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Abstract. In today’s networked world, resource providers and consaraee
distributed globally and locally. However, with resouraanstraints, optimiza-
tion is necessary to ensure the best possible usage of saotes@sources.
Distributed linear programming (DisLPproblems allow collaborative agents
to jointly maximize profits (or minimize costs) with a lineabjective function
while conforming to several shared as well as local lineastraints. Since each
agent’s share of the global constraints and the local cainssrgenerally refer to
its private limitations or capacities, serious privacylpems may arise if such in-
formation is revealed. While there have been some solupomsosed that allow
secure computation of such problems, they typically relyir@fficient proto-
cols with enormous communication cost. In this paper, wegmea secure and
extremely efficient protocol to solve DisLP problems whesastraints are arbi-
trarily partitioned and no variable is shared between agémthe entire protocol,
each agent learns only a partial solution (about its vaggblbut learns nothing
about the private input/output of other agents, assuming-senest behavior.
We present a rigorous security proof and communication apatysis for our
protocol and experimentally validate the costs, demotistréts robustness.

1 Introduction

Optimization is a fundamental problem found in all induesdriAs an essential subclass
of optimization, linear programming models are widely épgdble to solving numerous
profit-maximizing or cost-minimizing problems in variouslfis such as transportation,
commodities, airlines and communication.

For instance, in the packaged goods industry, deliverykwere empty25% of
the time. Just four years ago, Land O’Lakes truckers spechrofitheir time shuttling
empty trucks down slow-moving highways, wasting severdionidollars annually. By
using a web based collaborative logistics service (Nist@m), to merge loads from
different companies (even competitors) bound to the sarsénddion, huge savings
were realized (freight costs were cut by%, for an annual savings @2 million[1]).
This required sending all information to a central site./Saomplete sharing of data
may often be impossible for many corporations, and thudtresgreat loss of possible
efficiencies. Since this is a transportation problem whiagh be modeled through lin-
ear programming, Bistributed linear programmin@DisLP) solution that tightly limits
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the information disclosure would make this possible withthe release of proprietary
information. Specifically, DisLP problems can facilitawlaborative agents to jointly
maximize global profits (or minimize costs) while satisfyigeveral (global or local)
linear constraints. Since each agent’s share of the glalrataints and the local con-
straints generally refer to its private limitations or ceiias and the optimal solution
represents its decision, limited disclosure should preserealing such information in
this distributed computing scenario.

While completely arbitrary partitioning of constraintsdamariables is possible,
in many realistic DisLP problems, each company holds its gatables: the values
for which together constitute the global optimum decisigariables are generally not
shared between companies because collaborators may legveviim operations w.r.t.
a maximized profit or minimized cost. Consider the followax@mple:
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Max: 9x;,+12x;,; (Maximizing Profit)
2x11+3x,<15; (P,'s Material Constraint)
X11+2x12<8; (P,'s Labor Constraint)

Max: 7x,;+8x,,; (Maximizing Profit)
5X21+X2,<10; (P,'s Material Constraint)
3x21+2x2,<9; (P,'s Labor Constraint)

Max: 5xg;+10xk,; (Maximizing Profit)
Txk1+3xk2520; (Py's Material Constraint)|

2xki+5xk2<14; (Py's Labor Constraint) [~

Global Objective: Maximizing
91112 5]+ 7X1+8X5;] +. . . H[Sxi 10X,

[2x11F3X 2 [ F [ X [+ H[TX K F3Xk0]

<15+10+...+20; (Shared Material Constraint)

Vertically Partitioned

X11+2x1,<8; (P;'s Labors Constraint)
Horizontally Partitioned

3%, +2x2,<9; (P,"s Labors Constraint)
Horizontally Partitioned

.
2xk1+5xk,<14 (PK's Labors Constraint)
Horizontally Partitioned

Fig. 1. Distributed LP Problem Formulation (Example

Example 1. K CompaniesP; ... Px share some raw materials for production
(maximizing profits): the amount of compat®/'s (i € [1, K]) product; to be manu-
factured are denoted as;, thusP; holdsz; = {Vj, x;; }.

In the collaborative production problem above, the comsisare arbitrarily parti-
tioned. On one hand?; . .. Pk should have some local constraints (i.e. each company’s
local labor constraint) that is only known to each compamyti@ other hand, there may
be some global constraints (i.e. the total quantity of treresth raw materials). Figure 1
demonstrates a simple example of tliiscompanies jointly manufacture products (two
for each company) using a shared material whareP, .. ., Px have the amouri5,

10, ..., 20, respectively (The sum of the global profits can be incredmsethis col-
laboration since the combined resources are better wtliZeney also have their local
constraints, i.e. the total labor for producing each comgfsagroducts are bounded with
constraints3, 9 and 14 respectively. After solving this DisLP problem, each compa
should know the (global) optimal production amount for oitéyproducts but should
not learn anything about the private constraints and soiutif other companies. To
simplify the notation, we formally define it as below:

Definition 1 (K-Agent LP Problem (K-LP)). An LP problem is solved by dis-
tributed agents where each ageft holdsn; variablesz;, share of the objective;,



its local constraintsB;z; >; b;, and the matrix/vector; /b in the global constraints
SOF | Aix; g by (as shown in Equation123)(i e [1, K] and > X, bi) = bo).

max c’fml +Cg:l)2+"'+C’II;CEK
xr1 € R™1 Ay ... Ak T >lo bo
xo € R"2 B T2 <11 by (1)
s.t. :
rxg € R'K Bg Tk /) MK \bk

Indeed, besides collaborative production, K-LP problegwio very frequently in
reality, i.e. collaborative delivery of goods for diffetempanies to save transportation
cost, selling the goods in bundles for distributed agentedaimize the global profits,
and determining profit-maximized travel packages for Istairlines and car rental
companies.

We intend to introduce a secure and efficient distributedmaing solution to the
K-LP problem. Thus, our key contributions are: 1) to propasprivacy-preserving
transformation for the K-LP problem; 2) to propose a secun¢qgeol robust against
honest-but-curious adversaries (semi-honest modelrasguhat all the agents follow
our protocol) that is fair to all agents, and 3) to experinatiptvalidate the cost of the
proposed protocol.

The rest of this paper is structured as follows. Section veysome related work.
Section 3 introduces some preliminaries for our approaettién 4 presents the trans-
formation process (for security purpose) and shows thattbalerive the optimal solu-
tion for each agent after solving the transformed problengdction 5, we present the
secure protocol with security proof and computation cosfyasis. Finally, we experi-
mentally validate the protocol in Section 6 and concludepéuger in Section 7.

2 Literature Review

Optimization problems occur in all walks of real life. Thésework in distributed op-
timization that aims to achieve a global objective usingydotal information. Dis-
tributed Constraint Satisfaction was formalized by Yokjdjo solve naturally dis-
tributed constraint satisfaction problems. These problare divided between agents,
who then have to communicate among themselves to solve the@PT[3] is a back-
tracking based bound propagation mechanism. It operatepletely decentralized,
and asynchronously. The downside is that it may require @ laege number of mes-
sages, thus producing big communication overheads.

However, in general, the work in distributed optimizaticasttoncentrated on re-
ducing communication costs and has paid little or no atbentd security constraints.
Thus, some of the summaries may reveal significant infoonatn particular, the rigor
of security proofs has not been applied much in this areareTisesome work in se-
cure optimization. Silaghi and Rajeshirke [4] show that@use combinatorial problem

1 <1 denotes<, = or >.
2 bue to{min : ¢T& = max : —cTxz}, we modelmax : ¢7'z.
8 size:vi € [1, K], {A; s mo x i}, {Bi : ms x ni}, {ei - i}, {bo : mo} and{b; : my}



solver must necessarily pick the result randomly amongmgdtsolutions to be really
secure. Silaghi and Mitra [5] propose arithmetic circuitsdolving constraint optimiza-
tion problems that are exponential in the number of vargfide any constraint graph.
A significantly more efficient optimization protocol spdciad on generalized Vickrey
auctions and based on dynamic programming is proposed hykSamd Yokoo [6].
However, much of this work is still based on generic solutiand not quite ready for
practical use. Even so, some of this work can definitely berksyed to advance the
state of the art by building general transformations oramwpreserving variants of
well known methods.

Privacy-preserving linear programming problem has begwdced to solve the
LP problem with limited information disclosure between agents [7][8][9][10]. Nev-
ertheless, several shortcomings can be discovered inthei First, neither of them is
applicable to solving multi-agent (more than two) disttdalil P problems. Second, the
secure protocols require enormous computation costs:ietrencomputational cost of
Li et al.'s work [8] and Vaidya’s work [7][9] includes a polpmial number of homo-
morphic encryptions, it still requires considerable tinoenplexity for the total encryp-
tion. The efficiency should be greatly declined for largellBigroblems. Mangasarian
[11]proposed a privacy-preserving formulation of a linpesgram over vertically par-
titioned constraint matrix while our approach is introddite privately solve arbitrarily
partitioned LP problems in this paper, and no formal segaritalysis is given in [11].
A secure third-party based protocol for LP was proposed bylD{; however the LP
problem is not addressed fully or formally and an optimausioh is not guaranteed.
We will propose a secure and efficient DisLP approach to vedble above limitations.

3 Preliminaries

In this section, we briefly review some definitions and prtipsrelated to LP problems.

3.1 Polyhedra

From the geometrical point of view, LP problems can be regtes] as polyhedra. We
thus present some geometrical definitions for LP problems.

Definition 2 (Polyhedron of Linear Constraints). A polyhedronP C R" is the set of
points that satisfy a finite numbém) of linear constraints? = {x € R" : Az 1 b}
whereA is anm x n constraint matrix.

Definition 3 (Convex Combination).A pointz € R"™ is a convex combination of a set
S C R™ if z can be expressed as= Y, \;z* for a finite subse{z’} of S and\ > 0
with 21 A = 1.

Definition 4 (Vertex). A pointz¢ € P is a vertex ofP = {z € R™ : Az x b} if it
cannot be represented as a convex combination of two othetsad, z7 € P.

Definition 5 (Ray in Polyhedron). Given a non-empty polyhedrad® = {z € R" :
Az b}, avectorr € R™ r £ 0is aray if Ar < 0.

Definition 6 (Extreme Ray).A rayr is an extreme ray aP = {z € R" : Az > b} if
there does not exist two distinct ray’sandr/ of P such thatr = 1 (r’ + 7).



3.2 Dantzig-Wolfe Decomposition

Assume that we let? (sizen vector) represent a vertex or extreme ray in the LP prob-
lem. Hence, every point inside the polyhedron can be reptedeby all the vertices
and/or extreme rays using convexity combination (MinkovgdRepresentation Theo-
rem [12]). Thus, a polyhedroR can be represented by another polyhedPoa= {)\ €
RIS, 5 6idi = 1; A < 0} where

5= J1if z'is a vertex
* 71 0if 2% is an extreme ray

(2)

Hence, the original LP problem (Equation 1) can be transéaito a master prob-
lem (Equation 3) using Dantzig-Wolfe Decomposition [12kséming that:] repre-
sents the extreme point or ray associated with

T, j T, 3
max E cyxiA; + -+ E CRTRAK]
J J

Z]. Alil?jl.Alj + -+ Zj AKI‘}()\KJ > bg
> 0150 =1 3)

Zj 6Kj>\[(j =1
A eRIPLL Ak eRIFK! 6, € {0,1},i € [1, K]
As provenin [12], primal feasible points, optimal primalpts, an unbounded rays,
dual feasible points, optimal dual points and certificaténédasibility in themaster
problemare equivalent to theriginal problem

4 Revised Dantzig-Wolfe Decomposition

As shown in Equation 1, K-LP problem has a typical Block-dagstructure, though
the number of global constraints can be significantly lathan each agent’s local con-
straints. Hence, we can solve the K-LP problem using DasW#idfe decomposition. In
this section, we transform our K-LP problem to an anonymidaock-angular) format
that preserves each agent’s private input/output. We alew that the optimal solution
for each agent’s variables can be derived after solvingrirestormed problem.

4.1 K-LP Transformation

Du [13][10] and Vaidya [7] proposed a transformation appiofor solving two-agent
DisLP problems: transforming an x n constraint matrix\/ (the objective vector™)
to anothem x n matrix M’ = MQ (¢T = ¢" Q) by post-multiplying am x n ma-
trix @, solving the transformed problem and deriving the origsmdlition. Meanwhile,
Bednarz et al. [14] showed how to select transformationisnglr Following them, we
let each agenk; (i € [1, K]) transform its local constraint8;, its share of the global
constraints4; and its objective vectar; using its own transformation matri;.

We let K agents transforml; and B; by @; individually for the following reason.
Essentially, we extend a revised version of Dantzig-Woleamposition to solve K-
LP and ensures that the protocol is secure. Thus, an asbagent should be chosen



as the master problem solver whereas all agents (includmgiaster problem solving
agent) should solve the pricing problems. For transformédPfroblem (Equation 4),
we can letvP; (i € [1, K]) send its transformed matrices/vectdrQ;, B;Q;, ¢l Q;

to another agenP; (j € [1,K],j # i) and letP; solve P;’s transformed pricing
problems. In this case, we can show that no private infoonatan be learnt while
solving the problems (The attack specified in [14] can beiakited in our secure K-LP
problem). Otherwise, if each agent solves its pricing peoblsince each agent knows
its transformation matrix, additional information migle tisclosed from master solver
to pricing problem solvers (this is further discussed intlBecs).

K
T
max Y c; Qiys
i=1

y1 € R™1 A1Q1 ... AkQK Y1 >lo bo @
y2 € R™2 B1Q1 Y2 D1 b1

s.t.
yx € R"K Bk Qk yr / MXr \bk

The K-LP problem can be transformed to another block-amgtiactured LP prob-
lem as shown in Equation 4. We can derive the original salufiom the solution of
the transformed K-LP problem using the following theorem.

Theorem 1. Given the optimal solution of the transformed K-LP problgm= (v, v3,
., Y5 ), the solutionz™ = (Q1y7, Q2v3, . . ., Qky}) should be the optimal solution
of the original K-LP problem.

Proof. Suppose:* = (Q1y5, Q29s, - - ., @k Y7 ) is not the optimal solution of the orig-
inal vertical LP problem. In this case, we have another weeto= (2}, x5, ..., 2%)
such thate’s’ > T = o+ + CJ;(I/K >clar +.0 4 cIT<:c*K where
Mz’ babanda’ > 0. Lety = (yi,...,4%) = (Q1'z),...,Qx o), thus we have
T / T /T -1, T -1, _ T, T ..
iyt HegQryg = g QQy 2+ + e QrQp T = ¢y )+ gk
., Thus,c}r:v’l—i---T-—i-c:’,;x}( zngly_’ll—i-- : -—i—c:’I;QKTy}( > c_flx’{—i—- : -+C}F(Tx§< =
@iy + -+ e Qryk > g Q1Qy ] + et CKIQKQK Ty = A Quyy +
s ek QY > ¢ Quyi + - -+ i Qi (SiNceQy 2t =y, ..., Qi T = yk)
Hence,y’ is a better solution thap* which is a contradiction to thaj* is the
optimal solution. Thus, Theorem 1 has been proven.

4.2 Righthand-side Valueb Anonymization Algorithm

Besides protecting each party’s share of the global canstnaatrix A;, B;, solving
the LP problems also requires the righthand side consteintshe constraints. Since
b sometimes refers to the amount of limited resources (ibarky materials) or some
demands (i.e. the amount of one product should be no lesslthar; > 10), they
should not be revealed. We can anonyniiZer each agent before transforming the
constraint matrix and sending them to other agents.

Specifically, each ager®; (: € [1, K]) has two distinct constant vectors in the
global and local constraint$j andb; whereb, = Zfil ¢. Indeed, we can create
artificial variables and equations to anonymize eitfjer b;. For anonymizingy, in the



global Constraintgfi1 A;x; o bly, each agenP; can create a new artificial variable
si; = ni; (fixed value) for thejth row (j € [1,mo]) of A;. Hence;mg x n; matrix A;

is expanded to a greater, x (n; + mg) matrix as shown in Equation 54{, ..., A"
denote the rows of matrix;).

Azl Azl Si1 0... 0
A= : = A; = S 5)
mo mo .
A; A0 0 ... Sim,
Algorithm 1 : Righthand-side Valué Anonymization
Input : K honest-but-curious agent , . . . , Px whereP; (i € [1, K]) holds a set of variables;,
Ai(mo X m; matrix), B;(m; x m; matrix), vectorsh; (sizem;), by (sizemo), andc; (sizen;)
Output: anonymized’ = {b}, b, ..., b} (sizemo, m], ..., m) whereA;, B;, c; are updated to
Al(mo X n} matrix), B;(m/ x n} matrix),c; (sizen}) (i € [1, K])
/+ A7 and BJ denote the jth row of A; and B; */
1 forall agentP;,i € {1,2,...,K}do
2 generates ano-dimensional random vectoy; ;
3 initializes mo new variabless; = {si1, ..., Simg } Wheres; = n;;
4 (by)" = bg + ni;
5 for thejth global constraint § € [1, mo]) do
6 Alm; — Ay + sij ;
7 (b5); < (bg)j:
8 forall constraintB? z; <’ b in B;x; >; b; do
9 generates a linear equation usiig;; € s;: >y, hijsi; = Zv]. hijnij whereh;; is a random
number; = . o
10 31]11 l><1“11 bz — 31]11 + ZV]’ hi,jsi,j D<IZ b“;l + ZV]' hijm,j;
11 generatesn linear independent equationgvj TijSij = Zv]. 735145 Where random numbekér; ;
guarantee linear independence;
12 update them into local constraint;z; >; b} « Bimi b; b U Yy Tijsij = oy, Tighij ;
/+ pernutate the variables and generate nore artificial variables if
necessary */

We thus havebl) « b} + n; wheren; = {Vj,n;;} (can be negative) is a ran-
dommg-dimensional vector generated by agéhtFinally, each agen®; creates addi-
tionalmy linear independentlocal constrai@vj TijSij = ZW ri;7i; Using variables
{V3, s;;} and associate them with constraintsifr; ><; b; that ensure; = n; where
s; = {¥j, s;;}. Therefore, we have:

— thejth global constraint should be converted®f* | A7z, +3°% | s;; o< Zfil(bg);—
where(bg)’; represents thgth number in(bf)’.

— additional local constraints ensuEfil Ajz; > Zfil bi, for a feasible K-LP
problem sinceyi, s; = 7;.

Besidesbj, we can anonymizé; using a similar approack?; can use the same
set of artificial variables; to anonymize,;. By generating linear combination (not re-
quired to be linear independent) of the variatdes= {Vj, s;;}, the left-hand side of



the jth constraint inB;z; b<; b; can be updatedd’z; — Blx; + >"y; hijsi; where
hij is a random number. (thgth value inb; is updated by, — b7 + S hijmij.

If anonymizingb; as above, adversaries may guegsadditional (linear independent)
local constraints out of; + m( constraints fromP;’s sub-polyhedron. The probabil-
ity of guessing outn linear independent constraints and calculating the valtigse
artificial variables |s(7;”fi7’;0'), (if we standardize all the operational symbsis guess-
ing equations is choosing, from (m; + mq) constraints). However, the anonymiza-
tion process should be prior to the matrix multiplicaticartsformation, thus thoseg
equations include; + mg variables (coefficients of the non-artificial variableshiegse
equations is transformed to non-zero). Hence, althoughdhersary knows linear
independent equations, it is also impossible to figure ouess;. Hencep; andb), can
be secure against adversaries. Algorithm 1 introducesdtsled steps of anonymizing
b. Note: if any agenf; requires higher privacy guarantd&,can generate more artifi-
cial variables for botthj andb; (A typical tradeoff between privacy and efficiency).

4.3 Revised Dantzig-Wolfe Decomposition

Dantzig-Wolfe decomposition was originally utilized tdw®large-scale block-angular
structured LP problems. However, for all the K-LP problems, can appropriately
partition the constraints into block-angular structuggedfically, we can consider each
agent’s local constraints as the constraints of its prigingblems. By contrast, any
constraint that is shared by at least two agents is regasiéalobal constraint. Even
if A; may have more rows thaB;, the constraints are still block-angular partitioned.

Furthermore, after locally anonymizirdgand transforming the blocks, each agent
still has its local constraints block!Q); and the global constraints shatéQ;. Hence,
we can solve the transformed K-LP problem using Dantzigf&décomposition. We
thus denote the entire process as Revised Dantzig-WolferDgasition:

Definition 7 (Revised Dantzig-Wolfe Decomposition)A secure and efficient approach
to solving K-LP problems that includes the following stagasonymizingh by each
agent, transforming blocks by each agent and solving thesfamed K-LP problem
using Dantzig-Wolfe Decomposition.

According to Equation 3, the Dantzig-Wolfe representatibithe transformed K-
LP problem is:
maz Y A Quyla + -+ 3 R QrYIAK;
J J
Sy Ayl 4+ Ty A Qr vl Ak 2o by
2 vy 015 A5 =1 (6)
v 0kiAk; =1
M ERIPL Ak e RIFKD §;; € {0,1},4 € [1, K]

whereVi € [1,K],¢; C ¢, A; C A, B, C B} (c;, A}, B] are expanded from
¢, Ay, B; for anonymizingp).
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(a) Original K-LP  (b) Anonymizedb (c) Transformed Prob- (d) DW (Equation 6)
lem

Fig. 2. Revised Dantzig-Wolfe Decomposition for K-LP Problem

Fig. 3. Solution Transformation After Solving K-LP Problem

Figure 2 presents the three steps of Revised Dantzig-WadioBposition. Fur-
thermore, after solving the problem, each agénshould obtain an optimal solution
Ai = {¥y, \i;}. Figure 3 shows the process of deriving each agent’s opsulation
for the original K-LP problem. Specifically, in stelp the optimal solutions for each
agent’s transformed problem can be derived by computingdneexity combination
of all vertices/extreme rayg : y; = >y, Aijy; . In step2 (z; = Qiy:)*, the optimal so-
lution of the original problem with anonymizédan be derived by left multiplg; for
each agent (Theorem 1). In stépeach agent can extract its individual optimal solution
in the K-LP problem by excluding the artificial variablesrBmonymizingh) from the
optimal solution ofz}.

The advantages of this sort of decomposition are: the griginblems can be solved
independently; the master problem solver does not needttntgethe details on how
the proposals are generated; if the subproblems have bgétieture (e.g., perhaps
one is a transportation problem) then those specializedisoltechniques can be used.
This also makes it easier to preserve privacy if the largblero could be solved with-
out knowing the precise solutions of the pricing problenestiBularly, we can let an
arbitrary agent formulate and solve the transformed mastdalem (Equation 6). How-
ever, the efficiency and security is not good enough for lagge problems since the
number of vertices/extreme rays aﬁ% for each agent and all the variables
should be sent to the master probIan solver (assuming tha€bP problem is stan-
dardized with slack variables before transformation).¢otf®n 5, the K-agent Column

4 Apparently, ify; = 0 and we haver, = Q.y:, =} should bed and revealed to other agents.
However,y; includes some transformed variables that is originally takie-fixed but un-
known artificial variables for anonymizing Hencez; cannot be computed due to unknown
Q: and non-zerqy; (the situation when the optimal solution i is 0, is not known to the
holder other tharP;), and this possible privacy leakage can be resolved.



Generation Protocol can handle this problem and the ddtadeurity proof and com-
munication costs are also given there.

5 Secure Column Generation Protocol for K-LP Problems

While solving K-LP by revised Dantzig-Wolfe decompositjdtris fair to all K agents.
Hence, we assume that an arbitrary agent can be the madbézmprsolver. Each agent’s
subproblems can be solved by another agent while the prabliéenatively solving (the
pricing problems and the solvers can be randomly permutafegimplify the notation,
we assume tha?®; solves the restricted master problems (RMR)sends4’Q;, BiQ;,
dTQ;, (b)) andb, to Py, that solvesP;’s pricing problems P; solvesPx’s pricing
problems). In this section, we present our K-agent colummeggion protocol with
security proof and computation cost analysis.

5.1 Solving RMP by an Arbitrary Agent

As mentioned in Section 4, the full master problem in thesediDantzig-wolfe decom-
position incIudesZK :%m), variables. However, it is not necessary to involve

i=1 m;‘(

all the vertices/extreme rays simply because a fairly smathber of constraints in the
master problem might result in many non-basis variablesénfall master problem.
Hence, restricted master problem (RMP) of the transformddPKproblem is intro-

duced to improve efficiency.
We let]c;] = (Vj € [1, m"i,m)] " Qiyl) and[A;] = (V) € [1, mﬁi,m)]

AlQiyl). For RMP, we denote the coefficients in the master problermicesd to
RIEil . RIExl as¢;, 4;, 7i, 6 and \. Specifically, some of the variablesfor all
agents are initialized to non-badis r; denotes the number of vertices i)’'s pric-
ing problem that has been proposed to the master solver whiere [1, K], <

Al

Hence, we represent the RMP as below:

mil(n,—ml)!"

n

mazx C/ETX;-F"'-FC/I\(TX;(
AT+ Ax N b0 b
Yk, =1
. @)
S diiAkg =1 o
M eRIPLL Ak e RIEK! 6, € {0,1},i € [1, K]

Lemma 1. Solving the RMP of a K-LP problem Reveals only:

— the revised DW representation of the K-LP problem;
— the optimal solution of the revised DW representation;
— the total payoff (optimal value) of each agent;



Proof. RMP is a special case of the full master problem where soniablas inVi, \;
are fixed to be non-basis (not sent to the RMP sol#gr Hence, the worse case is
that all the columns of the master problem are required tmfidaite the RMP. We thus
discuss the privacy leakage in this case.

We look at the matrices/vectors that are acquired®yfrom all other agents>;

whereVi € [1, K]. Specifically,[c;] = (Vj € [1 ;)!],chQiyf) and[4;] =

n
(Vjell : , A'Qqy?) should be sent t@; . At this time, [¢;] is a vector with
size Pl

(nf—ml)!

> mI(n—m})!

1
"

: and[A;] is anmg x matrix. Thejth value in[¢;] is equal

n’!
m/!(n;—m})!
to T Q,y?, and thejth column in matrix|A;] is equal toA; Q. .

SinceP; does not knovy{ and@);, it is impossible to calculate or estimate the (size
n}) vectorc, and sub-matriced; andB;. Specifically, even if?; can constructm, +

1)- m non-linear equations based on the elements fighand[A4,], the num-
ber of unknown variables in the equations (fremA’, Q,° andvj € [1, m], )

1 -
should ben) + mon) + n} + n} - ”7), Due ton] >> my in linear programs,

(7 —
’ n/‘

we haven; + mon} + n} + n - "7'7”), >> (mg + 1) - ——+—-;. Thus, those

A ACETAE
unknown variables i}, A}, Q; andV; € [1, #Lm),], y? cannot be derived from
the non-linear equations. As a resuf, learns nothing about;, ¢;, b (anonymized)
andB;z; <, b; (since vertices/extreme rays, y; are unknown) from any ager,.

By contrast, while solving the problen®; formulates and solves the RMPB;
thus knows the primal and dual solution of the RMP. In addit@anonymizing and
transforminge;, A; and B; does not change the total payoff (optimal value) of each
agent, the payoffs of all values are reveale®t@s well (Vaidya’s protocol [7] also re-
veals this payoff). Nevertheless, the private constrantsthe optimal solution cannot
be inferred based on this limited disclosure.

Hence, solving the RMPs is secure.

5.2 Solving Pricing Problems by Peer-agent

While solving the K-LP problem by the column generation aidpon(CGA), in every
iteration, each agent'’s pricing problem might be formudatie test that whether any
column of the master problem (vertex/extreme ray of theesponding agent) should
be proposed to the master problem solver or not. If any agenting problem cannot
propose column to the master solver in the previous itarafino pricing problem is
required for this agent anymore. As discussed in Sectionwielpermutate the pric-
ing problem owners and the pricing problem solvers whenegeiinformation can be
protected via transformation. We now introduce the detdisolving pricing problems
and analyze the potential privacy loss.

Assuming that an honest-but-curious agént; (i € [1, K]) has received ageti}'s
(ifi = K = i+1 = 1) variablesy;, transformed matrices/vectdt Q;, B/Q;, /" Q;

5 As described in [14]Q; should be a monomial matrix, thug; hasn’ unknown variables
located inn/? unknown positions.



and the anonymized vectdrs (bj)’ (as shown in Figure 2(c)). Agei . ; thus formu-
lates and solves ageH}’s pricing problem.

In every iteration, after solving RMP (b#;), P; sends the optimal dual solution
{m,pi} 0 Pix1 (ui = {¥9, (ui);}) if the RMP is feasible. The reduced cagt of
variable);; for agentP; can be derived as:

- ), if y is a vertex
dii = (¢TQ; — A Q)Y — (Nz)g! i ! 8
3= e Q= mAiQuy, { 0 if ¢/ is an extreme ray ®)

%

Therefore P, ; formulatesP;’s pricing problem as:

maz (" Qi — TALQ:)y;

S.U. ,
y; € R™

Lemma 2. If P, solvesP;’s transformed pricing problems?,; learns only:

— the feasibility ofP;’ block sub-polyhedrom;x; t<; b;;
— dual optimal valuest, ;) of the RMP for transformed K-LP;

Proof. Since we can let another arbitrary peer-agent solve anytageiting problems
(fairness property): assuming th&t,; solvesP;’s pricing problem { = K —
i+ 1 = 1). Similarly, we first look at the matrices/vectors acquitsdP;;, from F;:
sizen! vectorc!TQ, m/, x n! matrix B/Q; andmg x n, matrix AQ;. Thejth value in
¢TQ; is equal toc,T Q! (Q! denotes thgth column ofQ;), and the value of théth
row and thejth column inA;Q; (or B.Q;) is equal to the scalar product of th&h row
of A’ (or B}) and@’.

Since P;,; does not knowQ),, it is impossible to calculate or estimate the (size
n}) vectorc, and matricesd; (or A;) and B; (or B;). Specifically, even ifP,; can
construct(mg + m} + 1)n} non-linear equations based on the elements feffmy;,
AlQ; and B.Q;, the number of unknown variables in the equations (fdmA., B;
and@;) should ben] + mon; + m/n, + n}. Due ton; >> 0 in linear programs, we
haven; + mon; +min; +nj; >> (mg 4+ m; + 1)n;. Thus, those unknown variables in
c;, A%, B; and@; cannot be derived from the non-linear equatiéns.

Hence P, learns nothing about;, B;, c;, bi (anonymized) anéd; (anonymized)
from P; if P, solvesP;’s pricing problems.

By contrast, before solving the pricing probleR), ; should acquire the some dual
optimal values of the RMP (only and ;). P;+1 thus knows the dual optimal solu-
tion of the RMP related to the convexity combination représe global constraints

5 Note: Bednarz et al. [14] proposed a possible attack onrinfg€) with the known transformed
and original objective vector£(" Q andCT) along with the known optimal solutions of the
transformed problem and the original problega @ndz+ = Qy*). However, this attack only
applies to the special case of DisLP in Vaidya’'s work [7] whene party holds the objective
function while the other party holds the constraints. Injmatocol, P; sendsC/” Q; to P41,
but C;™ is unknown toP; 1, hence it is impossible to compute all the possibilitiegfby
P; 41 interms of Bednarz’s approach. In addition, the originddison is not revealed as well.
It is impossible to verify the exac®; by P, following the approach in [14].



(w) and the constraintgvj di;Aij = 1 (us). However,P;; cannot learn the actual
pricing problem since everything in the K-LP is transfornirethe RMP. Furthermore,
if the polyhedronB.Q,y; > b} is infeasible, we have: polyhedrd®z; <, b is also
infeasible (Theorem 2). Hence, the specific agent with tfeagible local constraints
should be spotted (Actually, this should be revealed in asel However, the private
constraints and the meanings of the concrete variable®thannferred with this infor-
mation. (For more rigorous privacy protection, we can ranlygpermutate the agents.)
Hence, solving the Pricing Problems by another arbitragnags secure.

Theorem 2. The polyhedraB;z; ; b; and B;Q;y; <; b; have the same feasibility
wherei € [1, K.

Proof. We prove this equivalence in two facts:

First, suppose that the polyhedréhz; t<; b; is feasible and one of its feasible
solutions isz;. Now, we have all the constraints (equalities or ineque)tin B; that
satisfy B;z; ; b;. Let z; = Q;y;, henceB;Q;y; >; b; are all satisfied and the
polyhedronB;Q;y; <; b; is feasible.

On the contrary, suppose that the polyhedBy®;y; ><; b; is feasible and one of
its feasible solutions ig;. Now, we have all the constraints (equalities or inequejti
in B;Q; that satisfyB;Q;y; ><; b;. Lety; = Q;lzi, henceB;z; t<; b; are all satisfied
and the polyhedroi;x; t<; b; is feasible.

Thus, Theorem 2 has been proven.

5.3 Secure K-agent Column Generation Algorithm (SCGA)

In the standard column generation algorithm [12], the RMIResawill ask the pricing
problem solvers for proposals and choose a combinationagfgqsals that maximizes
global profits while meeting all the constraints in the RMigufe 4 demonstrates our
secure K-agent column generation protocol where the segpesent:

1. Vi € [1,k], P; sendsA}Q;, BiQ;, (b)), b andcT'Q; to Py 1.
2. P; solves a RMP problem.

3. P, distributes dual valuesr( ;) to P;11.

4. P, solvesP;'s pricing problems.

5. P;41 proposes’;’s column toP; if necessary.

Practically, the main drawback of this approach is in pdesiélonvergence prob-
lems. Normally, this method gets very good answers quitkitit requires a lot of time
to find the optimal solution. The subproblems may continugeioerate proposals only
slightly better than the ones before. Thus, we might havedp with a near-optimal
solution for efficiency reasons if necessary [12]. Spedlficéithe RMP is feasible and
the pricing problems are all feasible and bound@dcan calculate a new upper bound
(dual value) of the master probletn= z* + Zfil(z;‘ — ui). If 2 < z*, update the
best known dual valug* — 2. P, thus compute the optimal gap= z* — z* and the
relative optimal gajp’ = ﬁ. If the gap is tolerable, we stop the protocol where the
optimal solution of the current RMP is near-optimal. In cafaear-optimal tolerance,
all the optimal values of the pricing problemse [1, K], z} should be sentté; along
with the proposed column. However, the protocol is stillusedn semi-honest model.



P;locally anonymizes b;, by and transforms A;,
B, ¢; before Step 1 (i€ [1,K])
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Iteratively execute Step 2-5 until
global optimum achieved

Fig. 4. Secure K-agent Column Generation Protocol

Theorem 3. The K-agent Column Generation Protocol is secure in Semebkomodel.

Proof. As proven in Lemma 1 and 2, solving RMPs and pricing problesnseicure

for all K honest-but-curious agents. Since our K-agent @wmlieneration Protocol the
repeated steps of solving transformed RMPs and pricingl@nad) it is straightforward
to show that the protocol is secure against semi-honestsahies.

5.4 Communication Cost Analysis

Our secure column generation protocol is mainly based aal lbansformation rather
than cryptographic encryption that dominates the cost imeoi privacy-preserving
DisLP techniques[10][8][7][9]. Hence, our approach sfigraintly outperformsthe above
work on communication costs, especially in large-scalblems. Specifically, the size

of the constraints matrix (all the constraints) should'bg + > m,) x S5 n,.

After anonymizingh, the constraint matrix is enlargedtow, + >"1, m}) x S5, n).

Each pair of matrices!;, B; is locally transformed. Besides solving the LP problem,
only one-time(mg + m/} + 1)n/ scalar product computation (transformieigA;, B)

is required for each agent since anonymizirdpes take ignorable computational cost
(generating random numbers and equations). For large-btatk-angular structured
problems, column generation algorithm has been proven todye efficient than some
standard methods (i.e. simplex or revised simplex algajfh5][12]. As discussed in
Section 1, K-LP problem is a typical block-angular struetlt P problem (distributed
among K agents). Hence, the communication cost of our sexluenn generation al-
gorithm is tiny and negligible.



6 Experiments

We implemented the secure column generation algorithm &d6r solving K-LP
problems. Specifically, we present two groups of resulthiedperformance comparison
for all secure (two-agent) DisLP methods. 2. the perforreanfcSCGA on varying
number of agents where each agent hasariables. All the experiments were carried
on an HP machine with Intel Core 2 Duo CPU 3GHz and 3G RAM.

120! 15
@ 1000 @
§ 800 §10
© ©
§ 600 s
g 8
2 400 32 5
£ £
3 209 8
®""Scea ST smRs  ss 0 2 4 6 8 10
# of Agents
(a) Secure (Two-agent) DisLP Methods (b) Multi-agent SCGA

Fig. 5. Experimental Results (Near-optimal Tolerance Param@€sty

To compare all secure DisLP methods, we generateP problems withb0 vari-
ables and30 x 50 constraint matrix (not very dense) and réiralgorithms for all10
problems. Specifically, we assume that two agents collailveha solve the LP prob-
lems where each agent hol2is distinct variables. The number of local constraints for
each agent and the number of global constraints are detednbiyithe structure of0
different30 x 50 constraint matrix (we guarantee that every agent has dtdeaslo-
cal constraints via the density of the constraint matrigfdde collaboratively solving
the problem, each agent anonymizes the right-hand valudrandforms the matri-
ces/vector (the LP problems should be expanded a little Eijure 5(a) demonstrates
the average runtimel( LP problems) of SCGA, Secure Transformation (ST)[7], Se-
cure Revised Simplex Method (SRS)[9] and Secure Simplexbte{SS) [8]. It is quite
clear that the efficiency of SCGA significantly outperforntisey algorithms in secure
K-LP problems.

Furthermore, we run another group of experiments for vétidahe performance
of SCGA on multiple agents. We generate different size ofiKproblems by assuming
that each agent holds$ variables and local constraints. We let the number of global
constraints bd0, thus the constraint matrix becom@g( + 10) x 15K. Hence, we
run SCGA for different number of agenis € {2, 4,6, 8, 10}. The total computational
cost (including anonymization, transformation and sajuime problems) on varying’
is shown in Figure 5(b). Thus, our SCGA exhibits great schtalior securely solving
increasing scale of K-LP problems.
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Conclusion and Future Work

DisLP problems allow collaborative agents to improve tiggdbal maximum profit (or

save their global minimum cost). However, the private c@sts (input) and solutions
(output) of distributed agents might be revealed among tivhite solving the DisLP

problem. In this paper, we have introduced an extremelyiefficorotocol to solve
K-agent DisLP problems with limited disclosure. Our pratbis robust against semi-
honest adversaries and is fair to all agents. In the futueealso plan to make the
protocol resilient to malicious adversaries by making é@eintive compatible.
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