representation of UA,
PA and UPA.
1 Note that in the original NIST standard [2], PA was defined as PA ⊆ PRMS ×
ROLES, a many-to-many mapping of permission-to-role assignments.
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3 Noise

In reality, no data is clean, and the user-permission-assignment is no exception.
Permissions are accidentally assigned to those who do not need them, or are not
revoked once the permission is no longer needed. In addition, some users may
not have all the permissions that others performing similar job functions have.
Since noise in general is random in nature, we believe that using inexact variants
of the RMP in discovering roles could use this noise to its benefit and may have
little impact on the outcome of the role discovery process. In this section, we
first present our noise model [19] that helps in evaluating the δ-approx RMP
algorithms against their robustness to noise. Second, we present the degree of
noise [19]. We now discuss each in detail.

3.1 Noise Model

The presence of noise essentially means that errors have occurred in the data –
i.e., the actual data does not match the real data. In our case, the data consists
of access permissions in the user-permission-assignment matrix (UPA). In this
boolean matrix, a 1 signifies that the subject-object access is permissible (we
denote this as allowed permission), and a 0 denotes lack/denial of permission
(we denote this as disallowed permission). In this case, noise means that the
actual boolean matrix is different from the desired boolean matrix with the
following three types of errors occurring in the matrix:

1. General noise: Such noise results in bit-flipping errors. Thus, a 1 gets
flipped to a 0 and vice-versa. Effectively, this means that either a permission
is incorrectly revoked or a permission is incorrectly given by the security
administrator.

2. Additive noise: In this case, a permission can only be incorrectly given,
not incorrectly revoked. Thus, a 0 can incorrectly be changed to a 1 but not
vice-versa. This could happen if an administrator had first given a permission
to a user to accomplish some task, but then forgotten to revoke it after the
task/duration is complete.

3. Subtractive noise: In this case, a permission could be incorrectly revoked,
though not incorrectly given. Thus, a 1 is incorrectly changed to a 0, but not
vice-versa. This could happen when a user is only given a subset of the overall
permissions he may ultimately need. For example, when someone new starts
in the organization, he may be given a set of permissions for some initial
assignments but not the full set he will ultimately need because accurate
assignment is time consuming.

It is clear that general noise actually includes both additive noise and sub-
tractive noise. Thus, the presence of general noise implies the presence of both
additive as well as subtractive noise. However, their percentages are not equal. In
actuality, the degree of additive and subtractive noise depends on the number of
0s and 1s. All else being equal, any general noise will result in additive noise pro-
portional to the number of 0s and subtractive noise proportional to the number
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of 1s. Typically, the access control matrix will be sparse with fewer 1s and many
more 0s. Therefore, additive noise will be more likely to occur. This corresponds
to real situations where users are more likely to have more permissions than they
need (additive noise) than less permissions than they need (subtractive noise)
because otherwise they could not perform their job functions. For now, we ex-
plore the robustness of our algorithm to additive noise since we believe it is the
type of noise we are most concerned.

One may argue that errors do not happen completely at random, and are
predetermined based on actual usage. However, when there is no RBAC in place
or preexisting policies (which could easily happen when you are freshly deploying
RBAC), the random model of noise does accurately reflect reality.

3.2 Degree of Noise

To effectively take noise into account, one must consider the degree of noise along
with the different types of noise discussed above. An obvious way to consider the
degree of noise is computing it as a percentage of the amount of data. However,
considering this percentage of noise for the entire number of bits in UPAmay not
be an accurate representation of noise. For example, consider a system with 2000
users and 500 permissions. This results in the UPA of 1,000,000 bits. 1% of this
dataset equates to 10000 bits. However, it does not mean that 10000 bits should
be flipped. This is because of the fact that the UPA is typically very sparse, i.e.,
the number of allowed permissions (1s) is significantly smaller than the number
of disallowed permissions (0s). For example, only 4000 of the subject-object
accesses might be allowed. In this case, flipping 10000 bits would completely
obviate the true data. One must realize that unlike digital communications, in
access control data, the signal is characterized only by the 1s, and not by the 0s.
This implies that when considering the degree of noise, it should be a percentage
of the number of 1s in the data. Thus, when considering noise percentages, we
take noise to be a percentage of the number of 1s.

Finally, we need to consider how to add noise to the data. Again, assume
2000 users, 500 permissions and 4000 allowed subject-object pairs (4000 1s). If
we wanted to introduce 10% general noise into this data set, how should we
proceed? A simple way to add noise is to pick 400 bits at random from the
1,000,000 bits and flip them. But is this correct – should exactly 400 bits be
flipped? The key issue is whether by 10% noise we mean that the noise is exactly
10% of the data or whether we mean that the probability of error in the data
is 10%. The first case corresponds to flipping 400 bits. However, in the second
case, we should go through all 1,000,000 bits and flip each bit with a probability
of 0.04% (This is correct since 400 is actually 0.04% of 1000000). Though either
way is fine, we argue that the second way of introducing noise more closely
approximates real life.

In our experiments we considered 1%, 5%, 10%, 20% and 30% noise and
introduced it into the datasets as described in the second method above. As a
result of the discussion in the prior two sections, we define noise as follows:
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Definition 4. [19] p% General Noise: Given users U and permissions PRMS
and a user to permission assignment UPA ⊆ U × PRMS, a noisy dataset
with p% general noise consists of a modified permission assignment UPA′ ⊆
U × PRMS such that: (i) if x ∈ UPA, x ∈ UPA′ with probability 1− p; (ii) if
x /∈ UPA, x ∈ UPA′ with probability p.

4 Algorithm

As discussed earlier, Vaidya et al.[18] first formalized the Role Mining Problem
and defined the δ-approx RMP. However, no solution was proposed for it. In
[20], a heuristic solution has been proposed that can efficiently solve both the
RMP as well as the δ-approx RMP. We now describe this solution.

The algorithm proceeds in two independent phases. In the first phase, a set
of candidate roles is generated from the UPA. This is currently done using the
FastMiner algorithm[19], though any other method could also be used instead.
FastMiner generates candidate roles simply by intersecting all unique user pairs.
Once the candidates are generated, the second phase greedily picks the best
set of roles among them by picking the best candidate role from the remaining
candidate roles until the original UPA can be reconstituted within the desired
approximation factor (δ). Thus, in each iteration, for every remaining candidate
role, the uncovered area of that role is computed by finding the number of 1s in
M(UPA) that are not already covered by any of the roles inROLES (the current
minimum tiling). The best role is then selected and the algorithm reiterates until
termination. Algorithm 1 gives the details.

Algorithm 1 δ-approx RMP(UPA, δ)
Require: User-Permission assignment, UPA
Require: the approximation threshold, δ
1: {Create candidate set of roles}
2: Create a candidate set of roles, CROLES, using the FastMiner [19] algorithm
3: ROLES ← ϕ
4: while UPA is not covered within δ do
5: BestRole← ϕ
6: BestArea← 0
7: for each role C in CROLES do
8: carea← Uncovered Area(C,UPA,ROLES) {compute uncovered area of candidate role}
9: if carea > BestArea then
10: BestArea← carea
11: BestRole← C
12: end if
13: end for
14: ROLES ← ROLES

∪
C {Add C to the set of roles, ROLES}

15: Remove C from CROLES
16: end while
17: Return ROLES

It is important to note that the way in which candidate roles are gener-
ated (through subset enumeration), and the way the uncovered area is com-
puted, plays a role in the kinds of the errors the algorithm can tolerate. Specifi-
cally, when reconstituting the UPA, the above algorithm can leave 1s uncovered
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though it does not cover 0s with 1s. What this means is that the algorithm
could potentially eliminate additive noise (by ignoring the added 1s), but can-
not handle subtractive noise (since a 1 that has been turned into a 0 is never
reconstituted). In general, since additive noise is much more of a vulnerability
from the security standpoint, and typically the UPA is sparse, this still may be
acceptable in real life. However, ideally one would prefer to have algorithms that
are robust to both kinds of noise.

5 Noise Robustness Metric

Robustness, in essence, reflects the degree to which an algorithm is not affected
by noise. First, we define a noisy bit as a bit whose value has been erroneously
flipped. We also use the term non-noisy bit to describe those bits whose values
are not changed by mistake. A completely robust algorithm will somehow be
able to magically eliminate the effect of noise. Thus, the output of a “completely
robust” algorithm would be the same regardless of the presence of noise. In
effect, a perfect algorithm would cover all of the original 1s and cover none
of the original 0s, regardless of their value after the introduction of noise. In
order to compare noise robustness of different algorithms, and to devise better
algorithms, it is extremely important to appropriately define a metric for noise
robustness.

A näıve approach to define the degree of robustness is to define it as ratio of
the number of appropriately reconstituted bits (noisy or non-noisy bits included)
to the total number of bits in UPA. For example, from Table 1(a) and Table
1(b), we can see the total number of bits in UPA are 20, among which, 4 bits
are noisy: (u1, p4), (u1, p5), (u3, p1), and (u4, p4). The solution in Tables 3(a)
and 3(b) reconstitutes the original values for all 4 noisy bits and all 16 non-noisy
bits. Therefore, the degree of robustness of the algorithm, as defined above, is
20/20=100 percent. On the contrary, the solution obtained for the Basic-RMP
(depicted in Tables 2(a) and 2(b)) does not reconstitute the original values of
any of the noisy bits, and therefore, has a degree of robustness of 16/20=0.8. The
problem with this way of measurement is that it does not differentiate between
good performance on the original data versus good performance with respect to
noise. Thus, the solution for the Basic-RMP still has 0.8 robustness even though
it does not fix any of the errors associated with noise. In effect, it has 0 tolerance
to noise, though it reconstitutes the original non-noisy data perfectly.

Another näıve approach to measure the degree of noise robustness is to define
it as the ratio of the number of noisy bits whose original (before-flipping) values
are reconstituted to the total number of noisy bits. In other words, it measures
the relative ratio of appropriately covered noisy bits. To use the same example
as above, the solution in Tables 3(a) and 3(b) reconstitutes the original values
for all 4 noisy bits. Therefore, the degree of robustness of the algorithm is 100
percent. On the contrary, The Basic-RMP algorithm in Tables 2(a) and 2(b),
does not reconstitute the original values of any noisy bit, therefore, having a
degree of robustness as 0.
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While this accurately measures how much noise is fixed, it does not take
errors made by the algorithm into consideration. For example, the algorithm
may cover a bit with 1 when its real value is 0 (though the value of the bit has
not changed due to noise). Similarly, the algorithm may leave a bit uncovered as 0
when its real value is 1. Taking our original example into consideration, assume
that a candidate algorithm almost reconstitutes the original UPA, but with
only one error, say the value of a non-noisy bit (u2, p4) is 1 in the reassembled
UPA. Under the above definition of degree of robustness, the algorithm would
be considered to be 100 percent robust, which is clearly incorrect.

Indeed, the term noise can be used to describe the defect of the dataset,
while the term error can be used to indicate the misjudgement made by the
algorithm. A good definition of degree of noise robustness should measure both
noise fixed as well as errors made by an algorithm. For this we must measure
two sets of numbers – the percentage of correctly reconstituted noisy bits, as
well as the percentage of errors made by the algorithm. We must also devise a
way of integrating these into a unifying measure.

For this, work from the field of data mining and statistics comes to our aid.
In a general classification problem, every data item must be classified to be-
long to a certain class. In a statistical classification task[21], the Precision for
a class is the number of true positives divided by the total number of elements
labeled as belonging to the class (i.e. the sum of true positives and false pos-
itives, which are items incorrectly labeled as belonging to the class). Recall is
correspondingly defined as the number of true positives divided by the total
number of elements that actually belong to the class (i.e. the sum of true pos-
itives and false negatives, which are items which were not labeled as belonging
to that class but should have been). In this sense, Precision can be seen as a
measure of exactness or fidelity, whereas Recall is a measure of completeness.
The F-measure or balanced F-score is the harmonic mean of precision and recall:
F = 2 · (precision · recall)/(precision + recall).

Assuming only two classes, every instance originally belongs to one of these
two classes and is classified into one of the two classes. From our perspective,
the amount of noise fixed approximately corresponds to the notion of Recall,
while the number of errors made approximately corresponds to the notion of
Precision. Thus, we simply use the notion of F-score to check the overall degree
of noise robustness of the algorithm.

6 Experimental Evaluation

The purpose of the experimental evaluation performed in this section is to com-
pare the robustness of various role mining algorithms towards the noise. In Sec-
tion 6.1, we discuss the design of the experiments and the their results are
analyzed in Section 6.2.
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6.1 Experimental Design

The experimental design consists of four steps: Data Creation, Noise Insertion,
roles generation and UPA reconstitution, finally the computation of the degree
of noise robustness. We will illustrate each step in separate sections.

Data Creation The test data generator performs as follows: First a set of
roles are created. For each role, a random number of permissions up to a certain
maximum are chosen to form the role. The maximum number of permissions
to be associated with a role is set as a parameter to the algorithm. Next, the
users are created. For each user, a random number of roles are chosen. Again,
the maximum number of concurrent roles a user can have is set as a parameter
to the algorithm. finally, the user permissions are set according to the roles the
user has been assigned. We will also consider certain cases where the number of
roles randomly chosen is 0 indicating that the user has no roles and therefore no
permissions.

Noise Insertion Just as described in the Section 3.2, we take noise to be a
percentage of the number of 1s. In our experiments we considered 1%, 5%, 10%,
and 20% noise and introduced it into the datasets.

Reconstitution of UPA To test noise robustness, we apply a role mining
algorithm to the data contaminated with noise. As a result, a role set is generated
followed by the reconstitution of the original UPA.

Computation of Robustness The final step to consider is the computation
of the noise robustness of the algorithm. We will use the way to do this based
on Section 5.

Another way to do this is simply compute how many of the original roles are
found in the results. This approach seems fine but actually suffer two serious
weakness. (1) when we match roles, the matches are exact. While this is fine
when there is no noise, in the presence of noise there is a good possibility that
we may find approximate roles rather than the real roles. In this case, we should
also calculate the pseudo-accuracy. This could be an important factor affecting
the overall accuracy of the algorithm. However, for now, we restrict ourselves to
exact matches and report the results obtained. In the future, we plan to see if
approximate matching can lead to better results. (2) the percentage of common
roles between original role set and newly generated role set is not a good indicator
of robustness towards noise. There are various factors which could affect this
value. For example, different algorithms may result in different way of matrix
decomposition. They can be right at the same time and totally disjoint. This
does not mean that the algorithm is not robust or at least not 0 percent robust.

6.2 Experimental Results

For an initial set of experiments, we created two datasets, the first with 100
users and 200 permissions, while the second was composed of 200 users and
200 permissions. Since the test data was randomly generated and the noise was
also randomly inserted, we actually created three versions of the datasets with
the same parameters. For each of these datasets, a corresponding noisy dataset
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was also created three times with the same set of noise parameters. The final
results reported below were averaged over the 9 datasets generated for each set
of parameters.

Figure 1 plots the f-score against different values of δ for different levels of
noise for dataset 1. Figure 2 does the same for dataset 2. It can be observed that
for every noise value, the f-score hits the peak at the corresponding value of δ.
This implies that the δ-approx RMP algorithm does indeed perform very well
with respect to noise. Furthermore, if the security administrator has some idea
of the amount of noise present within the data, he can set the δ value to be that
to provide great benefit during the role mining phase. Interestingly, when noise
is present any δ > 0 and up to that noise level is always beneficial. However,
when the value of δ is set higher than the amount of noise present, the f-score
decreases, since the algorithm starts making more errors without providing as
much benefit.

Figures 3 and 4 plot the ratio of noise fixed / errors made by the algorithm
for different δ values and different noise levels. For reasonable levels of noise, the
fix/mistake ratio is always over 1, which implies that for any δ value more noise
will be fixed as compared to the errors made. When the δ value is the same as
the amount of noise, the fix/mistake ratio is very high, and using the inexact
RMP has great benefit.

Finally, figure 5 plots the performance of the basic-RMP algorithm versus
the δ-approx RMP algorithm for different levels of noise. This clearly shows the
degradation of the basic-RMP w.r.t noise. However, the δ-approx RMP keeps its
effectiveness even in the presence of noise. This supports our thesis that it makes
great sense to use δ-approx RMP whenever noise may be present in the data.
This works especially well when the degree of noise can be correctly estimated,
but still gives some benefit when this cannot be reliably done. One of our future
challenges is to come up with ways to estimate the degree of noise reliably which
would greatly increase the effectiveness of noise-resistant algorithms.

6.3 Experiments with real data

We also carried out experiments with real data. For this, we utilized the 9 real
datasets presented in [12]. Since it is impossible to find out whether any of the
user-permission assignments was noisy, we instead simply ran δ-approx RMP
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algorithm on all of the datasets with different values of δ and counted the number
of roles necessary to cover the UPA upto that threshold. We also measured the
number of roles necessary to completely cover the entire UPA. Figures 6-7 plot
the percentage of roles necessary to cover a certain percentage of the UPA.
As can be seen, for almost all of the datasets (except emea), only 40% of the
roles are necessary to cover 90% of the UPA. Indeed, the curve is non-linear,
indicating that more roles are necessary to cover smaller parts of the UPA as the
coverage increases. This can be clearly seen from Figures 8-9 which expand the
portion depicting 80% to 100% coverage of the UPA. While we cannot confirm
this, it is indeed an indication that the remaining UPA assignments are more
likely to be noisy, or at the least, should be individually examined by the security
administrator.

7 Discussion

So far, we have seen that using the inexact variants of the RMP problem can
give signficantly better results in the presence of noise. Our experimental results
show, that the δ-approx RMP algorithm of [20] can handle additive noise quite
well, though it is unable to account for subtractive noise. Given the sparsity of
the UPA in real life, this is still ok since noise is likely to be more additive than
subtractive. Other solutions for δ-approx RMP may be able to give even better
performance. In the following, we provide more insight into how to choose δ and
discuss other noise removal strategies that we plan to explore in future work,
which can further help in the role mining process.
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7.1 Determining the right value for δ

So far, we have assumed that we could set the right value of δ for the δ-approx
RMP algorithm. However, in reality, we may have little idea about this. Given
that our δ-approx RMP uses a greedy strategy to pick roles, we could use that
to adaptively define δ. Essentially, instead of setting δ from the start, the idea
would be to iteratively pick the best role from among the candidates and then
evaluate the quality of the role to determine whether to stop. Here, we use the
role itself to help determine the right δ value. This is also possible because of
the nature of access control data and the nature of noise. Access control data is
tightly coupled whereas we assume that noise may occur at random. Thus, it is
possible that later roles increasingly cover noisy bits as opposed to real data, and
can be detected due to their heterogeneity. In any case, since using the inexact
variant always does better in the presence of noise, an effective strategy could
be to start with a fixed value for δ (say 0.7, since there is unlikely to be more
than 30% noise in the data) and then incrementally increase the value of δ, while
paying more attention to the roles obtained in latter phases. We will explore this
further in the future.

7.2 Noise Removal by prefiltering

An alternative strategy to handling noise is to somehow remove it to generate
a “clean” UPA. Now, some Basic-RMP algorithm can be run over this cleaned
UPA to give the final roles. Then, the question is how can we detect and clean
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noise. An answer may come from the field of data mining. It is possible to model
each permission as a class and then to build a classification model for it based
on the values of the other permissions for all of the users. We can then use all
of the created models to predict whether each individual bit is truly correct
or noisy. The performance of this inherently depends upon the quality of the
classification algorithm, and having some user input would significantly help.
We will also further explore this in the future.

7.3 Noise Removal by post-filtering

Another alternative strategy is to use the Basic-RMP algorithm on the given
UPA. Now, we can use post-filtering strategies on the discovered UA and PA
to somehow remove noise. This may again be done through use of classification
strategies, or by evaluating how homogeneous each role is in terms of permissions
or users. Domain semantics may vastly help to identify intelligent strategies to
filter noise.

8 Conclusions

Given the noisy nature of data in the real world, deployment of role mining
algorithms requires effective ways of addressing the problem of noise. In this
paper, we take a first look at the problem of role mining in the presence of noise.
We demonstrate the many problems noise can cause if it is not accounted for
within the role mining process. We present a model for noise, devise metrics to
evaluate noise robustness and investigate the effectiveness of inexact variants of
the Role Mining Problem in terms of noise. Our preliminary experiments show
that the algorithm developed for δ-approx RMP does indeed reduce the effect of
noise. However, it is only able to handle additive noise. In the future, we plan
to develop more complete noise aware algorithms that can effectively reduce or
eliminate the problem of noise from the role engineering process. Algorithms for
the MinNoise RMP can help with this. We will also examine whether approaches
from data mining could be used to “clean” the noise from the user-permission
data in the first place, thus allowing us to use any basic-RMP algorithm for
discovering roles.
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