Re-designing the Web’s Access Control System
(Extended Abstract)*

Wenliang Du, Xi Tan, Tongbo Luo, Karthick Jayaraman, and Zutao Zhu

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, New York, 13244, USA
Email: wedu@syr.edu Tel: +1 315 443-9180

Abstract. The Web is playing a very important role in our lives, and is becom-
ing an essential element of the computing infrastructure. With such a glory come
the attacks—the Web has become criminals’ preferred targets. Web-based vulnera-
bilities now outnumber traditional computer security concerns. Although various
security solutions have been proposed to address the problems on the Web, few
have addressed the root causes of why web applications are so vulnerable to these
many attacks. We believe that the Web’s current access control models are fun-
damentally inadequate to satisfy the protection needs of today’s web, and they
need to be redesigned. In this extended abstract, we explain our position, and
summarize our efforts in redesigning the Web’s access control systems.

Key Words: web security; access control model.

1 Introduction

The Web is playing a very important role in our lives, and is becoming an essential
element of the computing infrastructure. Because of its ubiquity, the Web has become
attackers’ preferred targets. Web-based vulnerabilities now outnumber traditional com-
puter security concerns [2,4]. SQL injection, cross-site scripting (XSS), and cross-site
request forgery are among the most common attacks on web applications. A recent re-
port shows that over 80 percent of websites have had at least one serious vulnerability,
and the average number of serious vulnerabilities per website is 16.7 [26].

Attacks on the Web are quite unique, compared to the attacks on the traditional
computer systems and networks. From the top 10 list of web attacks recently release
by OWASP [19], we can tell that these attacks, to a large degree, are attributed to the
unique architecture of web applications. In general, the most common structure for
web applications is three-tiered [20]: presentation, application, and storage. The web
browser belongs to the first tier, presentation. The web server, using technologies like
PHP, ASP, ASP.NET, etc., is the middle tier, which controls the application logic. The
database is in the storage tier. Therefore, a typical web application consists of three
major components: contents (static and dynamic, such as Javascript code) for the pre-
sentation tier, code for the application tier, and interactions with the database.

Various security solutions have been proposed to address the problems on the Web [1,
5,6,10,11,14,15,17,20, 21]; although some of them are quite effective in defending

* This work was supported by Award No. 1017771 from the US National Science Foundation.

against certain specific type of attacks, few have answered the questions “why is the
Web so vulnerable to these many attacks” and “what are the root causes of these prob-
lems”. If we do not address the root causes, we may be able to address some known
problems today, but more and more problems may arise in the future, as the Web is still
evolving and new features are being introduced from time to time. We need to study
the fundamental problems of why web applications are so vulnerable, and develop so-
lutions to address these fundamental problems, instead of developing point solutions to
fix each specific attack.

Most of the vulnerabilities appear to be caused by the mistakes in the programs,
but, when we look deeper and think about why the developers make such mistakes, we
realize that the real problem is the underlying access control architecture: because of the
inadequacy of the access control support from the underlying architecture, developers
are forced to implement additional access control in their programs. History has told
us that asking average developers to implement access control is dangerous, and that
being able to build software systems does not necessarily mean being able to build the
security part correctly.

Let us look retrospectively at how the access control in operating systems has been
evolved to counter the ever-increasing threats. We can see a clear trend: access control
has evolved from the simple access control list, to capability-based access control in
Linux [8] and Solaris [23], and to the support of more complicated Mandatory Access
Control (MAC) models in SELinux [18] and Windows Vista [3]. These sophisticated
access control mechanisms free application developers from building all the access con-
trol in their own applications; they can rely on the operating system to do most of the
access control work.

Unfortunately, web application developers do not have such a good luck, because
the access control mechanisms in the web architecture are quite rudimentary. Although
the Web has been evolved quite significantly, with new features being added and new
types of data incorporated, the underlying protection model is basically the same as that
in the early days, and it has become much insufficient for the Web today. To make up
for the insufficiency of the underlying protection model, application developers have to
include a lot of access control logics in their programs. This is the exact task that the
operating systems strive to free developers from. While much work has been done to
secure web applications without changing the fundamental access control model, we
take a bold and significantly different position in our research:

Our position: We believe that the current access control models of the web
architecture are fundamentally inadequate for the Web; they need to be re-
designed to address the protection needs of the current Web. A well-designed
access control model can simplify application developers’ tasks by enforcing
much of the access control within the model, freeing developers from such a
complicated and error-prone task.

To understand our position, we need to understand the access control architecture
underlying web applications. Conceptually, the access control in web applications can
be divided into two parts: browser-side and server-side access control. We will discuss
them in the next section.

2 Current Access Control in the Web

2.1 Browser-side access control

Web applications have evolved to become highly interactive applications that execute on
both the server and client. As a result, web pages in modern applications are no longer
simple documents—they now comprise highly dynamic contents that interact with each
other. In some sense, a web page has now become a “system”: the dynamic contents
are programs running in the system, and they interact with users, access other contents
both on the web page and in the hosting browser, invoke the browser APIs, and interact
with the programs on the server side. To provide security, web browsers adopt an ac-
cess control model called Same Origin Policy (SOP). SOP prevents the active contents
belonging to one origin from accessing the contents belonging to another origin, but it
gives all the active contents from the same origin the same privileges.

Unfortunately, today’s web pages no longer draw contents from a single source;
contents are now derived from several sources with varying levels of trustworthiness.
Contents may be included by the application itself, derived from user-supplied text,
or from partially trusted third parties. Web applications merge these contents into web
pages, which are then sent to users’ browsers at their requests. During parsing, ren-
dering, and execution inside the browser, entities (dynamic and static) in web pages
can both act on other entities or be acted upon—in classic security parlance, they can
be instantiated as both principals and objects. These principals and objects are only as
trustworthy as the sources from which they originate.

With the SOP model, all these contents have the same privileges, because once
embedded into a web page, from the browser’s perspective, they are indeed from the
same origin, and will be treated the same. This is a limitation of the SOP model. Since
SOP cannot enforce access control based on contents’ actual originating sources, web
applications have to implement the control at the server side, even though the access
actually takes place at the browser side. The goal of this access control approach is to
conduct checking and filtering at the server side before merging the contents into web
pages, thereby preventing specific, known attacks from even initiating an action within
the generated web pages. For example, to defeat the cross-site scripting attack, one can
filter out the code from the contents that are from untrusted sources.

Conducting browser-side access control at the server side has a number of limita-
tions. First, doing the filtering and validation has proven to be difficult; many vulner-
abilities are caused by the errors in such a process [7,9, 12]. For example, despite the
fact that My space had implemented many filtering rules, the Samy worms still found
the ways to inject unauthorized Javascript code into users’ profiles [13]. Second, if web
applications need to run some third-party code (e.g. advertisement and client-side ex-
tensions) on a web page, but want to put a limitation on the code (e.g. disallow the
access to cookies), it will be difficult, if possible at all, for input validation and filtering
to achieve this goal on the server side. In a recent event (September 2009), an unknown
person or group, posing as an advertiser, sneaked a rogue advertisement onto New York
Times’ pages, and successfully compromised the integrity of the publisher’s web appli-
cation using a malicious Javascript program [25]. Third, since the accesses actually take
place at the browser side, the server side is fundamentally the wrong place to control

these accesses. Access control should be conducted at the run time, when the access is
already initiated; this way, we will have all the contexts for access control, including
principals, objects, and the condition of the environment.

Therefore, we strongly believe that the browser-side access control should be put
back to its proper location, namely, in browsers. This cannot be achieved with the cur-
rent SOP access control model; a new access control model needs to be developed for
web browsers.

2.2 Server-side access control

On the server side, access control is primarily based on sessions. When a user logs into a
web application, the server creates a dedicated session for this user, separating him/her
from the other users. Sessions are implemented using session cookies; as long as a
request carries a session cookie, it will be given all the privileges associated with that
session. Namely, within each session, all requests are given the same privileges, regard-
less of whether they are initiated by first-party or third-party contents, from client-side
or server-side extensions, or from another origin. We refer to this access control as the
“same-session” policy.

Such a single level of granularity, being sufficient for the earlier day’s Web, becomes
inadequate to address the protection needs of today’s Web. The Web, initially designed
for primarily serving static contents, has now evolved into a quite dynamic system,
consisting of contents and requests from multiple sources, some more trustworthy than
others. For example, nowadays, many web applications include client-side extensions,
i.e., they include links to third-party code or directly include third-party code in their
web pages. Examples of client-side extensions include advertisements, Facebook appli-
cations, iGoogle’s gadgets, etc. Their contents, containing JavaScript code, can be very
dangerous if they are vulnerable or malicious,

Unfortunately, the current session-based access control at the web server cannot
treat these third-party contents differently. In the current access control systems, it is
very difficult to allow the requests from the same web page to access the same session,
while preventing some of them from invoking certain server-side services. To achieve
such a distinction, applications have to implement their own ad hoc protection logic,
such as asking users to confirm their actions, embedding tokens in hidden fields, etc.

The fundamental cause of the above problem is the granularity of a session: it is
too coarse. The Web has become more and more complicated, and its client-side con-
tents are no longer uniformly trusted, so requests initiated by these contents are not
uniformly trusted either. Therefore, giving all the requests within the same session the
same privileges cannot satisfy the protection needs of today’s Web anymore. In order
not to ask application developers to bear the complete responsibility of implementing
those protection needs, we need a better server-side access control system.

3 Our Approaches

Our approach is inspired by the access control in operating systems. Operating systems
consider the implementation of access control as their own responsibility, instead of the

responsibility of their applications. This is for security reasons, because OS needs to
guarantee that all the accesses are mediated; relying on applications to enforce access
control simply cannot achieve this goal. Unfortunately, in web applications, because of
the lack of appropriate access control models, web applications have to implement their
own access control mechanisms, which tend to be error prone: if they miss some places,
loopholes may be created.

To satisfy the needs of access control, most operating systems have built in some
basic access control models, such as the ACL model in most OSes, an integrity-focused
MAC model since Windows Vista [3], and a fine grained MAC model in SELinux [18].
With these models, user applications do not need to worry about implementing some of
the access controls if they can be covered by the models. For example, if an application
system’s protection needs can be satisfied by the underlying ACL model, it only needs
to properly configure all the objects in the system, and then relies on the operating
system to enforce the access control. If an application system needs to enforce a specific
MAC policy in SELinux, it only needs to configure its system, and then lets SELinux to
enforce the access control; the configuration in this case includes setting up the security
policies and labeling the subjects and objects.

The benefit of replacing implementation with configuration can be summarized
briefly in the following: First, from the implementation perspective, configuring a sys-
tem is easier than implementing a system, and is thus less error-prone (although errors
are still possible). Second, from the verification perspective, because configuration is
usually defined based on logics that are much simpler than programming logics, veri-
fying configuration is also much easier than verifying programs. Third, from the error-
resistance perspective, configuration is safer: any missing configuration can fall back
to a safe default; however, there is no “safe default” if an access control checking is
missing. When a web application has over 1000 security checks, missing a few checks
is not uncommon [27]. Fourth, configuration allows web applications to put the access
control in the place where the access actually takes place.

Motivated by the successful practice in operating systems and the benefit of con-
figuration, we set out to investigate whether we can develop a better access control
system for the Web, such that we can take some of the access control enforcement logic
out of web applications, and replace them with configuration, a much easier task. The
enforcement will be done by the access control system that we develop for browsers,
servers, and databases. We summarize our ongoing efforts in the following.

Browser-side access control: We have developed two access control models for web
browsers: Escudo [11] and Contego [16]. Escudo proposes a ring access control model
for web browsers. This model allows web applications to put webpage contents in dif-
ferent rings, based on their trustworthiness: Elements accessible only to more trust-
worthy principals or from more trusted sources are placed in higher privileged rings.
Ring assignments are carried out at the server side, because only the server-side code
knows how trustworthy the contents are. Assigning ring labels to contents is called
“configuration”, and once a web page is “configured”, the browser can enforce ac-
cess control based on the configuration and Escudo’s security policies: contents in the
lower-privileged rings cannot access the contents in the higher-privileged rings. We im-
plemented Escudo in a browser called Lobo [22].

To provide an even finer granularity, we have developed Contego, a capability-based
access control for web browsers. Contego divides the action privileges (e.g. accessing
cookies, sending AJAX requests, etc) into small “tokens” (called capabilities). A princi-
pal needs to possess the corresponding tokens if it wants to perform certain actions. For
example, a Javascript code within a web page will not be able to send AJAX requests
if it is not assigned the AJAX-request token. Using these fine-grained capabilities, web
applications can assign the least amount of privileges to principals. We implemented
Contego in the Google Chrome browser.

Server-side access control: We have developed a fine-grained server-side access con-
trol system, which can assign different privileges to the requests in the same session,
based on their trustworthiness. The new access control system is called Scuta [24],
which is a backward-compatible access control system for web application servers. Ex-
tending Escudo’s ring model to the server, Scuta labels server-side data (e.g. tables in
database) and programs (functions, classes, methods, or files) with rings, based on their
protection needs. Programs in a lower-privileged ring cannot access data or code in a
higher-privileged ring.

Scuta divides a session into multiple subsessions, each mapped to a different ring.
Requests from a more trustworthy region in a web page belong to a more privileged
subsession. Requests belonging to subsession k are only allowed to access the server-
side programs and data in ring k& and above (numerically). With the subsession and ring
mechanisms, server-side programs can treat the requests in the same session differently,
based on the trustworthiness of their initiators, and thus provide access control at a
finer granularity. Subsessions in Scuta correspond to the rings in Escudo, i.e., requests
initiated from Escudo ring k in a web page is considered as belonging to subsession k,
and can thus access the corresponding server-side resources.

To demonstrate the effectiveness of Scuta, we have implemented Scuta in PHP, a
widely adopted platform for web applications. We have conducted comprehensive case
studies to demonstrate how Scuta can be used to satisfy the diversified protection needs
in web applications.

4 Summary

We strongly believe that the access control systems in the current Web infrastructure is
fundamentally inadequate to satisfy the protection needs of today’s Web, and they have,
directly and indirectly, contributed to the dire situation in web applications. It is time
to think about whether we can design a better and backward-compatible access control
system, instead of developing fixes to patch the existing one in order to defeat certain
specific attacks. The web technology is still evolving, so a good design should not only
be able to satisfy today’s needs, it should also be extensible to satisfy the unknown
protection needs that will inevitably come up during the technology evolution. In this
extended abstract, we have summarized our pursuit in building a better access control
system for the Web.

5 Acknowledgment

Several other people have also participated in this research, including Amit Bose, Steve
Chapin, Tzvetan Devnaliev, Hao Hao, Apoorva Iyer, Balamurugan Rajagopalan, Karthick
Soundararaj, Shaonan Wang, and Yifei Wang. We would like to acknowledge their con-
tributions.

References

—

. Caja. http://code.google.com/p/google-caja/.

2. S. Christey and R. A. Martin. Vulnerability type distributions in cve (version
1.1). MITRE Corporation. http://cwe.mitre.org/documents/vuln-trends/
index.html, 2007.

3. M. Conover. Analysis of the windows vista security model. = Symantec Corpo-
ration, http://www.symantec.com/avcenter/reference/Windows_Vista_
Security Model Analysis.pdf, 2007.

4. Symantec Corp. Symantec internet security threat report: Trends for july-december 2007

(executive summary). Page 1-2, 2008.

. Douglas Crockford. ADSafe. http://www.adsafe.org.

6. M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing authentication & access
control vulnerabilities in web applications. In Proceedings of the Eighteenth Usenix Security
Symposium (Usenix Security), Montreal, Canada, 2009.

7. Jeremiah Grossman. Cross-site scripting worms and viruses. The impending threat and
the best defense. http://www.whitehatsec.com/downloads/WHXSSThreats.
pdf.

8. S. E. Hallyn and A. G. Morgan. Linux capabilities: making them work. http://ols.
fedoraproject.org/OLS/Reprints—2008/hallyn—-reprint.pdf, 2008.

9. Robert Hansen. XSS cheat sheet. http://ha.ckers.org/xss.html.

10. Collin Jackson, Andrew Bortz, Dan Boneh, and John C. Mitchell. Protecting browser state
from web privacy attacks. In WWW 2006.

11. K. Jayaraman, W. Du, B. Rajagopalan, and S. J. Chapin. Escudo: A fine-grained protection
model for web browsers. In Proceedings of the 30th International Conference on Distributed
Computing Systems (ICDCS), Genoa, Italy, June 21-25 2010.

12. Samy Kamkar. The samy worm story. http://namb.la/popular/, 2005.

13. Samy Kamkar. Technical explanation of the myspace worm. http://namb.la/
popular/tech.html, 2005.

14. Chris Karlof, Umesh Shankar, J. D. Tygar, and David Wagner. Dynamic pharming attacks
and locked same-origin policies for web browsers. In CCS 2007.

15. Benjamin Livshits and Ulfar Erlingsson. Using web application construction frameworks to
protect against code injection attacks. In PLAS 2007.

16. T. Luo and W. Du. Contego: Capability-based access control for web browsers. In Proceed-
ings of the 4th International Conference on Trust and Trustworthy Computing, Pittsburgh,
PA, 2011.

17. Leo A. Meyerovich and V. Benjamin Livshits. Conscript: Specifying and enforcing fine-
grained security policies for javascript in the browser. In IEEE Symposium on Security and
Privacy, pages 481-496, 2010.

18. National Security Agency. Security-Enhanced Liunx. Available at http://www.nsa.

gov/selinux/.

W

19.

20.

21.

22.

23.

24.

25.

26.
217.

OWASP. The ten most critical web application security risks. http://www.owasp.
org/index.php/File:OWASP_T10_~_2010_rcl.pdf, 2010.

Bryan Parno, Jonathan M. McCune, Dan Wendlandt, David G. Andersen, and Adrian Per-
rig. CLAMP: Practical prevention of large-scale data leaks. In Proc. IEEE Symposium on
Security and Privacy, Oakland, CA, May 2009.

K. Patil, X. Dong, X. Li, Z. Liang, and X. Jiang. Towards fine-grained access control in
javascript contexts. In Proceedings of the 31st International Conference on Distributed Com-
puting Systems (ICDCS), Minneapolis, Minnesota, USA, June 20-24 2011.

Jose Solorzano. The Lobo Project. http://lobobrowser.org/.

SUN Microsystems, Inc. White paper: Trusted Solaris 8 operating environment. Available
athttp://www.sun.com/software/whitepapers/wp-ts8/ts8-wp.pdf.

X. Tan, W. Du, T. Luo, and K. Soundararaj. SCUTA: A server-side access control system for
web applications. Syracuse University Technical Report, 2011.

Ashlee Vance. Times web ads show security breach. http://www.nytimes.com/
2009/09/15/technology/internet/15adco.html.

WhiteHat Security. Whitehat website security statistic report, 10th edition, 2010.

A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application security with
data flow assertions. In Proceedings of the 22nd ACM Symposium on Operating Systems
Principles, Big Sky, MT, October 11-14 2009.

