History-Dependent Inference Control of Queries
by Dynamic Policy Adaption*

Joachim Biskup

Technische Universitdt Dortmund, Dortmund, Germany
joachim.biskup@cs.tu-dortmund.de

Abstract. Policy-based inference control of queries submitted to a logic-
oriented information system requires us to consider the history of queries
and answers to a particular user. In most previous approaches, the control
system captures the history by maintaining a fictitious view the user is
supposed to generate by exploiting rational reasoning. In this paper,
we propose and explore an alternative option to represent the history,
namely by suitably adapting the confidentiality policy after returning
an answer to a query. Basically, such a policy adaption precomputes all
relevant steps of formal proofs that the fictitious view logically implies
some policy element. We focus on propositional information systems.

Keywords: a priori knowledge, closed query, confidentiality policy,
Controlled Query Evaluation, inference control, information system, in-
teraction history, policy adaption, propositional logic, refusal, view

1 Introduction

Inference control is a crucial though costly mechanism to protect information
rather than just the underlying data, as achieved by traditional access control or
simple encryption [4]. In general, dynamic inference control of queries submitted
to an information system necessarily requires us to consider the history of queries
and answers related to a particular user. In most of the previous work, including
those on Controlled Query Evaluation (CQE) [5], the control employs the user’s
history in two ways: First, the control generates an (assumption about the) view
that the user (supposingly) infers to represent his knowledge about the instance
of the information system. This instance itself, however, remains hidden to the
user, except that he has seen the previous answers and might have access to
some a priori knowledge. Second, the control investigates whether that view
combined with the correct answer to the next submitted query (or some closely
related information) would be harmful w.r.t. a confidentiality policy specifically
declared for the user.

In this context the intuitive meaning of harmful is the following: the user will
be able to infer that some sentence contained in the policy actually holds in the

* This work has been performed within the framework of the Collaborative Research
Center “Providing Information by Resource-Constrained Data Analysis”’, supported
by the Deutsche Forschungsgemeinschaft under grant SFB 876/A5.

instance. If this will be the case, the control reacts with a suitable distortion of
the correct answer to avoid a security violation. In any case, after returning a
reaction to the user, the control has to appropriately adjust the view generated
for the user. Thus, over the time, the control enforces a suitable invariant to
ensure that the view will be never harmful.

Notably, the view is dynamically updated after each reaction to a query,
whereas the policy is kept unchanged once it has been statically declared by a
security officer. We can rephrase this approach to dealing with the history as fol-
lows: at any point in time, the control has to confine the entailment relationship
between the increasingly powerful (knowledgeable) view and the static policy.

We will illustrate this view-based approach to inference control by the fol-
lowing simple and straightforward example. Suppose that the policy requests to
keep the propositional sentence 1 A @5 secret. Furthermore, the user is assumed
to have no a priori knowledge about the instance, for which both ¢; and o
are supposed to hold, and thus ¢1 A @2 as well. Initially, the control generates
an empty view. Then, as a first query, the user submits the sentence ¢ in or-
der to ask whether this sentence holds. The correct answer, @1, i.e., that this
sentence holds, together with the empty view does not entail the single policy
element, and thus the control returns the correct answer to the user in undis-
torted form and, accordingly, updates the view, which now comprises just the
returned answer ;. Finally, as a second query, the user submits 5. Now, the
correct answer, @9, together with the content of the updated view, o1, obviously
entails the policy element, ©; Aws, and thus the control must suitably distort the
answer. Note the dynamic “last-minute behavior” of the control: if the queries
were submitted in reverse order, first 9 and then 1, then s would have been
correctly answered and the answer to ¢; would have been distorted.

In this work, we will explore an alternative approach to employ the user’s
history. The alternative approach aims to represent the user’s history by dy-
namically adapting the policy, thereby getting rid of the need to generate and
maintain a view for the user. Intuitively, over the time, we will increasingly
strengthen the policy, making it more and more restrictive as a countermeasure
to the knowledge accumulated by previous answers.

To illustrate this alternative policy-adaption based approach, we reconsider
the example presented above. Initially, the policy contains the sentence 1 A @s.
Since the first query, ¢, is harmless, the correct answer is returned to the user.
Now, once one of the conjuncts occurring in the original policy element is known
to the user, he must not learn the other conjunct as well. Accordingly, the control
replaces the previous policy element ¢ A o by ¢ to be kept secret in future.
If afterwards the second query, @3, is submitted, the control will immediately
detect that the correct answer would violate the adapted policy and thus will
distort the answer, as in the view-based approach.

We can also describe the policy-adaption based approach in terms of theorem-
proving, as sketched in the following and elaborated in more detail in the remain-
der of this paper. In the starting step, for each sentence contained in the declared
policy and thus explicitly wanted to be kept secret to the user while returning

answers to him, the user is supposed to aim at proving (the validity of) that
sentence from the answers received. Acccordingly, for simplicity here assuming
no a priori knowledge, the user initially considers every sentence contained in the
declared policy to be a current proof obligation. Having received a new answer
@, in step i, the user can analyze all possible formal proofs for any of the current
proof obligations whether and how @; will be helpful to prove it. If the user de-
tects such a situation, he can determine the resulting remaining proof obligations
and, potentially, try to satisfy them by issuing further queries. Correspondingly,
inference control can track the user’s abilities, and thus control can dynamically
adapt the policy by always setting it to the current set of proof obligations. In
the example given above, the sole initial proof obligation is @1 A 2, which can
be replaced by the new proof obligation -, once 7 is known.

Dynamic inference control is costly, at least in general, due to the inevitable
need to suitably keeping track of the history and performing some kind of
theorem-proving. The basic features of policy adaption suggest the possibility of
substantial improvements in computational costs at query time in comparison
with the view-based approach, at least in special situations: (1) the control no
longer has to maintain a separate data structure for reflecting the user’s view,
and (2) analyzing and remembering remaining proof obligations can bee seen
as a kind of stored precomputation for the task of checking whether subsequent
queries are harmful or not. Moreover, we might be able to find appropriate data
structures to actually benefit from the potentials.

In the following we roughly outline such an improvement for a restricted
propositional situation, where queries are just propositional atoms of the form
a; and elements of the confidentiality policy are conjunctions of such atoms, thus
of the form a;, A...Aa;, with 1 < k. Moreover, we will make policies redundancy-
free in the sense that no policy element is a subconjunction of another policy
element, just by discarding the larger one. As an example, let the policy be
{a1 Nag A ag,as A ag,aq N as,ag}, and consider the query sequence (ay, as).

The current policy will be represented by a data structure that is composed
of two linked parts. The “look-up part” contains all atoms still occurring in the
policy, and the “reduced part” comprises the nontrivial conjunctions (having at
least 2 different atoms) still to be checked. Moreover, each atom in the former
part is linked to each of the conjunctions in which it occurs in the latter part.
Fig. 1 shows the initial state of the data structure for the example.

If an atom a; is submitted as a query, the control first searches for that atom
in the look-up part. If the atom is not found there, the query is censored to be
harmless and correctly answered. Otherwise, there are two cases: If the atom
is not linked to any nontrivial conjunction, then the atom is harmful by itself
and the answer must be distorted. Otherwise, if there are links, the query is
censored to be harmless and correctly answered, but the policy must be adapted
by manipulating the current state of the data structure appropriately: (1) the
query atom a; is removed from the look-up part; (2) the query atom a; is deleted
from all the conjunctions in which it occurs; (3) if after the deletion a remaining
conjunction is reduced to a single atom a;, then the conjunction is dropped at

initial state state after processing a, state after processing a,

a

ayANayAag a AN ag
))
a a a

az A ay a3 A ay
) A) >

ana agAa ayna
a 4 N as a 4 A As as 4 N 8s
a6 a6 a6

Fig. 1. Initial and subsequent states of a data structure for dynamic policy adaption

all and the corresponding link from a; is deleted as well; moreover, all other
conjunctions in which a; occurs are deleted with all their links, too. Finally, if —
by these deletions — another atom in the look-up part has lost all its links, then
that atom is deleted from the look-up part.

Fig. 1 visualizes how the control operates for the parameters specified above.
Querying the atom a; is harmless and leads to its removal from the look-up part
by (1) and its deletion from the first conjunction, which is thus reduced to ag Aag
by (2). Then querying the atom as is harmless again and leads to its removal
from the look-up part by (1) and its deletion from the reduced conjunction,
which thus becomes the single atom as by (2); but this trivial conjunction is
then totally dropped by (3), and the conjunction as A ay4 is deleted as well.

Since only some searching and elementary link manipulations are used, the
efficiency of the procedure should be evident. A full justification of the correct-
ness is elaborated in Sect. 3 for a more general situation. Roughly summarizing,
in this article we will provide the following main contributions:

— We propose the policy-adaption based approach to keeping track of the his-
tory as a promising alternative to the view-based approach (this Sect. 1).

— After introducing our basic notations, briefly reviewing the view-based ap-
proach and commenting on complexity issues (Sect. 2), we fully elaborate the
new approach for a special but reasonably expressive situation of Controlled
Query Evaluation. This situation employs refusal as the sole distortion op-
tion and deals with a propositional information system (Sect. 3).

— We relate our approach to previous work, briefly discuss first-order informa-
tion systems and evaluate the expected potentials and limitations (Sect. 4).

2 Basic Notations and View-Based Approach

Restricting to propositional information systems, we first introduce our basic
notations. Then we briefly describe the view-based approach and state some
observations on the complexity of deciding the pertinent logical implications.

2.1 Basic Notations

We employ a logic-oriented approach to information systems (see, e.g., [1]), which
establishes formal semantics for both query answering and updating (not con-
sidered in this paper). For simplicity, we only consider complete information
systems, and we focus on propositional logic. We assume a vocabulary of propo-
sitional atoms, from which we can construct propositional sentences in the stan-
dard way, using the propositional connectives of negation and disjunction and
further derived connectives. A literal is either an atom or a negated atom.

The schema (of the information system) is given by the vocabulary and the
integrity constraints, which are expressed as a finite set con of sentences over this
vocabulary. We consider the integrity constraints as part of any user’s a priori
knowledge, which in each case is given as a set of sentences over the vocabulary.

An instance db (of the information system) is a set of literals formed as fol-
lows: For each atom « of the vocabulary, either the atom « itself or the negated
atom -« is an element. Given the vocabulary, it suffices to explicitly specify
only those atoms that are contained in an instance (implicitly assuming for the
remaining atoms that their negations are elements by default, as a kind of closed
world assumption). An instance db defines a truth-value assignment to proposi-
tional atoms by making each atom « € db true and all the remaining atoms false.
Such a truth-value assignment (interpretation) is inductively extended to arbi-
trary sentences @ by giving the connectives the standard meaning; eval(®)(db)
denotes the truth value assigned to @ by db. The standard notion of logical
implication, or entailment, between (sets of) sentences is designated by .

As a (closed, yes/no-) query, we allow any sentence ¢ of the underlying propo-
sitional logic. The correct answer to the query @ under an instance db is given
by the pertinent truth value eval(®)(db); however, for convenience, we alter-
natively express the correct answer by eval™(®)(db) that denotes either @ or
=& in a straightforward way. We aim at controlling any sequence of queries
Q:=(P1,Ps,...,P;,...,P;) where the query &, is submitted by some user at
the point in time 4; for simplicity of the presentation, we focus on only one user.

While the user is granted a general access right for reading (querying), a
security officer declares a confidentiality policy as a finite set psec of propositional
sentences, called potential secrets, in order to confine the actual information gain
that can be achieved by the user. Here the qualification “potential” indicates
that these sentences are not necessarily true in the actual instance. Following
the principle of open design, the user is supposed to be aware of this declaration,
as well as of all other features of the control mechanism. In order to prevent the
user from ever inferring that any sentence ¥ € psec actually holds, we follow the
refusal approach to inference control [11,6,5], i.e., if an informative answer to a
query would be harmful, then the control reacts by returning a special symbol
mum. In general, the refusal approach has to examine not only whether the correct
answer to a query is harmful but also whether its negation would be harmful, in
order to prevent so-called meta-inferences.

Besides the policy, in general the control mechanism also has to consider the
(postulated) a priori knowledge of the user and the answers to previously issued

queries. To do so, the control might maintain a user log. Basically, such a user
log then just contains a set log of propositional sentences. In principle, both the
policy and the user log might be updated while processing queries; the current
versions of them taken together form the current state s; := (psec;, log;) of the
control mechanism. The nitial state is obtained by setting psec, := psec and
logy := prior, where prior can be any suitable superset of the constraints con
not being in conflict with psec, i.e., prior = ¥ for all ¥ € psec. In this work, for
simplicity, we will not elaborate the treatment of the a priori knowledge prior
in depth: we just leave it empty in our examples, and we simply process it like
a sequence of queries within our initialization subprotocol.

Definition 1 (controlled query evaluation). Let be given an instance db,
a finite set log,_, of sentences (for explicitly reflecting the assumed user’s cur-
rent knowledge about the instance), and a finite set psec;_, of sentences (for
representing the current version of the confidentiality policy). Then a function
cqe(db, psec;_q,log,_1,D;) defines a controlled query evaluation of a query ®; by
generating a triple (ans;, psec;,log,), where ans; is the answer returned to the
user, and psec; and log,; together form the updated state.

Furthermore, for the initializations specified above, this function is inductively
extended to any query sequence Q := (D1, ..., D, ..., Py) by applying it stepwise
i a straightforward way:

cqe(db, psecy, logy, Q) =

<(an31,psec1, logy), ..., (ans;, psec;, log,), ..., (ansk, psecy, , logk)>

(1)

We are now ready to present our formal definition of the confidentiality re-
quirement we want to achieve by a controlled query evaluation. Roughly sum-
marized, given a potential secret ¥ declared in the (original) policy psec, this
requirement is expressed in terms of the indistinguishability — from the point of
view of the user — of the actual instance db from an alternative instance db® that
does not satisfy the potential secret considered.

Definition 2 (confidentiality). A controlled query evaluation cqge preserves
confidentiality iff
for all instances db,
for all finite sets of sentences psec (original confidentiality policy),
for all finite sets of sentences prior (a priori knowledge)
satisfied by db and such that prior ¥ for all U € psec,
for all query sequences Q, and
for all potential secrets ¥ € psec
there exists an alternative instance db® satisfying prior such that:

1. [indistinguishability]:

cqe(db, psec, prior, Q) = cqe(db®, psec, prior, Q) (2)
2. |possibility of false potential secrets]:

eval™ (P)(db®) = —~W (3)

2.2 View-Based Approach

The view-based approach to Controlled Query Evaluation, as surveyed in [5],
keeps track of the history by only updating the user log, while leaving the orig-
inal policy unchanged. For the specific setting described above, i.e., refusal un-
der known potential secrets for a propositional information system dealing with
closed (yes/no-)queries, the function cqe¥**¥ is defined by its outputs as follows:

ans; = if log,_; = eval™(®P;)(db) then eval™(P;)(db) else (4)
if (exists @) (¥ € psec and
(log; 1 U{®:} E ¥ or log;_, U{~®i} =V¥))
then mum else eval™(P;)(db)
psec;, = psec (5)

log, := if ans; = mum then log, ; else log;_; U{ans;} (6)

view

Proposition 1 ([6]). The function cqe
of Def. 2.

preserves confidentiality in the sense

Definition (4) of the controlled answer indicates that the task of inference
control is closely related to the problem of deciding on logical implications of
the form x = ¥, where the finite set of sentences y — equivalently identified with
the corresponding sentence formed as the conjunction over this set — denotes
some potential knowledge of the user and ¥ is a policy element. This decision
problem is well-known to be of high computational complexity in general, and
thus we can expect to control answers efficiently only under some restrictions of
the expressiveness of the languages for the sentences y and ¥, respectively.

As a starting point, we first observe the following: If both x and ¥ are already
specified in disjunctive normal form for a finite vocabulary, i.e., as a disjunction
of so-called minterms that are built as a conjunction of literals (atoms or negated
atoms) ranging over all atoms in the vocabulary, then x = ¥ holds if and only
if each minterm of y is also a minterm of V.

For a slightly relaxed situation where both x and ¥ are specified as a dis-
junctive form, i.e., a disjunction of conjunctions of literals ranging over different
atoms in the vocabulary, the sufficiency part of this observation can be gener-
alized along the following lines of reasoning, often referred to as subsumption.
First, if some disjunctive sentences n; and 7 are (syntactically) related such that
each disjunct of n; is also a disjunct of 1 — or at least (semantically) implies
some disjunct of 1, —, then the (semantic) implication 7, = 12 holds, since 7 is
an obvious weakening of 7;. Dually, if some conjunctive sentences #; and 6 are
(syntactically) related such that each conjunct of 6, is also a conjunct of 6 — or
is at least (semantically) implied by some conjunct of 62 —, then the (semantic)
implication 02 |= 61 holds, since 05 is an obvious strengthening of 6;.

Unfortunately, the necessity part of the observation stated above cannot be
generalized for arbitrary disjunctive forms. However, the necessity part holds
indeed, if the sentence ¥ consists of all the prime implicants of ¥, i.e., (1) each
disjunct of ¥ is minimal in the sense that discarding any of the literals in the

conjunction that constitutes this disjunct would result in a non-equivalent sen-
tence, and (2) ¥ contains all minimal disjuncts (conjunctions of literals ranging
over different atoms in the vocabulary) that imply ¥.

Proposition 2. Let x be a disjunctive form and ¥ a disjunctive form that con-
sists of all its prime implicants. Then x = W holds if and only if for each disjunct
of x there is a disjunct of ¥ such that each literal occurring as a conjunct of the
latter disjunct also appears as a conjunct of the former disjunct.

3 Policy Adaption for Propositional Information Systems

We now present our new concept of the policy-adaption based approach in detail,
exhibit an appropriate data structure for representing the current policy, and
then demonstrate the correctness and comment on the efficiency.

3.1 Outline and Examples

To elaborate the policy-adaption based approach, we aim at defining the corre-
sponding function cqeP® for controlled query evaluation such that the following
properties (further explained below) hold:

. The parameter log could be dropped.

. The history is reflected in the current version psec; of the policy.

The generated outputs ans; are the same as for cqgeV**®.

. The current version psec; is converted to be redundancy-free (see below).
. The current version psec; is converted to be fully vulnerable (see below).

TUR W N

We first outline the basic techniques to achieve these properties, then exem-
plify these techniques, and finally present and verify a comprehensive algorithm
for cqeP®! leading to a controlled query evaluation based on these techniques.

By property 3 and as a corollary to the result for cge’** stated in Prop. 1,
the function cqeP® will preserve confidentiality in the sense of Def. 2 as well.

Regarding property 4, demanding the policy to be redundancy-free, we can
observe the following by inspecting the guarding condition in the second line
and the third line of (4): If a policy psec contains two different potential secrets
¥, and ¥, such that ¥y | Wy, then we can remove ¥ from the policy without
affecting the answer. For, if a user knowledge logU{®} or logU{—P}, respectively,
implies ¥7, then that knowledge also implies ¥y ; thus the outcome of the guarding
condition remains the same after removing ¥;. Accordingly, we will keep the set
psec redundancy-free in the sense that none of its elements implies another one.

Regarding property 5, demanding the policy to be fully vulnerable, we further
observe the following: If a policy psec contains a potential secret ¥ such that
log = =¥ holds for the current user knowledge log, then we can remove ¥ from
the policy. For, by monotonicity, this property will always be preserved later on
and thus the confidentiality requirement expressed by ¥ will never be hurt.

Regarding the properties 2 and 3, which demand an appropriate reflection
of the history in psec; such that the same outputs are generated as in the view-
based approach, again by inspecting the guarding condition in the second line
and the third line of (4), we have to inductively achieve an equivalence of the
following kind (to be made more precise later on), where A; denotes the query
@, or its negation —®,, respectively:

(exists ¥)(¥ € psec and log,_; U{A;} = V) iff (7)
(exists ¥)(¥ € psec;,_; and {A;} = W) (8)

To attain such a goal, we first impose all queries @; and all policy elements ¥
to be given as a disjunctive form. Moreover, we additionally extend each policy
element such that it contains all its prime implicants in order to profit from the
efficiently verifiable characteristic property of x = ¥ given in Prop. 2.

Next, again for easily exploiting that property, in general we aim at represent-
ing a policy element of the form ¥ =¥, vV ...V ¥, that constitutes a nontrivial
disjunction with 2 < m as the set of its disjuncts {¥1, ..., ¥, }. To achieve a ho-
mogeneous treatment with a policy element of the form ¥ = ¥; having only one
disjunct, we then have to represent such an element as the singleton set {¥;}.
The set representations introduced will not affect the wanted equivalence, since
they are functional equivalent with the original forms. If there are no semantic
ambiguities, i.e., from a special context under consideration it is clear whether
two disjuncts (implicants) belong to the same policy element or not, as in the
examples below, we will omit the set notation for the sake of readibility.

Finally, to deal with disjunctive answers of the form & = ¢, V...V @,
with 2 < n, we will introduce policy branches: for each disjunct &;, a copy of
the current policy is generated and then inspected regarding implications that
result from @; alone. Subsequently, each of these branches has to be maintained
with reference to the pertinent @; until a definite answer that —=®; holds is given;
then the branch is obviously contradictory and thus must be removed.

Ezxample 1. Consider the following situation:

db := {a1,-az, a3, a4} is the instance,

Q = (a1,a9,as3,a4) is the query sequence,

psec := {ay A nag A az A ag, a1 A —as A —ag A ag} is the policy, and

logop := 0 is the void a priori knowledge.

Then (ay, ~ag, 7as, ay) is the correct answer sequence, and the instance defines
the first potential secret to be false and the second one to be true.

Controlling the first query a;, we see that neither a; nor —a; implies any
of the potential secrets, and thus the correct answer a; can be returned, and it
would be inserted into the user log by the view-based approach such that we
would have log; := {a;}. Since the first potential secret is no longer vulnerable,
we can remove it from the policy. Furthermore, once the user knows a;, we now
have to protect the remainder of the second potential secret, i.e., we can drop
ap from a; A —as A —as A ag. Thus we get

psecy = {—as A —ag A aq}.

Description and Branch Disjuncts (given Disjuncts (additional
prime implicants) prime implicants)
sole element ai A\ —ag A\ Daq a2 A —asz A\ —aq
(original) a1 AN a2 A\ aq a1 A\ a2 A\ —ag
az N as N\ ay a1 Nas N\ ay
—a1 A a2 N\ —as —a1 A az N\ ayg
sole element —az A\ ag a2 \ —asz A\ —aq
(after answer a1) —az N aq —az A\ —as
az N as N\ ay as N\ aq
(complementary) (complementary)
sole element —az A\ maq (subsumed)
(after answer a; —az A aq —az A\ —as
and subsumption) (subsumed) as A as
(complementary) (complementary)
sole element —az A 2aq (subsumed)
(after answers a1, —az V as) [—as
for branch {—a2} (subsumed) az N as
(complementary) (complementary)
sole element (complementary) (subsumed)
(after answers a1, —az V asz) —az A ag (complementary)
for branch {as} (subsumed) a4
(complementary) (complementary)
sole element (subsumed) (subsumed)
(after answers a1, —az V ag ay —ag
and subsumption) (subsumed) (subsumed)
for branch {—a2} (complementary) (complementary)
sole element (complementary) (subsumed)
(after answers a1, —az V ag (subsumed) (complementary)
and subsumption) (subsumed) a4
for branch {as} (complementary) complementary)

Fig. 2. A converted and then stepwise adapted confidentiality policy

Similarly, stepwise controlling the second query as and the third query as, we
(would) get the following:

logs := {a1, —as}, psecy := {—as A aq},

logs = {a1,naq,—az}, psecs = {as}.
Finally, controlling the fourth query a4, we immediately see that the correct
answer violates the policy, and thus the answer must be refused. Notably, if the
correct answer was —ay, then that answer would have to be refused as well.

Ezxample 2. Consider the following situation, the processing of which is further
illustrated in Fig. 2:

db := {a1,~as, —ag, as} is the instance, the same as before,

Q = (a1,—az Vas,as,ay) is the query sequence,

psec:={ ayr A—-agA—ay V ag A—agNay V a3 Aag AagAay

V —a; Aag AazANag Vo —ap Aag A—ag }ois the policy, and

logg :=) is the void a priori knowledge.
Obviously, then (a1, —as V a3, ~as,aq) is the correct answer sequence, and the
instance defines the sole potential secret to be true.

At initialization time, we observe that the sole policy element can be
equivalently simplified by combining the two disjuncts a; A as A az A aq and
—ay A az N az A aq into the prime implicant as A az A aq. Furthermore, even
afterwards the policy element does not contain all its prime implicants; in fact,
we have to add four further prime implicants, namely

as A\ —az A\ —ag, a1 A —ag A —az, ap A ag A ag, and oaq A as A ag.
Subsequently, we replace the sole policy element by the set of its disjuncts (prime
implicants) and get the following representation of the policy:

psecy = {a1 A —asz A\ —agq, ay N\ —ag N\ ag, a2 ANas N\ ag, —ap A\ az N\ —as,

as A —as A —ag, ay A-ag A -ag, ay Aag Aag, —ap Aas Aagl.

Controlling the first query a;, we see that neither a; nor —a; implies any of
the potential secrets, and thus the correct answer a; can be returned. Since the
policy elements containing the complementary literal —a; are no longer vulner-
able, we can remove them from the policy. Furthermore, once the user knows
a1, we can drop a1 from the remaining elements. Additionally, we can remove
elements that have become redundant, which is equivalent to being subsumed
by a shorter disjunct. Altogether we get

psecy := {—as A —ay, —ag A ayg, —as A —ag, az A ag}.

Controlling the second query —as V az, we see again that neither the positive
answer —ao V ag nor the negative answer as A —ag implies any of the potential
secrets, and thus the correct answer can be returned. However, since the correct
answer is a disjunction, we split the policy into branches, one for the case that
—ag is actually true and another one for the case that ag is actually true.

In the branch for —as, we can drop the occurrences of —as from two of the
elements, yielding the reduced elements a4 and —a3. As there are no occurrences
of the complementary literal ao, all elements are still vulnerable. Additionally,
however, we can remove the then subsumed elements —az A —a4 and a3 A aq4.
Thus we get

psecy[as] = {aq, nas}.

In the branch for a3, we can drop the occurrence of ag from one of the elements,
yielding the reduced element a4, and we can remove the elements —as A —ay
and —as A —ag, in which the complementary literal —a3 occurs. Additionally, the
element —as A ay4 is now subsumed and thus can be removed. Thus we get
psecylas] = {aq}-

Controlling the third query as, we see that the correct answer —a3 makes the pol-
icy branch for a3 contradictory and implies an element in the remaining branch
for —as. Accordingly, the answer must be refused and both policy branches re-
main unchanged. Finally, controlling the fourth query a4, we see that the correct
answer a4 implies a policy element in both branches, and thus the answer must
be refused as well.

3.2 Protocol for Policy Adaption and Correctness

Having introduced the basic techniques, we are now ready to specify the types,
inputs and methods of our new approach of policy adaption more formally.

Protocol for Policy Adaption.
types.
% propositional sentences;
Zar €& propositional sentences in disjunctive form;
Zpi € Zar propositional sentences that consist of all their prime implicants;
S € Lo literals;
Zm C Zyr implicants (conjunctions of literals over distinct atoms);
C Chinite p-Z declared confidentiality policies;
M Cfinite PP-Lim converted confidentiality policies
as multisets of “identified policy elements”;
B Cfinite M X L policy branches; //written as imsets[liset];
2 C % queries.

subprotocol: initialization.
input: psec: 6
prior : p.&;
method:
1. secy := psec;
2. modify secy as follows:
foreach ¥ € secy do
convert ¥ such that it becomes the disjunction of all its prime implicants;
foreach ¥ € secy do
replace ¥ having form ¥ V...V ¥, by the representing set {¥1,...,¥m }v;
3. psechy := {secy[0]}; // only one policy branch of form {{...},...,{... }}[0]
4. process prior like a sequence of queries. //not elaborated for lack of space

subprotocol: generation (of answer and policy).
input: &, :.%;
psech,_, : B;
method:
1. convert @; into disjunctive form @; 1 V...V @; n;
2. ans; 1= if &; violates psecb,_; or —P; violates psecb,_,
then mum
else eval™(P;)(db);
3. if ans; = @2 (let 452 = dsi,l V...V @Ln)
then psech, := (J;
foreach disjunct @; ; of ®;do
lit; :=={¢ | ¢ occurs in ®; ; };
copy; = {sec[D U lit;] | sec[D] € psecb,_};
foreach literal ¢ of @; ; do perform policy adaption for ¢ and copy;;
psech; := psecb; U copy;

elseif ans; = ‘!@i (let ‘!@i = "@lﬁl VANPIAN ‘\@im)
then psech, := psecb,_q;
foreach conjunct —®; ; of =®; (let =P; ; = p1 V...V pi)do

copy = 0;

foreach literal ¢; of =®; ; do
copy; := {sec[D U {¢}] | sec[D] € psecb,};
perform policy adaption for ¢; and copy;
copy := copy U copyi;

psech, := copy.

subprotocol: violation (test).
input: &:.%,
psech : B;
method:
convert @ into disjunctive form;
//nothing to do if & = &;, i.e., violation test is performed for current query
if there exists a branch sec[D] of policy psecb and
there exists a disjunct @; of (negated) query @
such that &; A A\ . ¢ is not contradictory
//guaranteed if & = eval™(P;)(db)
and
there exists {...}s € secg such that // ¥ “uniformly identifies” a policy element
for all branches sec[D] of policy psecb and
for all disjuncts @; of (negated) query &
such that &; A /\weD ¢ is not contradictory
there exists a disjunct ¥, € {...}; € sec such that &; = ¥, (by subsumption)
then return true (violation)
else return false (no violation).

subprotocol: adaption (for literal and policy copy).
input: ¢ : %
var copy : B; // copy is used as input-and-output parameter
method: // modify copy as follows
foreach policy branch sec;[D;] € copy do
1. if Y e Dj
then delete branch sec;[Dj]
else foreach {x1,...,Xr}w € sec; do
foreach x € {x1,...,Xr}w do
if @ occursin x then drop ¢ from y;
if - occurs in x then remove x from {x1,...,Xr }w;
foreach distinct x1,x2 € {x1,.-.,Xr}w do
if x1 E x2 (by subsumption) then remove xi from {x1,...,Xxr}w;
2. foreach {xi1,...,Xr}w,{X1,...,Xr}5 € sec; with ¥ # ¥ do
if yiV...WxrEX1V...VXr
then replace {x1,...,Xr}w by Ow // consider Qv as removed.

As explained in Sect. 3.1, the protocol for policy adaption has been designed
to achieve the same effects as the view-based approach. Thus the protocol is
claimed to be correct with respect to the view-based approach and, accordingly
by Prop. 1, to preserve confidentiality. The latter claim is stated in the following
theorem, the proof of which justifies the former claim.

Theorem 1. The function cqeP® as defined by the Protocol for Policy Adaption
preserves confidentiality in the sense of Def. 2.

Proof. For lack of space, we only outline the inductive proof, which follows the
informal arguments presented in Sect. 3.1. Basically, the induction will deal with
the following items and notations:

— histi—y =\, \; Bk, equivalently represents the user log log;_; under the
view-based approach as a single sentence converted into disjunctive form.

— A; ==\ Xi in disjunctive form denotes the query @; or its negation —®;.

— tent; := histi_1 A A; =y 1 (/\; Bri A xirr) then represents a left-hand side
in a violation test according to (4), but so far ignoring that contradictory
disjuncts might occur.

— tent?* := \/} 1 (/A Bry A Xpr) in disjunctive form results from tent; by
discarding all éontradictory disjuncts (containing both an atom « and the
negated literal —a). The special case that tent’® becomes the empty dis-
junction only happens if log,_; = eval®(®;)(db) and A; = —eval™(P;)(db).

— 9,1 is the set of tags D occurring in the current policy psecbh,_;.

— psecb;_q := {secp[D] | D € ;_1} then describes the elements of that policy.

One can verify that the generation subprotocol establishes a one-to-one cor-
respondance between the set of non-contradictory disjuncts A, Bx; of hist;_,
ranging over all pertinent k, and %;_1, such that for each k the corresponding
tag D satisfies D = {8 | 8 = Bk, for some [}. Note that if the generation sub-
protocol tentatively forms a branch corresponding to a contradictory disjunct,
then this fact is detected by performing the adaption subprotocol, which leads
to an immediate deletion of that branch.

Then we assert and comment the equivalence of the following assertions:

1. (exists ¥)(¥ € psec and log,_; U{A;} E V).
Such a kind of assertion is checked by the view-based approach according
to (4), to be shown to satisfy the equivalence given by “(7) iff (8)”.

2. (exists ¥)(¥ € psec and tenti® =).
The set on the left-hand side of |= is represented as a single sentence, which
is formed as the conjunction over all elements of that set and then converted
into disjunctive form (with discarding of contradictory disjuncts). }

3. (exists ¥s)(¥s = {¥s,1,- .- Ysm} € secpand Vg zn (A, BriAXer) BV, Ys,r)-
Here {@571, .. 7@s,m} are the initially determined prime implicants of @S.

4. (exists W) (Wy = {1, ..., Wy m} € secy and (for all k") (for all k)
(exists @,) (Ws . € ¥y and A, Bri N X = 7,).
We have exploited Prop. 2 for treating the implication problems.

5. (exists !ffs)(@s = {&l:/&l, e !@S,m} € secy and
(for all k") (for all “non-contradictory”D € %;_1)
(exists s) (Ps,r € ¥s and N, Bypyi A X F Wsr))-
We have employed the correspondance between disjuncts of hist;_; and
branches, where k(D) corresponds to D.

6. (exists W,)(¥, € secy and (for all k”)(for all “non-contradictory”D € Z;_;)
(exists f/s’?r)(@w e P and yj = @S’?T)).
Here WP is the version of ¥, in the branch sec[D]. The simplifications of the
adaption subprotocol preserve the applicability of the efficient implication
check, as stated in Prop. 2. Bascially, this kind of assertion is checked by the
violation subprotocol of the policy-adaption approach. a

3.3 Efficiency of Policy Adaption

Without restrictions the worst-case complexity of policy adaption is inevitably
determined by the complexity of the decision problems for propositional logic
and thus expected to be exponential. Exponential efforts might also be hidden
in transforming sentences into disjunctive forms or even determining all prime
implicants. However, queries or negated queries that consist of strict disjunc-
tions or generate strict disjunctions, respectively, are the sole cause of branching
and thus of an exponential explosion of the size of an adapted policy. Besides
these general remarks, analytical complexity results on “average’-case complex-
ity appear to be hardly obtainable and are beyond the scope of this paper. It
is left open to future work to implement a prototype and to set up practical
experiments. If we then aim at empirically comparing policy adaption and view
generation for special cases, we will be challenged to identify the best available
optimization techniques for each of the two approaches.

If we restrict on queries that are single literals and then inspect such a lit-
eral, we have to determine whether and how the atom involved occurs in one
of the implicants in the current policy data. To generalize the data structure
exemplified in Fig. 1, we could maintain an efficiently searchable structure of all
relevant atoms, together with the set structure comprising all current implicants
(then including single literals), linking an atom with all pertinent implicants.

4 Related Work, Extensions and Conclusions

Though the policy-adaption based approach is innovative for inference control
by means of Controlled Query Evaluation, some of the underlying ideas are al-
ready implicitly present in various previous work. First of all, we observe that a
mechanism for enforcing inference control can be seen as an automaton that is
basically specified by its set of internal states, its state transition function and
its output or reaction function. In principle, for Controlled Query Evaluation
a state has to reflect both a user’s history and the confidentiality policy suit-
ably. Accordingly, in a straightforward approach, a state can just be formed by
a combination of two components: a current log of the user’s history and a cur-
rent version of the policy. In fact, the view-based approach explicitly maintains
these two components. In contrast, the policy-adaption based approach aims at
representing both of the needed features within one component.

All work on state-dependent control is somehow related to our contribution,
as can be seen from the following examples. The works on “enforceable security
properties” [10,9] treat states as abstract objects, without indicating implemen-
tations. Advanced discretionary access control based on logic programming, like
the Flexible Authorization Framework [8] maintains a special “done-predicate”,
which can be seen as a kind of a user log or as a kind of a dynamic component of
the access control policy, depending on the point of view. The Dynamic Autho-
rization Framework [3] additionally selects a current model as a dynamic policy
component to determine the current semantics. Dynamic mandatory access con-
trol [2] offers to adapt security labels assigned to objects as a classification like

“high-water marks”, where classifications can be seen as a part of the access con-
trol policy. Many further examples stem from the dynamic control of workflows.
Control of probabilistic inferences |7] uses a Bayesian network, which is updated
after returning some piece of information to a user; the current network reflects
the confidentiality requirements still to be enforced.

We demonstrated in detail that the proposed policy-adaption approach can
be employed effectively for a specific situation of Controlled Query Evaluation,
and we also indicated how to implement this approach such that inference con-
trol can be performed efficiently for special cases. It would be worthwhile to also
consider more expressive situations, including incomplete instances and open
queries. Such extensions will challenge us to transfer the current considerations
to the more complex modal first-order logic. Seen from a even more general per-
spective, the ultimate goal of further efforts should be the following: We should
aim at finding suitable combinations of the view-based approach and the policy-
adaption based appraoch, in order to achieve the best possible efficiency for spe-
cific situations; and maybe we could further aim at constructing an optimizer
that automatically recognizes the best combination for a current situation.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
Reading, MA, 1995.

2. D. E. Bell and L. J. LaPadula. Secure computer systems: A mathematical model,
volume II. Journal of Computer Security, 4(2/3):229-263, 1996 / reprint of MITRE
Corporation 1974.

3. E. Bertino, F. Buccafurri, E. Ferrari, and P. Rullo. A logic-based approach for
enforcing access control. Journal of Computer Security, 8(2/3), 2000.

4. J. Biskup. Security in Computing Systems — Challenges, Approaches and Solutions.
Springer, Berlin/Heidelberg, 2009.

5. J. Biskup. Usability confinement of server reactions maintaining inference-proof
client views by controlled interaction execution. In S. Kikuchi, S. Sachdeva, and
S. Bhalla, editors, Databases in Networked Information Systems, DNIS 2010, vol-
ume 5999 of LNCS, pages 80-106. Springer, Berlin/Heidelberg, 2010.

6. J. Biskup and P. A. Bonatti. Controlled query evaluation for enforcing confiden-
tiality in complete information systems. Int. J. Inf. Sec., 3(1):14-27, 2004.

7. Y. Chen and W. W. Chu. Protection of database security via collaborative inference
detection. IEEE Trans. Knowl. Data Eng., 20(8):1013-1027, 2008.

8. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support
for multiple access control policies. ACM Trans. Database Syst., 26(2):214-260,
2001.

9. K. Ligatti and S. Reddy. A theory of runtime enforcement, with results. In
D. Gritzalis, B. Preneel, and M. Theoharidou, editors, Furopean Symposium on
Research in Computer Security, ESORICS 2010, volume 6345 of LNCS, pages 87—
100. Springer, Berlin/Heidelberg, 2010.

10. F. B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,
3(1):30-50, 2000.

11. G. L. Sicherman, W. de Jonge, and R. P. van de Riet. Answering queries without
revealing secrets. ACM Trans. Database Syst., 8(1):41-59, 1983.

