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Abstract. In today’s networked world, resource providers and consumers are
distributed globally and locally. However, with resource constraints, optimiza-
tion is necessary to ensure the best possible usage of such scarce resources.
Distributed linear programming (DisLP)problems allow collaborative agents
to jointly maximize profits (or minimize costs) with a linearobjective function
while conforming to several shared as well as local linear constraints. Since each
agent’s share of the global constraints and the local constraints generally refer to
its private limitations or capacities, serious privacy problems may arise if such in-
formation is revealed. While there have been some solutionsproposed that allow
secure computation of such problems, they typically rely oninefficient proto-
cols with enormous communication cost. In this paper, we present a secure and
extremely efficient protocol to solve DisLP problems where constraints are arbi-
trarily partitioned and no variable is shared between agents. In the entire protocol,
each agent learns only a partial solution (about its variables), but learns nothing
about the private input/output of other agents, assuming semi-honest behavior.
We present a rigorous security proof and communication costanalysis for our
protocol and experimentally validate the costs, demonstrating its robustness.

1 Introduction

Optimization is a fundamental problem found in all industries. As an essential subclass
of optimization, linear programming models are widely applicable to solving numerous
profit-maximizing or cost-minimizing problems in various fields such as transportation,
commodities, airlines and communication.

For instance, in the packaged goods industry, delivery trucks are empty25% of
the time. Just four years ago, Land O’Lakes truckers spent much of their time shuttling
empty trucks down slow-moving highways, wasting several million dollars annually. By
using a web based collaborative logistics service (Nistevo.com), to merge loads from
different companies (even competitors) bound to the same destination, huge savings
were realized (freight costs were cut by15%, for an annual savings of$2 million[1]).
This required sending all information to a central site. Such complete sharing of data
may often be impossible for many corporations, and thus result in great loss of possible
efficiencies. Since this is a transportation problem which can be modeled through lin-
ear programming, aDistributed linear programming(DisLP) solution that tightly limits
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the information disclosure would make this possible without the release of proprietary
information. Specifically, DisLP problems can facilitate collaborative agents to jointly
maximize global profits (or minimize costs) while satisfying several (global or local)
linear constraints. Since each agent’s share of the global constraints and the local con-
straints generally refer to its private limitations or capacities and the optimal solution
represents its decision, limited disclosure should prevent revealing such information in
this distributed computing scenario.

While completely arbitrary partitioning of constraints and variables is possible,
in many realistic DisLP problems, each company holds its ownvariables: the values
for which together constitute the global optimum decision.Variables are generally not
shared between companies because collaborators may have their own operations w.r.t.
a maximized profit or minimized cost. Consider the followingexample:

2xK1+5xK2 14 (PK's Labors Constraint)

Horizontally Partitioned

[2x11+3x12]+[5x21+x22]+…+[7xK1+3xK2]

15+10+…+20; (Shared Material Constraint)

Vertically Partitioned

Global Objective: Maximizing

[9x11+12x12]+[7x21+8x22]+…+[5xK1+10xK2]
Max: 9x11+12x12; (Maximizing Profit)

2x11+3x12 15; (P1's Material Constraint)

x11+2x12 8; (P1's Labor Constraint)

Max: 7x21+8x22; (Maximizing Profit)

5x21+x22 10; (P2's Material Constraint)

3x21+2x22 9; (P2's Labor Constraint)

Max: 5xK1+10xK2; (Maximizing Profit)

7xK1+3xK2 20; (Pk's Material Constraint)

2xK1+5xK2 14; (Pk's Labor Constraint)

x11+2x12 8; (P1's Labors Constraint)

Horizontally Partitioned

3x21+2x22 9; (P2's Labors Constraint)

Horizontally Partitioned

Fig. 1. Distributed LP Problem Formulation (Example1)

Example 1. K CompaniesP1 . . . PK share some raw materials for production
(maximizing profits): the amount of companyPi’s (i ∈ [1, K]) productj to be manu-
factured are denoted asxij , thusPi holdsxi = {∀j, xij}.

In the collaborative production problem above, the constraints are arbitrarily parti-
tioned. On one hand,P1 . . . PK should have some local constraints (i.e. each company’s
local labor constraint) that is only known to each company. On the other hand, there may
be some global constraints (i.e. the total quantity of the shared raw materials). Figure 1
demonstrates a simple example of this.K companies jointly manufacture products (two
for each company) using a shared material whereP1, P2, . . . , PK have the amount15,
10, . . . , 20, respectively (The sum of the global profits can be increasedby this col-
laboration since the combined resources are better utilized). They also have their local
constraints, i.e. the total labor for producing each company’s products are bounded with
constraints8, 9 and14 respectively. After solving this DisLP problem, each company
should know the (global) optimal production amount for onlyits products but should
not learn anything about the private constraints and solution of other companies. To
simplify the notation, we formally define it as below:

Definition 1 (K-Agent LP Problem (K-LP)). An LP problem is solved byK dis-
tributed agents where each agentPi holdsni variablesxi, share of the objectiveci,



its local constraintsBixi ⊲⊳i bi, and the matrix/vectorAi/bi
0 in the global constraints∑K

i=1 Aixi ⊲⊳0 b0 (as shown in Equation 11,2,3)(i ∈ [1, K] and
∑K

i=1 bi
0 = b0).

max c
T
1
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T
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Indeed, besides collaborative production, K-LP problems occur very frequently in
reality, i.e. collaborative delivery of goods for different companies to save transportation
cost, selling the goods in bundles for distributed agents tomaximize the global profits,
and determining profit-maximized travel packages for hotels, airlines and car rental
companies.

We intend to introduce a secure and efficient distributed computing solution to the
K-LP problem. Thus, our key contributions are: 1) to proposea privacy-preserving
transformation for the K-LP problem; 2) to propose a secure protocol robust against
honest-but-curious adversaries (semi-honest model: assuming that all the agents follow
our protocol) that is fair to all agents, and 3) to experimentally validate the cost of the
proposed protocol.

The rest of this paper is structured as follows. Section 2 reviews some related work.
Section 3 introduces some preliminaries for our approach. Section 4 presents the trans-
formation process (for security purpose) and shows that howto derive the optimal solu-
tion for each agent after solving the transformed problem. In Section 5, we present the
secure protocol with security proof and computation cost analysis. Finally, we experi-
mentally validate the protocol in Section 6 and conclude thepaper in Section 7.

2 Literature Review

Optimization problems occur in all walks of real life. Thereis work in distributed op-
timization that aims to achieve a global objective using only local information. Dis-
tributed Constraint Satisfaction was formalized by Yokoo[2] to solve naturally dis-
tributed constraint satisfaction problems. These problems are divided between agents,
who then have to communicate among themselves to solve them.ADOPT[3] is a back-
tracking based bound propagation mechanism. It operates completely decentralized,
and asynchronously. The downside is that it may require a very large number of mes-
sages, thus producing big communication overheads.

However, in general, the work in distributed optimization has concentrated on re-
ducing communication costs and has paid little or no attention to security constraints.
Thus, some of the summaries may reveal significant information. In particular, the rigor
of security proofs has not been applied much in this area. There is some work in se-
cure optimization. Silaghi and Rajeshirke [4] show that a secure combinatorial problem

1
⊲⊳ denotes≤, = or≥.

2 Due to{min : cT x ≡ max : −cT x}, we modelmax : cT x.
3 size:∀i ∈ [1, K], {Ai : m0 × ni}, {Bi : mi × ni}, {ci : ni}, {b0 : m0} and{bi : mi}



solver must necessarily pick the result randomly among optimal solutions to be really
secure. Silaghi and Mitra [5] propose arithmetic circuits for solving constraint optimiza-
tion problems that are exponential in the number of variables for any constraint graph.
A significantly more efficient optimization protocol specialized on generalized Vickrey
auctions and based on dynamic programming is proposed by Suzuki and Yokoo [6].
However, much of this work is still based on generic solutions and not quite ready for
practical use. Even so, some of this work can definitely be leveraged to advance the
state of the art by building general transformations or privacy-preserving variants of
well known methods.

Privacy-preserving linear programming problem has been introduced to solve the
LP problem with limited information disclosure between twoagents [7][8][9][10]. Nev-
ertheless, several shortcomings can be discovered in theirwork. First, neither of them is
applicable to solving multi-agent (more than two) distributed LP problems. Second, the
secure protocols require enormous computation costs: evenif the computational cost of
Li et al.’s work [8] and Vaidya’s work [7][9] includes a polynomial number of homo-
morphic encryptions, it still requires considerable time complexity for the total encryp-
tion. The efficiency should be greatly declined for large DisLP problems. Mangasarian
[11]proposed a privacy-preserving formulation of a linearprogram over vertically par-
titioned constraint matrix while our approach is introduced to privately solve arbitrarily
partitioned LP problems in this paper, and no formal security analysis is given in [11].
A secure third-party based protocol for LP was proposed by Du[10], however the LP
problem is not addressed fully or formally and an optimal solution is not guaranteed.
We will propose a secure and efficient DisLP approach to resolve the above limitations.

3 Preliminaries

In this section, we briefly review some definitions and properties related to LP problems.

3.1 Polyhedra

From the geometrical point of view, LP problems can be represented as polyhedra. We
thus present some geometrical definitions for LP problems.

Definition 2 (Polyhedron of Linear Constraints).A polyhedronP ⊆ R
n is the set of

points that satisfy a finite number(m) of linear constraintsP = {x ∈ R
n : Ax ⊲⊳ b}

whereA is anm× n constraint matrix.

Definition 3 (Convex Combination).A pointx ∈ R
n is a convex combination of a set

S ⊆ R
n if x can be expressed asx =

∑
i λix

i for a finite subset{xi} of S andλ > 0
with

∑
i λi = 1.

Definition 4 (Vertex). A pointxe ∈ P is a vertex ofP = {x ∈ R
n : Ax ⊲⊳ b} if it

cannot be represented as a convex combination of two other pointsxi, xj ∈ P .

Definition 5 (Ray in Polyhedron). Given a non-empty polyhedronP = {x ∈ R
n :

Ax ⊲⊳ b}, a vectorr ∈ R
n, r 6= 0 is a ray ifAr ⊲⊳ 0.

Definition 6 (Extreme Ray).A ray r is an extreme ray ofP = {x ∈ R
n : Ax ⊲⊳ b} if

there does not exist two distinct raysri andrj of P such thatr = 1
2 (ri + rj).



3.2 Dantzig-Wolfe Decomposition

Assume that we letxi (sizen vector) represent a vertex or extreme ray in the LP prob-
lem. Hence, every point inside the polyhedron can be represented by all the vertices
and/or extreme rays using convexity combination (Minkowski’s Representation Theo-
rem [12]). Thus, a polyhedronP can be represented by another polyhedronP ′ = {λ ∈
R
|E| :

∑
i∈E δiλi = 1; λ ≤ 0} where

δi =

{
1 if xi is a vertex
0 if xi is an extreme ray

(2)

Hence, the original LP problem (Equation 1) can be transformed to a master prob-
lem (Equation 3) using Dantzig-Wolfe Decomposition [12]. Assuming thatxj

i repre-
sents the extreme point or ray associated withλij .

max
X

j

c
T
1

x
j
1
λ1j + · · ·+

X

j

c
T
Kx

j

KλKj

s.t.
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λ1 ∈ R
|E1|, . . . , λK ∈ R

|EK |, δij ∈ {0, 1}, i ∈ [1, K]

(3)

As proven in [12], primal feasible points, optimal primal points, an unbounded rays,
dual feasible points, optimal dual points and certificate ofinfeasibility in themaster
problemare equivalent to theoriginal problem.

4 Revised Dantzig-Wolfe Decomposition

As shown in Equation 1, K-LP problem has a typical Block-angular structure, though
the number of global constraints can be significantly largerthan each agent’s local con-
straints. Hence, we can solve the K-LP problem using Dantzig-Wolfe decomposition. In
this section, we transform our K-LP problem to an anonymized(block-angular) format
that preserves each agent’s private input/output. We also show that the optimal solution
for each agent’s variables can be derived after solving the transformed problem.

4.1 K-LP Transformation

Du [13][10] and Vaidya [7] proposed a transformation approach for solving two-agent
DisLP problems: transforming anm× n constraint matrixM (the objective vectorcT )
to anotherm × n matrix M ′ = MQ (c′T = cT Q) by post-multiplying ann × n ma-
trix Q, solving the transformed problem and deriving the originalsolution. Meanwhile,
Bednarz et al. [14] showed how to select transformation matrix Q. Following them, we
let each agentPi (i ∈ [1, K]) transform its local constraintsBi, its share of the global
constraintsAi and its objective vectorci using its own transformation matrixQi.

We letK agents transformAi andBi by Qi individually for the following reason.
Essentially, we extend a revised version of Dantzig-Wolfe decomposition to solve K-
LP and ensures that the protocol is secure. Thus, an arbitrary agent should be chosen



as the master problem solver whereas all agents (including the master problem solving
agent) should solve the pricing problems. For transformed K-LP problem (Equation 4),
we can let∀Pi (i ∈ [1, K]) send its transformed matrices/vectorAiQi, BiQi, cT

i Qi

to another agentPj (j ∈ [1, K], j 6= i) and letPj solve Pi’s transformed pricing
problems. In this case, we can show that no private information can be learnt while
solving the problems (The attack specified in [14] can be eliminated in our secure K-LP
problem). Otherwise, if each agent solves its pricing problem, since each agent knows
its transformation matrix, additional information might be disclosed from master solver
to pricing problem solvers (this is further discussed in Section 5).

max

K
X

i=1

c
T
i Qiyi

s.t.
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The K-LP problem can be transformed to another block-angular structured LP prob-
lem as shown in Equation 4. We can derive the original solution from the solution of
the transformed K-LP problem using the following theorem.

Theorem 1. Given the optimal solution of the transformed K-LP problemy∗ = (y∗1 , y∗2 ,
. . . , y∗K), the solutionx∗ = (Q1y

∗
1 , Q2y

∗
2 , . . . , QKy∗K) should be the optimal solution

of the original K-LP problem.

Proof. Supposex∗ = (Q1y
∗
1 , Q2y

∗
2 , . . . , QKy∗K) is not the optimal solution of the orig-

inal vertical LP problem. In this case, we have another vector x′ = (x′1, x
′
2, . . . , x

′
K)

such thatcT x′ > cT x∗ =⇒ cT
1 x′1 + · · · + cT

Kx′K > cT
1 x∗1 + · · · + cT

Kx∗K where
Mx′ ⊲⊳ b andx′ ≥ 0. Let y′ = (y′1, . . . , y

′
K) = (Q−1

1 x′1, . . . , Q
−1
K x′K), thus we have

cT
1 Q1y

′
1+· · ·+cT

KQKy′K = cT
1 Q1Q

−1
1 x′1+· · ·+cT

KQKQ−1
K x′K = cT

1 x′1+· · ·+cT
Kx′K .

Thus,cT
1 x′1 + · · ·+cT

Kx′K = cT
1 Q1y

′
1+ · · ·+cT

KQKy′K > cT
1 x∗1 + · · ·+cT

Kx∗K =⇒
cT
1 Q1y

′
1 + · · · + cT

KQKy′K > cT
1 Q1Q

−1
1 x∗1 + · · · + cT

KQKQ−1
K x∗K =⇒ cT

1 Q1y
′
1 +

· · ·+ cT
KQKy′K > cT

1 Q1y
∗
1 + · · ·+ cT

KQKy∗K (sinceQ−1
1 x∗1 = y∗1 , . . . , Q−1

K x∗K = y∗K)
Hence,y′ is a better solution thany∗ which is a contradiction to thaty∗ is the

optimal solution. Thus, Theorem 1 has been proven.

4.2 Righthand-side Valueb Anonymization Algorithm

Besides protecting each party’s share of the global constraint matrix Ai, Bi, solving
the LP problems also requires the righthand side constantsb in the constraints. Since
b sometimes refers to the amount of limited resources (i.e. labors, materials) or some
demands (i.e. the amount of one product should be no less than10, xij ≥ 10), they
should not be revealed. We can anonymizeb for each agent before transforming the
constraint matrix and sending them to other agents.

Specifically, each agentPi (i ∈ [1, K]) has two distinct constant vectors in the
global and local constraints:bi

0 and bi whereb0 =
∑K

i=1 bi
0. Indeed, we can create

artificial variables and equations to anonymize eitherbi
0 or bi. For anonymizingbi

0 in the



global constraints
∑K

i=1 Aixi ⊲⊳0 bi
0, each agentPi can create a new artificial variable

sij = ηij (fixed value) for thejth row (j ∈ [1, m0]) of Ai. Hence,m0 × ni matrixAi

is expanded to a greaterm0 × (ni + m0) matrix as shown in Equation 5 (A1
i , . . . , A

m0

i

denote the rows of matrixAi).

Ai =




A1
i

A2
i
...

Am0

i


 =⇒ A′i =




A1
i si1 0 . . . 0

A2
i 0 si2 . . . 0
...

...
...

. . .
...

Am0

i 0 0 . . . sim0


 (5)

Algorithm 1 : Righthand-side Valueb Anonymization
Input : K honest-but-curious agentsP1, . . . , PK wherePi (i ∈ [1, K]) holds a set of variablesxi,

Ai(m0 × ni matrix),Bi(mi × ni matrix), vectorsbi (sizemi), bi
0
(sizem0), andci (sizeni)

Output : anonymizedb′ = {b′
0
, b′

1
, . . . , b′K} (sizem0, m′

1
, . . . , m′

K ) whereAi, Bi, ci are updated to
A′

i(m0 × n′
i matrix),B′

i(m′
i × n′

i matrix),c′i (sizen′
i) (i ∈ [1, K])

/* A
j

i
and B

j

i
denote the jth row of Ai and Bi */

forall agentPi, i ∈ {1, 2, . . . , K} do1
generates am0-dimensional random vectorηi ;2
initializesm0 new variablessi = {si1, . . . , sim0

} wheresi = ηi;3
(bi

0
)′ ← bi

0
+ ηi;4

for thejth global constraint (j ∈ [1, m0]) do5
A

j

i
xi ← A

j

i
xi + sij ;6

(bi
0
)j ← (bi

0
)′j ;7

forall constraintBj

i
xi ⊲⊳

j

i
b

j

i
in Bixi ⊲⊳i bi do8

generates a linear equation using∀sij ∈ si:
P

∀h hijsij =
P

∀j hijηij wherehij is a random9
number;
B

j

i xi ⊲⊳
j

i b
j

i ← B
j

i xi +
P

∀j hijsij ⊲⊳
j

i b
j

i +
P

∀j hijηij ;10

generatesm0 linear independent equations:
P

∀j rijsij =
P

∀j rijηij where random numbers∀rij11
guarantee linear independence;
update them into local constraints:B′

ix
′
i ⊲⊳i b′i ← Bixi ⊲⊳i b′i ∪

P

∀j rijsij =
P

∀j rijηij ;12
/* permutate the variables and generate more artificial variables if

necessary */

We thus have(bi
0)
′ ← bi

0 + ηi whereηi = {∀j, ηij} (can be negative) is a ran-
domm0-dimensional vector generated by agentPi. Finally, each agentPi creates addi-
tionalm0 linear independent local constraints

∑
∀j rijsij =

∑
∀j rijηij using variables

{∀j, sij} and associate them with constraints inBixi ⊲⊳i bi that ensuresi = ηi where
si = {∀j, sij}. Therefore, we have:

– thejth global constraint should be converted to
∑K

i=1 Aj
ixi+

∑K
i=1 sij ⊲⊳j

0

∑K
i=1(b

i
0)
′
j

where(bi
0)
′
j represents thejth number in(bi

0)
′.

– additional local constraints ensure
∑K

i=1 Aixi ⊲⊳0

∑K
i=1 bi

0 for a feasible K-LP
problem since∀i, si = ηi.

Besidesbi
0, we can anonymizebi using a similar approach.Pi can use the same

set of artificial variablessi to anonymizebi. By generating linear combination (not re-
quired to be linear independent) of the variablessi = {∀j, sij}, the left-hand side of



thejth constraint inBixi ⊲⊳i bi can be updated:Bj
i xi ← Bj

i xi +
∑
∀j hijsij where

hij is a random number. (thejth value in bi is updated bybj
i ← bj

i +
∑
∀j hijηij .

If anonymizingbi as above, adversaries may guessm0 additional (linear independent)
local constraints out ofmi + m0 constraints fromPi’s sub-polyhedron. The probabil-
ity of guessing outm0 linear independent constraints and calculating the valuesof the
artificial variables is m0!mi!

(mi+m0)!
(if we standardize all the operational symbols⊲⊳i, guess-

ing equations is choosingm0 from (mi + m0) constraints). However, the anonymiza-
tion process should be prior to the matrix multiplication transformation, thus thosem0

equations includeni + m0 variables (coefficients of the non-artificial variables in these
equations is transformed to non-zero). Hence, although theadversary knowsm0 linear
independent equations, it is also impossible to figure out valuesηi. Hence,bi andbi

0 can
be secure against adversaries. Algorithm 1 introduces the detailed steps of anonymizing
b. Note: if any agentPi requires higher privacy guarantee,Pi can generate more artifi-
cial variables for bothbi

0 andbi (A typical tradeoff between privacy and efficiency).

4.3 Revised Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition was originally utilized to solve large-scale block-angular
structured LP problems. However, for all the K-LP problems,we can appropriately
partition the constraints into block-angular structure. Specifically, we can consider each
agent’s local constraints as the constraints of its pricingproblems. By contrast, any
constraint that is shared by at least two agents is regarded as the global constraint. Even
if Ai may have more rows thanBi, the constraints are still block-angular partitioned.

Furthermore, after locally anonymizingb and transforming the blocks, each agent
still has its local constraints blockB′iQi and the global constraints shareA′iQi. Hence,
we can solve the transformed K-LP problem using Dantzig-Wolfe decomposition. We
thus denote the entire process as Revised Dantzig-Wolfe Decomposition:

Definition 7 (Revised Dantzig-Wolfe Decomposition).A secure and efficient approach
to solving K-LP problems that includes the following stages: anonymizingb by each
agent, transforming blocks by each agent and solving the transformed K-LP problem
using Dantzig-Wolfe Decomposition.

According to Equation 3, the Dantzig-Wolfe representationof the transformed K-
LP problem is:

max
X

j

c
′T
1

Q1y
j

1
λ1j + · · · +

X

j

c
′T
K QKy

j

KλKj

s.t.
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(6)

where∀i ∈ [1, K], ci ⊆ c′i, Ai ⊆ A′i, Bi ⊆ B′i (c′i, A
′
i, B
′
i are expanded from

ci, Ai, Bi for anonymizingb).
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Figure 2 presents the three steps of Revised Dantzig-Wolfe Decomposition. Fur-
thermore, after solving the problem, each agentPi should obtain an optimal solution
λi = {∀j, λij}. Figure 3 shows the process of deriving each agent’s optimalsolution
for the original K-LP problem. Specifically, in step1, the optimal solutions for each
agent’s transformed problem can be derived by computing theconvexity combination
of all vertices/extreme raysyj

i : yi =
∑
∀j λijy

j
i . In step2 (x′i = Qiyi)4, the optimal so-

lution of the original problem with anonymizedb can be derived by left multiplyQi for
each agent (Theorem 1). In step3, each agent can extract its individual optimal solution
in the K-LP problem by excluding the artificial variables (for anonymizingb) from the
optimal solution ofx′i.

The advantages of this sort of decomposition are: the pricing problems can be solved
independently; the master problem solver does not need to get into the details on how
the proposals are generated; if the subproblems have special structure (e.g., perhaps
one is a transportation problem) then those specialized solution techniques can be used.
This also makes it easier to preserve privacy if the large problem could be solved with-
out knowing the precise solutions of the pricing problems. Particularly, we can let an
arbitrary agent formulate and solve the transformed masterproblem (Equation 6). How-
ever, the efficiency and security is not good enough for large-scale problems since the

number of vertices/extreme rays are n′
i!

m′
i
!(n′

i
−m′

i
)! for each agent and all the variables

should be sent to the master problem solver (assuming that the K-LP problem is stan-
dardized with slack variables before transformation). In Section 5, the K-agent Column

4 Apparently, ifyi = 0 and we havex′

i = Qiyi, x′

i should be0 and revealed to other agents.
However,yi includes some transformed variables that is originally thevalue-fixed but un-
known artificial variables for anonymizingb. Hence,x′

i cannot be computed due to unknown
Qi and non-zeroyi (the situation when the optimal solution inyi is 0, is not known to the
holder other thanPi), and this possible privacy leakage can be resolved.



Generation Protocol can handle this problem and the detailed security proof and com-
munication costs are also given there.

5 Secure Column Generation Protocol for K-LP Problems

While solving K-LP by revised Dantzig-Wolfe decomposition, it is fair to all K agents.
Hence, we assume that an arbitrary agent can be the master problem solver. Each agent’s
subproblems can be solved by another agent while the problemis iteratively solving (the
pricing problems and the solvers can be randomly permutated). To simplify the notation,
we assume thatP1 solves the restricted master problems (RMP),Pi sendsA′iQi, B′iQi,
c′Ti Qi, (bi

0)
′ andb′i to Pi+1 that solvesPi’s pricing problems (P1 solvesPK ’s pricing

problems). In this section, we present our K-agent column generation protocol with
security proof and computation cost analysis.

5.1 Solving RMP by an Arbitrary Agent

As mentioned in Section 4, the full master problem in the revised Dantzig-wolfe decom-

position includes
∑K

i=1
n′

i!
m′

i
!(n′

i
−m′

i
)! variables. However, it is not necessary to involve

all the vertices/extreme rays simply because a fairly smallnumber of constraints in the
master problem might result in many non-basis variables in the full master problem.
Hence, restricted master problem (RMP) of the transformed K-LP problem is intro-
duced to improve efficiency.

We let [ci] = (∀j ∈ [1,
n′

i!
m′

i
!(n′

i
−m′

i
)! ], c′Ti Qiy

j
i ) and[Ai] = (∀j ∈ [1,

n′
i!

m′
i
!(n′

i
−m′

i
)! ],

A′iQiy
j
i ). For RMP, we denote the coefficients in the master problem restricted to

R
|cE1|, . . . , R|

dEK | as ĉi, Âi, ŷi, δ̂ and λ̂. Specifically, some of the variablesλ for all
agents are initialized to non-basis0. τi denotes the number of vertices inPi’s pric-
ing problem that has been proposed to the master solver where∀i ∈ [1, K], τi ≤

n′
i!

m′
i
!(n′

i
−m′

i
)! . Hence, we represent the RMP as below:

max bc1

T
cλ1 + · · · + ccK

T
cλK

s.t.

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

cA1
cλ1 + · · ·+ dAK

cλK ⊲⊳0 b′
0

Pτ1

j=1
δ1jλ1j = 1

.

.

.
PτK

j=1
δKjλKj = 1

λ1 ∈ R
|dE1|, . . . , λK ∈ R

| dEK |, δij ∈ {0, 1}, i ∈ [1, K]

(7)

Lemma 1. Solving the RMP of a K-LP problem Reveals only:

– the revised DW representation of the K-LP problem;
– the optimal solution of the revised DW representation;
– the total payoff (optimal value) of each agent;



Proof. RMP is a special case of the full master problem where some variables in∀i, λi

are fixed to be non-basis (not sent to the RMP solverP1). Hence, the worse case is
that all the columns of the master problem are required to formulate the RMP. We thus
discuss the privacy leakage in this case.

We look at the matrices/vectors that are acquired byP1 from all other agentsPi

where∀i ∈ [1, K]. Specifically,[ci] = (∀j ∈ [1,
n′

i!
m′

i
!(n′

i
−m′

i
)! ], c

′T
i Qiy

j
i ) and [Ai] =

(∀j ∈ [1,
n′

i!
m′

i
!(n′

i
−m′

i
)! ], A

′
iQiy

j
i ) should be sent toP1. At this time,[ci] is a vector with

size n′
i!

m′
i!(n

′
i−m′

i)!
and[Ai] is anm0 ×

n′
i!

m′
i!(n

′
i−m′

i)!
matrix. Thejth value in[ci] is equal

to c′Ti Qiy
j
i , and thejth column in matrix[Ai] is equal toA′iQiy

j
i .

SinceP1 does not knowyj
i andQi, it is impossible to calculate or estimate the (size

n′i) vectorc′i and sub-matricesAi andBi. Specifically, even ifP1 can construct(m0 +

1) ·
n′

i!
m′

i
!(n′

i
−m′

i
)! non-linear equations based on the elements from[ci] and[Ai], the num-

ber of unknown variables in the equations (fromc′i, A
′
i, Qi

5 and∀j ∈ [1,
n′

i!
m′

i
!(n′

i
−m′

i
)! ], y

j
i )

should ben′i + m0n
′
i + n′i + n′i ·

n′
i!

m′
i
!(n′

i
−m′

i
)! . Due ton′i >> m0 in linear programs,

we haven′i + m0n
′
i + n′i + n′i ·

n′
i!

m′
i
!(n′

i
−m′

i
)! >> (m0 + 1) ·

n′
i!

m′
i
!(n′

i
−m′

i
)! . Thus, those

unknown variables inc′i, A′i, Qi and∀j ∈ [1,
n′

i!
m′

i
!(n′

i
−m′

i
)! ], y

j
i cannot be derived from

the non-linear equations. As a result,P1 learns nothing aboutAi, ci, bi
0 (anonymized)

andBixi ⊲⊳i bi (since vertices/extreme rays∀j, yj
i are unknown) from any agentPi.

By contrast, while solving the problem,P1 formulates and solves the RMPs.P1

thus knows the primal and dual solution of the RMP. In addition, anonymizingb and
transformingci, Ai andBi does not change the total payoff (optimal value) of each
agent, the payoffs of all values are revealed toP1 as well (Vaidya’s protocol [7] also re-
veals this payoff). Nevertheless, the private constraintsand the optimal solution cannot
be inferred based on this limited disclosure.

Hence, solving the RMPs is secure.

5.2 Solving Pricing Problems by Peer-agent

While solving the K-LP problem by the column generation algorithm(CGA), in every
iteration, each agent’s pricing problem might be formulated to test that whether any
column of the master problem (vertex/extreme ray of the corresponding agent) should
be proposed to the master problem solver or not. If any agent’s pricing problem cannot
propose column to the master solver in the previous iterations, no pricing problem is
required for this agent anymore. As discussed in Section 4.1, we permutate the pric-
ing problem owners and the pricing problem solvers where private information can be
protected via transformation. We now introduce the detailsof solving pricing problems
and analyze the potential privacy loss.

Assuming that an honest-but-curious agentPi+1(i ∈ [1, K]) has received agentPi’s
(if i = K =⇒ i+1 = 1) variablesyi, transformed matrices/vectorA′iQi, B

′
iQi, c

′T
i Qi

5 As described in [14],Qi should be a monomial matrix, thusQi hasn′

i unknown variables
located inn′2

i unknown positions.



and the anonymized vectorsb′i, (b
i
0)
′ (as shown in Figure 2(c)). AgentPi+1 thus formu-

lates and solves agentPi’s pricing problem.
In every iteration, after solving RMP (byP1), P1 sends the optimal dual solution

{π, µi} to Pi+1 (µi = {∀j, (µi)j}) if the RMP is feasible. The reduced costdij of
variableλij for agentPi can be derived as:

dij = (c′Ti Qi − πA′iQi)y
j
i −

{
(µi)j if yj

i is a vertex
0 if yj

i is an extreme ray
(8)

Therefore,Pi+1 formulatesPi’s pricing problem as:

max (c′Ti Qi − πA′iQi)yi

s.t.

{
B′iQiyi ⊲⊳ b′i
yi ∈ R

n′
i

(9)

Lemma 2. If Pi+1 solvesPi’s transformed pricing problems,Pi+1 learns only:

– the feasibility ofPi’ block sub-polyhedronBixi ⊲⊳i bi;
– dual optimal values (π, µi) of the RMP for transformed K-LP;

Proof. Since we can let another arbitrary peer-agent solve any agent’s pricing problems
(fairness property): assuming thatPi+1 solvesPi’s pricing problem (i = K =⇒
i + 1 = 1). Similarly, we first look at the matrices/vectors acquiredby Pi+1 from Pi:
sizen′i vectorc′Ti Q, m′i × n′i matrixB′iQi andm0 × n′i matrixA′iQi. Thejth value in
c′Ti Qi is equal toc′Ti Qj

i (Qj
i denotes thejth column ofQi), and the value of thekth

row and thejth column inA′iQi (or B′iQi) is equal to the scalar product of thekth row
of A′i (or B′i) andQj

i .
SincePi+1 does not knowQi, it is impossible to calculate or estimate the (size

n′i) vectorc′i and matricesA′i (or Ai) andB′i (or Bi). Specifically, even ifPi+1 can
construct(m0 + m′i + 1)n′i non-linear equations based on the elements fromc′Ti Qi,
A′iQi andB′iQi, the number of unknown variables in the equations (fromc′i, A′i, Bi

andQi) should ben′i + m0n
′
i + m′in

′
i + n′i. Due ton′i >> 0 in linear programs, we

haven′i + m0n
′
i + m′in

′
i + n′i >> (m0 + m′i + 1)n′i. Thus, those unknown variables in

c′i, A′i, Bi andQi cannot be derived from the non-linear equations.6

Hence,Pi+1 learns nothing aboutAi, Bi, ci, bi
0 (anonymized) andbi (anonymized)

from Pi if Pi+1 solvesPi’s pricing problems.
By contrast, before solving the pricing problem,Pi+1 should acquire the some dual

optimal values of the RMP (onlyπ andµi). Pi+1 thus knows the dual optimal solu-
tion of the RMP related to the convexity combination represented global constraints

6 Note: Bednarz et al. [14] proposed a possible attack on inferringQ with the known transformed
and original objective vectors (CT Q andCT ) along with the known optimal solutions of the
transformed problem and the original problem (y∗ andx∗ = Qy∗). However, this attack only
applies to the special case of DisLP in Vaidya’s work [7] where one party holds the objective
function while the other party holds the constraints. In ourprotocol,Pi sendsC′T

i Qi to Pi+1,
but C′T

i is unknown toPi+1, hence it is impossible to compute all the possibilities ofQi by
Pi+1 in terms of Bednarz’s approach. In addition, the original solution is not revealed as well.
It is impossible to verify the exactQi by Pi+1 following the approach in [14].



(π) and the constraints
∑
∀j δijλij = 1 (µi). However,Pi+1 cannot learn the actual

pricing problem since everything in the K-LP is transformedin the RMP. Furthermore,
if the polyhedronB′iQiyi ⊲⊳i b′i is infeasible, we have: polyhedronB′ixi ⊲⊳i b′i is also
infeasible (Theorem 2). Hence, the specific agent with the infeasible local constraints
should be spotted (Actually, this should be revealed in any case). However, the private
constraints and the meanings of the concrete variables cannot be inferred with this infor-
mation. (For more rigorous privacy protection, we can randomly permutate the agents.)

Hence, solving the Pricing Problems by another arbitrary agent is secure.

Theorem 2. The polyhedraBixi ⊲⊳i bi andBiQiyi ⊲⊳i bi have the same feasibility
wherei ∈ [1, K].

Proof. We prove this equivalence in two facts:
First, suppose that the polyhedronBixi ⊲⊳i bi is feasible and one of its feasible

solutions isxi. Now, we have all the constraints (equalities or inequalities) inBi that
satisfy Bixi ⊲⊳i bi. Let xi = Qiyi, henceBiQiyi ⊲⊳i bi are all satisfied and the
polyhedronBiQiyi ⊲⊳i bi is feasible.

On the contrary, suppose that the polyhedronBiQiyi ⊲⊳i bi is feasible and one of
its feasible solutions isyi. Now, we have all the constraints (equalities or inequalities)
in BiQi that satisfyBiQiyi ⊲⊳i bi. Let yi = Q−1

i xi, henceBixi ⊲⊳i bi are all satisfied
and the polyhedronBixi ⊲⊳i bi is feasible.

Thus, Theorem 2 has been proven.

5.3 Secure K-agent Column Generation Algorithm (SCGA)

In the standard column generation algorithm [12], the RMP solver will ask the pricing
problem solvers for proposals and choose a combination of proposals that maximizes
global profits while meeting all the constraints in the RMP. Figure 4 demonstrates our
secure K-agent column generation protocol where the steps represent:

1. ∀i ∈ [1, k], Pi sendsA′iQi, B′iQi, (bi
0)
′, b′i andc′Ti Qi to Pi+1.

2. P1 solves a RMP problem.
3. P1 distributes dual values (π, µi) to Pi+1.
4. Pi+1 solvesPi’s pricing problems.
5. Pi+1 proposesPi’s column toP1 if necessary.

Practically, the main drawback of this approach is in possible convergence prob-
lems. Normally, this method gets very good answers quickly,but it requires a lot of time
to find the optimal solution. The subproblems may continue togenerate proposals only
slightly better than the ones before. Thus, we might have to stop with a near-optimal
solution for efficiency reasons if necessary [12]. Specifically, if the RMP is feasible and
the pricing problems are all feasible and bounded,P1 can calculate a new upper bound
(dual value) of the master problem̂z = z∗ +

∑K
i=1(z

∗
i − µi). If ẑ < z̄∗, update the

best known dual valuēz∗ ← ẑ. P1 thus compute the optimal gapd = z̄∗ − z∗ and the
relative optimal gapd′ = d

1+|z∗| . If the gap is tolerable, we stop the protocol where the
optimal solution of the current RMP is near-optimal. In caseof near-optimal tolerance,
all the optimal values of the pricing problems∀i ∈ [1, K], z∗i should be sent toP1 along
with the proposed column. However, the protocol is still secure in semi-honest model.
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Theorem 3. The K-agent Column Generation Protocol is secure in Semi-honest model.

Proof. As proven in Lemma 1 and 2, solving RMPs and pricing problems is secure
for all K honest-but-curious agents. Since our K-agent Column Generation Protocol the
repeated steps of solving transformed RMPs and pricing problems, it is straightforward
to show that the protocol is secure against semi-honest adversaries.

5.4 Communication Cost Analysis

Our secure column generation protocol is mainly based on local transformation rather
than cryptographic encryption that dominates the cost in current privacy-preserving
DisLP techniques[10][8][7][9].Hence, our approach significantly outperforms the above
work on communication costs, especially in large-scale problems. Specifically, the size
of the constraints matrix (all the constraints) should be(m0 +

∑K
i=1 mi) ×

∑K
i=1 ni.

After anonymizingb, the constraint matrix is enlarged to(m0 +
∑K

i=1 m′i)×
∑K

i=1 n′i.
Each pair of matricesA′i, B

′
i is locally transformed. Besides solving the LP problem,

only one-time(m0 + m′i + 1)n′i scalar product computation (transformingc′, A′i, B
′
i)

is required for each agent since anonymizingb does take ignorable computational cost
(generating random numbers and equations). For large-scale block-angular structured
problems, column generation algorithm has been proven to bemore efficient than some
standard methods (i.e. simplex or revised simplex algorithm)[15][12]. As discussed in
Section 1, K-LP problem is a typical block-angular structured LP problem (distributed
among K agents). Hence, the communication cost of our securecolumn generation al-
gorithm is tiny and negligible.



6 Experiments

We implemented the secure column generation algorithm (SCGA) for solving K-LP
problems. Specifically, we present two groups of results: 1.the performance comparison
for all secure (two-agent) DisLP methods. 2. the performance of SCGA on varying
number of agents where each agent has15 variables. All the experiments were carried
on an HP machine with Intel Core 2 Duo CPU 3GHz and 3G RAM.

SCGA ST SRS SS
0

200

400

600

800

1000

1200

C
om

pu
ta

tio
na

l C
os

t (
s)

(a) Secure (Two-agent) DisLP Methods

2 4 6 8 10
0

5

10

15

# of Agents
C

om
pu

ta
tio

na
l C

os
t (

s)

(b) Multi-agent SCGA

Fig. 5. Experimental Results (Near-optimal Tolerance Parameter=10
−6)

To compare all secure DisLP methods, we generate10 LP problems with50 vari-
ables and30 × 50 constraint matrix (not very dense) and run4 algorithms for all10
problems. Specifically, we assume that two agents collaboratively solve the LP prob-
lems where each agent holds25 distinct variables. The number of local constraints for
each agent and the number of global constraints are determined by the structure of10
different30 × 50 constraint matrix (we guarantee that every agent has at least one lo-
cal constraints via the density of the constraint matrix). Before collaboratively solving
the problem, each agent anonymizes the right-hand value andtransforms the matri-
ces/vector (the LP problems should be expanded a little bit). Figure 5(a) demonstrates
the average runtime (10 LP problems) of SCGA, Secure Transformation (ST)[7], Se-
cure Revised Simplex Method (SRS)[9] and Secure Simplex Method (SS) [8]. It is quite
clear that the efficiency of SCGA significantly outperforms other algorithms in secure
K-LP problems.

Furthermore, we run another group of experiments for validating the performance
of SCGA on multiple agents. We generate different size of K-LP problems by assuming
that each agent holds15 variables and5 local constraints. We let the number of global
constraints be10, thus the constraint matrix becomes(5K + 10) × 15K. Hence, we
run SCGA for different number of agentsK ∈ {2, 4, 6, 8, 10}. The total computational
cost (including anonymization, transformation and solving the problems) on varyingK
is shown in Figure 5(b). Thus, our SCGA exhibits great scalability for securely solving
increasing scale of K-LP problems.



7 Conclusion and Future Work

DisLP problems allow collaborative agents to improve theirglobal maximum profit (or
save their global minimum cost). However, the private constraints (input) and solutions
(output) of distributed agents might be revealed among themwhile solving the DisLP
problem. In this paper, we have introduced an extremely efficient protocol to solve
K-agent DisLP problems with limited disclosure. Our protocol is robust against semi-
honest adversaries and is fair to all agents. In the future, we also plan to make the
protocol resilient to malicious adversaries by making it incentive compatible.
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