Leveraging UML for Security Engineering and
Enforcement in a Collaboration on Duty and
Adaptive Workflow Model that
Extends NIST RBAC

S. Berhe!, S. Demurjian®', S. Gokhale!, J. Pavlich-Mariscal®3, R. Saripalle!

! Department of Computer Science & Engineering, University of Connecticut,
U-2155, 371 Fairfield Road, Storrs, CT, USA
{solomon .berhe,steve,ssg, rishikanth}@engr .uconn.edu
2 Pontificia Universidad Javeriana, Cra 7 N 40-62, Bogota, Colombia
3 Universidad Catolica del Norte, Angamos 0610, Antofagasta, Chile
jpavlich@ucn.cl, jpavlich@javeriana.edu.co

Abstract. To facilitate collaboration in the patient-centered medical
home (PCMH), our prior work extended the NIST role-based access con-
trol (RBAC) model to yield a formal collaboration on duty and adaptive
workflow (COD/AWF) model. The next logical step is to place this work
into the context of an integrated software process for security engineering
from design through enforcement. Towards this goal, we promote a secure
software engineering process that leverages an extended unified modeling
language (UML) to visualize COD/AWF policies to achieve a solution
that separates concerns while still providing the means to securely engi-
neer dynamic collaborations for applications such as the PCMH. Once
defined, these collaboration UML diagrams can be utilized to generate
the corresponding aspect oriented policy code upon which the enforce-
ment mechanism can be applied to at runtime.

1 Introduction and Motivation

Over the last five years there has been a dramatic shift towards collaborative
computing in multiple domains. One such application domain is the patient-
centered medical home (PCMH) where a primary physician coordinates care for
a patient across a range of providers, who all must interact with one another
across distance and time [1]. Our prior work in this regard has been a formal
model for obligated collaboration on duty and adaptive workflow (COD/AWF)
[3] that extends the National Institute of Standards and Technology (NIST)
Role-Based Access Control (RBAC) model [11]. This COD/AWF model adds
capabilities to NIST RBAC that include: secure collaboration to control access
to data; obligated collaboration which denotes individuals that must participate
and how they interact; team-based collaboration, which defines the collaboration

with multiple individuals; and coordinated collaboration, which characterizes
the way that individuals are allowed to interact with one another. These four
components are grouped together into the following definition:

Def. 1 COD = [COD;p, CODNaymEg, TEAM, CODC, P, CW] is a uniquely
COD;p named collaboration CODy ap g with a team of role types TEAM, a set
of collaboration constraints CODC, a set of permissions P, and a collaboration
workflow CW composed out of collaboration steps.

The next logical step is to explore its integration into a software process that in-
cludes security engineering from design through enforcement. Towards this goal,
we promote security engineering that leverages an extended unified modeling
language (UML) to visualize COD/AWF policies to separate concerns while still
providing the means to securely engineer collaborations for applications such as
the PCMH. Defining collaborative security for PCMH will require role teams,
obligations, collaboration steps, and workflows, resulting in requirements that
are tangled with one another. The contribution of this work is two-fold, first we
propose a set of new UML slice diagrams for COD/AWTF that extends prior work
on UML with roles, delegation, and user authorization diagrams [10]. Second,
these COD/AWTF diagrams will be utilized to generate the corresponding policy
code upon which the enforcement mechanism can be applied to. There has been
a myriad of related work with regard to UML and access control and workflows
[4,7,8,10,12,14,15], however none of it considers an integrated Collaboration on
Duty (COD) approach which integrates the four components (Obligation, Ac-
cess Control, Workflow and Teams) into a single formal model. Moreover, to the
best of our knowledge no MDA-based approach has been done which extends
UML with the four components facilitating separation of concerns and gener-
ating COD policy code. The remainder of this paper contains three sections.
Section 2 introduces an approach for security engineering of COD/AWF with
UML and proposed extensions. Section 3 presents the code templates that are
collected together followed by concluding remarks in section 4.

2 Security Engineering of COD/AWF with UML

This section proposes four new UML diagrams that are utilized to constrain
and define permissions associated with collaboration, namely: the positive and
negative role slice diagrams and the team slice diagram in Section 2.1; the obli-
gation slice diagram and the collaboration workflow slice diagram in Section 2.2.
By differentiating between these four diagrams, we essentially separate the con-
cerns to allow the different aspects of permissions to be characterized in different
diagrams as illustrated in Figure 1.

2.1 UML Role and Team Slice Diagram

The role slice diagram in Fig. 1a defines permissions [6] for the Emergency Room
Collaboration (ERC) has CS Triage (others not shown). Triage negates permis-

<<TeamSlice>>|

<<ObligationSlice>> <<PosRoleSlice>>
ERC Type="CW ERC Type="CW

ERC
<<RoleSlice>> <<RoleSlice>> ElectronicMedicalRecord ‘«ROIeSIice» ElectronicMedicalRecord
Physician Nurse | Physician
<< |>> It
| | |[scooez ool || oo s
i s Y <<pos>> +getMedHistory()
iali i <<pos>> +getBillingHistory()
e = <<pos>> +getAppointmentHistory()
‘ ‘ <<ObligationSubset>>|

<<Rolelnheritance>>.

<< et>> iaationSli <<NegRoleSlice>> “aan
. <<C _-_n » Type=“CS
<<T, e="CS i ypP
< ‘ ype=“CS” ‘ riage P riage

Triage [
ElectronicMedicalRecord || <<RoleSlice>> ElectronicMedicalRecord
<<RoleSlice>> <<RoleSlice>> Physician
Physician Nurse
<<obl>> +getMedHistory() ‘ <<neg>> +getBillingHistory()
‘ ‘ neg>> +getAppoil tHistory()
a) Team Slice Diagram b) Obligation Slice Diagram ¢) Ext. Role Slice Diagram
<<CwsSlice>> —ac
ERC Type="CW

f«CsSIice»

{_ Admission
<<CsSlice>> <CsSlice>>| | <<CsSlice>> <<CsSlice>> <<CsSlice>>
Triage Test TestReview Discussion TreatmentPlan
<<CsSlice>>
Discharge

d) Collaboration Workflow Slice Diagram

Fig.1. COD UML Slice Diagrams.

sion getBillingHistory and getAppointmentHistory. During the collaboration, all
activated permissions must be a subset of P (Def. 1), which is modeled using
<< Rolelnheritance >> stereotype, such that the assigned P to the collabora-
tion workflow (CW) is represented as the root role slice (Fig. 1¢). This CW type is
tracked through the use of UML tagged values (Type="CW” and Type="CS”).
It’s used to match role slices with the corresponding CW, CSs, and roles in the
remaining slices (Figs. la, 1b, and 1d). All collaboration steps that are activities
in the CW are only allowed to activate a subset of P. The current inheritance
semantics allows adding additional positive permissions to any role slice [10].
Our objective is to capture COD role slice inheritance semantics in which CSs
are only permitted to activate the set of permissions which is not specified as
negative and is present in the parent role slice [5]. To enforce this semantic, we
extend this notion of role slice with two new annotations: << PosRoleSlice >>
which only allows the specification of positive permissions and is used in the root
role slice to set the scope of allowed privileges throughout the collaboration; and,
<< NegRoleSlice >> which only allows the specification of negative permis-
sions which is utilized to further restrict privileges in a particular collaboration
step (CS).

The team slice diagram in Fig. la depicts a separate concern to capture per-
missions for the entire team. In the ERC example, each team contains the
specific role slices that are needed; the latter is inclusive of all roles (entire
team of four roles), the former limited to roles within a step. Using the sub-

set << TeamSubset >> relationship for the team slice diagram, the root slice
represents 7EAM (Def. 1) and all CSs subset team members from this root
team slice. A team slice is depicted as a UML package with the stereotype
<< TeamSlice >>. This package contains a set of role slices. Permissions are
not specified - they are given in the role slice diagram in Fig. 1c - and the fo-
cus for team slices is to specify the participants of each step. For permission
activation, team membership allows a role to be authorized to permissions.

2.2 UML New Obligation and Workflow Slice Diagram

The obligation slice diagram in Fig. 1b defines the set of permissions that are
required to be activated and roles that must participate. These complement
RBAC constraints and model the obligation requirement (who is allowed to per-
form which method at which time) [9]. In Fig. 1b, for the ERC team, a physician
is a role that is obligated to participate. For example, during ”Triage” CS, the
physician must participate. In COD/AWTF, obligated participation implies that
a role must activate at least one of its permissions. With regard to obligated
permission activation, getMedHistory must be activated before the collabora-
tion terminates. The obligated activation of a permission requires its activation
of any authorized role in the collaboration before it can terminate. Permissions
from Fig. lc are used to constrain the role slice elements within the obliga-
tion slice. Permission activation requirements are modeled as classes along with
their obligated permissions that are elements of the obligation slice marked us-
ing the << obl >> stereotype. Similar to the team slices, the root obligation
slice represents the set of obligations that must be activated during the entire
collaboration, while each collaboration step only must fulfill a subset of it. This
is depicted using the << ObligationSubset >> stereotype.

The collaboration workflow diagram leverages and extends the UML activity
diagram and allows the security engineer to focus only on the design of the
healthcare coordination requirements. In Fig. 1d, the ERC package is composed
of 7 collaboration steps into a workflow. The annotation << CwSlice >> is
in charge of matching the collaboration steps in the other COD slices with the
corresponding collaboration workflow CW (Def. 1). Access control, obligation
and team requirements are unified in this diagram by essentially linking across
the four diagrams (1a-1d); while the concerns are separate, they are tied with one
another though naming convention and are linked through the unique identifier
where matching CS identifiers are located in the previous three slices.

3 Mapping to Enforcement Policies for COD/AWF

Section 2 visually specified COD/AWF via extended UML, and using that as
a basis, this section explores the generation of enforcement code that exactly
meets the COD/AWF requirements as defined in the UML slices (see Fig. la

to 1d). Specifically, this section presents the mapping of the four new/extended
COD/AWF UML diagrams to a policy code-based model, which are interfaces/
templates from which actual collaboration domain application can then be en-
forced at runtime. Accompanying these policy code templates is an authorization
enforcement algorithm which checks if a user in a particular collaboration is per-
mitted to activate a permission in a workflow at a particular step (not shown).
Our intent in this section is to demonstrate the generated policy code model
(templates) for the example as given in Section 2. Note that the COD/AWL
UML new/extended diagrams and the code model are extensions to the formal
UML Class meta model (not shown)[13]. Finally, this work uses Java-like code
templates to illustrate the code mapping of the COD/AWL diagrams.

The remainder of this section is organized as follows. Section 3.1 presents the
code template for the role slice and the team slice diagram. Section 3.2 details
the code template for the obligation slice and the collaboration workflow slice
diagram.

3.1 Policy Code Template for the Role and Team Slice Diagram

The negative and positive role slices allow us to define the set of allowable permis-
sions during the Emergency Room Collaboration (ERC) at the root slice node.
In this context, we utilize role slices to define the specific privileges that are asso-
ciated with the ERC and each of its collaboration steps (e.g. Triage, Admission,
etc.). The permissions assigned to the collaboration step/workflow are specified
as interfaces which can be implemented by specific classes (e.g. Triage interface
can be implemented for an ERTriage or RegularTriage class); this is shown by
the code template a) for the slice of Fig. 1c. This allows this COD/AWTF frame-
work to be generic enough to adapt to the particular sub-domain (e.g., CDC,
Hospital, Clinic, Family Practice, etc.). We utilize the ElectronicMedicalRecord
(EMR) class to specify all of the privileges that can be performed against this
patients’ clinical data. The annotations @PosRoleSlice and @NegRoleSlice are
applied to interfaces and enforce sub-interfaces to only specify positive (@pos)
or negative (@Qneg) permissions. This requirement can be verified at runtime us-
ing meta programming. In this example, every class that implements the Triage
collaboration step interface in the context of ERC is not allowed to activate both
permissions getBillingHistory but only getMedHistory (see Code Template b).

Policy Code Template a) Policy Code Template b)
@PosRoleSlice ONegRoleSlice
public interface ERC{ public interface Triage ext ERC{
public interface EMR { public interface EMR {
@pos getMedHistory(); @neg getBillingHistory();
@pos getBillingHistory(Q) ; }
} }

3

In the code template for the collaboration team slice diagram, the root team slice
specifies the entire team (from Triage to Admission/Discharge); this is shown
by the code template c) for the slice of Fig. la. Each team is marked using
the @QTmSlice annotation. A particular collaboration step further restricts the
participation of roles depending on the context using the subset relationship.
In the policy code, this relationship is expressed through the @TmSubset an-
notation. Both annotations can only be applied to interface, which allows the
specification of generic teams which can be customized in a particular domain
through specific implementation. In this example, the ERC team is composed
out of all roles depicted in Fig. la. During the Triage collaboration step, only
users with the Physician is allowed to participate (policy code template d); all
other roles are prohibited to participate in this collaboration step. Fig. 1a only
contains a partial representation of who can participate in which steps; for a full
collaboration, the diagram would have additional TeamSlice definitions for all
collaboration steps.

Policy Code Template c) Policy Code Template d)
@TmSlice @TmSlice
public interface ERC{ @TmSubset (name=TmSlice, val=ERC)
public interface Roles { public interface Triage {
public interface Nurse(); public interface Roles {
public interface Physician(); public interface Physician();
} }
} }

3.2 Policy Code Template for the Obligation and Workflow Slice
Diagram

The obligation slice policy defines the permissions that must be activated and
roles that must participate during a particular collaboration step. The root node
defines the obligations that can be specified throughout the ERC collaboration
workflow; this is shown by the code template e) for the slice of Fig. 1b. This is
denoted using the @CodcSlice annotation. The @CodcSubest annotation further
subsets the obligation requirements for a child collaboration step. All of the
required roles and permissions are marked using Qobl annotation. For example,
during the Triage step (policy code template f), it is required to review the
patients’ medication history but not to read the billing. In terms of participation,
Triage requires the Physician to participate. Again, the policy code templates
e) and f) only presents a partial definition of the obligation slices.

Policy Code Template e) Policy Code Template f)

@CodcSlice Q@CodcSlice

public interface ERC{ @CodcSubest (name=CodcSlice, val=EMC)
public interface Roles { public interface Triage ext ERC{

public interface Nurse(); public interface Roles {

public interface Physician(); public interface Physician();

} }

public interface EMR { public interface EMR {
@pos getMedHistory(); @pos getMedHistory() ;
@pos getBillingHistory(Q) ; }

} }

3

The final part of the COD/AWTF policies specifies all of the collaboration steps
and the order in which they must be activated. The << CollabSlice >> marks
an interface as a collaboration step and the << NextCollabSlice >> states
the subsequent collaboration steps; this is shown by the code template g) for the
slice of Fig. 1d. The ERC interface name along with its collaboration step names
are utilized to link them to the code as given in Figs. 1a-1c. The collaboration
workflow is annotated using @CollabWorkflowSlice, and each of its collaboration
steps with @CollabSlice. Moreover, each collaboration step contains the informa-
tion about the subsequent collaboration steps using @NextCollabSlice. Again,
the code template g) only shows the first two steps of the collaboration in Fig.
1d; the full code template would have all of the steps and represent the entire
needed workflow for each collaboration.

Policy Code Template g)

@CollabWorkflowSlice

public interface ERC{
@CollabSlice
@NextCS(name=CollabSlice value="Test, Admission, Discharge")
public interface Triage();

@CollabSlice
@NextCS(name=CollabSlice value="TestReview, Admission, Discharge")
public interface Test();

4 Conclusion

Collaboration applications such as the patient-centered medical home (PCMH)
require individuals to interact with one another towards a common goal (treat a
patient) across time and under certain limitations; such applications must pro-
vide a means to facilitate access and interaction across a sophisticated workflow
that is adaptable. The work reported herein extends our prior work on adding
collaboration on duty and adaptive workflow (COD/AWF) to NIST RBAC by
considering security engineering for collaborative applications that can leverage
existing, extended, and new UML diagrams, thereby elevating security to a first
class citizen in an integrated software process. Towards this objective, the pa-
per: proposed four new collaboration diagrams that extend and augment UML

to separate concerns for the COD/AWF model in Section 2; presented policy
code templates a-g for the four new UML diagrams (Fig. la-d) of Section 2.
Overall, we believe this work is a crucial step forward for both collaborative
security and security engineering, particularly in applications like PCMH.

References

%

10.

11.

12.

13.

14.

15.

American Academy of Family Physicians (AACP): http://www.aafp.org/pcmh

. G. Ahn and R. Sandhu. “ Role-based authorization constraints specification.”

ACM Transaction on Information and System Security. Vol. 8, pp. 207-226
(2010).

S. Berhe, S. Demurjian, T. Agresta. “Emerging Trends in Health Care Delivery:
Towards Collaborative Security for NIST RBAC.” 23rd Annual IFIP Working
Conference on Data and Applications Security. Springer-Verlag, Berlin (2009).
E. Bertino, E. Ferrari, V. Atluri “The Specification and Enforcement of Autho-
rization Constraints in Workflow Management Systems.” ACM Trans. Inf. Syst.
Secur. 2(1): 65-104 (1999).

T. Budd “An Introduction to Object-Oriented Programming.” Addison-Wesley
(1997).

P. Centonze, G. Naumovich, J.S. Fink, M. Pistoia “Role-Based access control
consistency validation.” Proceedings of the International Symposium on Software
Testing and Analysis (2006).

D. D’Amour, L. Goulet, L. Jean-Francois, S.L. Martin-Rodriguez, P. Raynald “A
model and typology of collaboration between professionals in healthcare organi-
zations.” BMC Health Services Research (2008).

J. Juerjens “Secure Systems Development with UML.” SpringerVerlag (2003).
N. Li, M. Tripunitara, Z. Bizri “On mutually exclusive roles and separation-of-
duty.” ACM Transaction of Information System Security (2007).

J. Pavlich-Mariscal, S. Demurjian, D. M. Laurent “A framework of compos-
able access control features: Preserving separation of access control concerns from
models to code.” Special issue on software engineering for secure systems, vol.29,
pp.350-379. Science Direct (2010).

R. Sandhu, D.F. Ferraiolo, R. Kuhn “The NIST Model for Role Based Access
Control: Toward a Unified Standard.” Proceedings of the 5th ACM Workshop on
Role Based Access Control, pp.47-68, Berlin (2000).

Y. Sun, X. Shijun, P.L. Peng “Flexible Workflow Incorporated with RBAC.” Pro-
ceedings of the 9th International Conference on Computer Supported Cooperative
Work, pp.525-534 (2005).

A. Teilans, A. Kleins, U. Sukovskis, Y. Merkuryev, I. Meirans “A Meta-Model
Based Approach to UML Modelling.” Proceedings of the 10th International Con-
ference on. Computer Modeling and Simulation, pp.667-672 (2008).

K.R. Thomas “Team-based access control (TMAC): a primitive for applying role-
based access controls in collaborative environments.” Proceedings of the 2nd ACM
workshop on Role-based access control (1997).

J. Zarnett, M. Tripunitara, P. Lam “Role-based access control (RBAC) in Java
via proxy objects using annotations.” Proceedings of the 15th ACM symposium
on Access control models and technologies. (2010).

