
Public-Key Encrypted Bloom Filters with
Applications to Supply Chain Integrity

Florian Kerschbaum

SAP Research
Karlsruhe, Germany

florian.kerschbaum@sap.com

Abstract. Bloom filters provide a space- and time-efficient mean to
check the inclusion of an element in a set. In some applications it is
beneficial, if the set represented by the Bloom filter is only revealed to
authorized parties. Particularly, operations data in supply chain manage-
ment can be very sensitive and Bloom filters can be applied to supply
chain integrity validation. Despite the protection of the represented set,
Bloom filter operations, such as the verification of set inclusion, need to
be still feasible. In this paper we present privacy-preserving, publicly ver-
ifiable Bloom filters which offer both: privacy for the represented set and
public Bloom filter operations. We give security proofs in the standard
model.

1 Introduction

Bloom filters provide a space- and time-efficient mean to check the inclusion of
an element in a set in constant time. We apply them to supply chain integrity
(see Section 2). Yet, they have many more applications in computer science, e.g.
in databases [1, 15] or networks [5].

We consider situations where the confidentiality of the set represented by the
Bloom filter is important. Given an unprotected Bloom filter anyone can check
for the inclusion of an element and maybe even enumerate all included elements.
In many scenarios this is an undesired property, e.g. when the Bloom filter is
stored or used by untrusted service provider [1, 15]. The content (i.e. its bit mask
representing the contained set) of the Bloom filter should remain private. This
is particularly true in supply chain integrity where there are risks of industrial
espionage [9, 28].

Our idea starts by encrypting the Bloom filter content. Regular encryption
renders the Bloom filter content useless. We therefore use a special, carefully
crafted form of encryption: public-key and (partially) homomorphic. Now, only
the private-key holder can access the Bloom filter content, but in order for the
encrypted Bloom filter to be useful we need to still enable regular operations on
it despite the encryption.

First, we enable the public-key holder to add elements to the Bloom filter by
encrypting them – without interaction. Second, we enable the public-key holder
to verify the inclusion or exclusion of an element – also without interaction.



For these purposes we exploit the homomorphism of the encryption scheme to
evaluate the Bloom filter operations and then employ zero-knowledge proofs
(ZKP) [16] for validating the result. Our ZKPs guarantee that the private-key
holder cannot make false claims about the Bloom filter content, yet the public-
key holder will learn nothing beyond the validity of the claims. We emphasize
that our secured Bloom filter operations can still be computed and verified in
constant time.

We propose to apply these Bloom filters to supply chain integrity. Several
important supply chain integrity checks can be reduced to set in- or exclusion.
Any participant in the supply chain – whether supplier or customer – can verify
using our privacy-preserving Bloom filters set inclusion and thereby e.g. product
authenticity. Most importantly, no such check will violate any supplier’s desire
for privacy.

In summary, our contributions are

– the adaptation of a public-key encryption scheme for Bloom filters
– non-interactive operations for element addition, element inclusion or exclu-

sion verification and filter content comparison
– security proofs in the standard model

The remainder of the paper is structured as follows. In the next section
we present our example application of supply chain integrity and its security
requirements. In Section 3 we present our building blocks of Bloom filters, public
key encryption schemes and ZKPs. We describe our main result – a public-key
encrypted Bloom filter – in Section 4. In Section 5 we review related work before
we conclude the paper in Section 6.

2 Problem: Supply Chain Integrity

Supply chain integrity refers to the integrity of the flow of goods through a
supply chain. This integrity can, e.g., be compromised by the introduction of
counterfeit products or by the distribution of genuine products on gray markets.
The sale of counterfeit products alone costs the United States an estimated 200
billion dollars annually [32].

Clearly, tracking of items and increased visibility of items throughout the sup-
ply chain help protecting supply chain integrity [30]. Nevertheless, this tracking
also implies a number of novel security and privacy risks [28]. Given detailed
information about one’s supply chain operation one can infer strategic relation-
ships, business volumes or planned promotions. Companies are therefore very
reluctant to disclose this information despite its benefits [9].

In this paper we present secure methods for checking supply chain integrity
that disclose nothing but the validity of the integrity check. We assume a generic
model for item-level tracking in supply chains [30]. Each item is equipped with
an unique identifier. Let I = {i0, . . . , in} be the set of item identifiers. Also each
supplier has an unique identifier. Let S = {s0, . . . , sm} be the set of supplier
identifiers.



As an item i progresses through the supply chain it is handled by a number
of different suppliers s. We can perform a number of simple, yet efficient checks
on this process.

As a first application we can collect the set Si of suppliers that have handled
an item i. We create a Bloom filter d that represents the set of suppliers and
transport it along with the item. This transport can be electronic in an accom-
panying network message (advanced shipping notification) or even on the item,
e.g. an RFID tag [11]. Before a supplier ships the item to another supplier it
adds the new supplier to the Bloom filter.

Given this Bloom filter d we can perform two distinct checks. First, we can
compare the set Si against a black list Sbl of known violators. These violators
can be e.g. companies dealing on grey markets.

∀s ∈ Sbl.s /∈ Si
Second, we can check the set Si against a white list Swl of mandatory suppliers.
These suppliers can be e.g. the authentic manufacturers of the item.

∀s ∈ Swl.s ∈ Si
For the technical implementation we need to be able to check whether an

element s is in a set Si. As already mentioned, Bloom filters offer a space- and
time-efficient mean for this operation. We just need to protect the confidentiality
of the represented set.

As a second application we can collect the set Is of items that a supplier s
has handled. We again create a Bloom filter d, but maintain it at one supplier.
Each time this supplier handles an item i it adds it to the Bloom filter.

This time we can perform another check. Given two Bloom filters d1 and d2
at two suppliers s1 and s2, respectively, we can compare whether they encode
the same set I. If they do, we are assured that there is no intermediate diversion
of the flow of goods between the two suppliers.

Is1 = Is2

For the technical implementation we need to be able to compare Bloom
filter contents. This may seem simple, but we encrypt the Bloom filter contents
using IND-CPA secure encryption [20], such that an equality comparison of the
ciphertexts will fail.

Figure 1 exemplarily depicts these checks in a supply chain and how they
capture illegitimate items. There are five suppliers s1 to s5 and three items i1
to i3. Each item takes a different path through the supply chain. Supplier s1 is
on the white list, while supplier s4 is on the black list. The final customer (or
any participant of the supply chain) can perform the following exemplar checks:
First, for authentic item i1 it can check whether it has been handled by supplier
s1: s1 ∈ S1. Second, for authentic item i2 it check whether it has not been
handled by supplier s4: s4 /∈ S2. Third, it can compare the set I1 of supplier s1
to the set I5 of supplier s5. While this check succeeds in our example, it would
fail if supplier s4 would have sold the item on the grey market (and thereby
avoid the second check).



Fig. 1. Example Supply Chain with Illegitimate Item

2.1 Security Desiderata

Given a Bloom filter d we require a number of security properties. We distin-
guish only two parties: an authority and a supplier. The authority controls the
Bloom filter. Its help is needed to perform the operations described above. The
authority can be the manufacturer of an item or even an independent organi-
zation, such as an industry association. The supplier can add elements to the
set and verify the checks described above, i.e. the supplier participates in the
supply chain by handling goods and verifying the integrity of the supply chain.
Loosely speaking, the goal of our algorithms is to protect against malicious sup-
pliers. Most importantly, we do not distinguish between malicious and honest
suppliers. This commonly made distinction is difficult to perform in practice,
since the reliability of a supplier can vary over time and is difficult to assess. We
assume that all suppliers may be malicious and may perform all operations on
the Bloom filter.

Furthermore we assume that an attacker has full control over the network. We
model the supply chain as a directed graph with vertices representing suppliers
and edges representing transportation links. Items pass through the supply chain
and along with each item i a Bloom filter for its set of suppliers Si. Furthermore,
each supplier s maintains a Bloom filter Is of all of its items. An attacker may
read and write any Bloom filter at any point in the graph. Given this powerful
type of attacker some attacks cannot be prevented: disruption and cloning. We
limit our protection goals to privacy and unlinkability.

Disruption An attacker may simply destroy the Bloom filter and disrupt the
communication. This cannot be prevented. Nevertheless, we can assume a de-



fault decision. Items without proper security checks can be considered illegit-
imate. Then an attacker disrupting the supply chain cannot insert counterfeit
items, but he can cause false positives resulting in a disruption of goods supply.
Alternatively, items without proper security checks could be considered legiti-
mate. This current practice prevents disruptions due to false positives, but the
problem of counterfeits is prevalent.

Cloning An attacker may simply copy the information of one Bloom filter
to another. This attack is called cloning and is a common problem for anti-
counterfeiting. There are no item-level (on-tag) countermeasures, but given a
global data view, prevention is feasible [21, 23, 26, 33]. We propose to augment
both solutions, since our mechanism can protect against more supply chain in-
tegrity threats than just cloning.

Privacy The content of a Bloom filter (i.e. the represented set) should remain
private. Given any Bloom filter d an attacker should not be able to tell whether
an element e is in the set or not (except with negligible probability). Even given
several successful checks of inclusion or exclusion for elements ei, an attacker
should not be able to tell whether an element e′ (∀i.e′ 6= ei) is in the set or not
(except with a small probability of false positives). Furthermore, given several
successful checks of equality or inequality of sets, an attacker should still not be
able to tell.

Unlinkability An attacker should not be able to link a Bloom filter before and
after the addition of an element. Given a pair of Bloom filters d0 and d1, an
element e and a randomly chosen Bloom filter db ∈ {d0 ∪ {e}, d1 ∪ {e}} with
the element e added, an attacker should not be able to tell the random choice b
(except with negligible advantage). This prevents an attacker from tracing items
through the supply chain. It augments our privacy requirement in preventing
supply chain espionage.

3 Background

3.1 Bloom Filter

Bloom filters [3] provide a space- and time-efficient mean to check the inclusion
of an element in a set. An empty Bloom filter b consists of m bits, all set to
0, and k hash functions fi (0 ≤ i < k). We write bj (0 ≤ j < m) for the j-th
bit of Bloom filter b. Bloom filters support the operations add(x) for addition of
element x to the set and test(x) to test for inclusion of element x.
Create(m): m bits (0 ≤ j < m) are set to 0

∀j.bj = 0



and k hash functions fi (0 ≤ i < k) are published

∀i.fi : {0, 1}∗ 7→ {0, . . . ,m− 1}

Add(x): The element x is hashed with all k hash functions fi and the k bits at
the resulting indices li are set to 1.

∀i.li = fi(x) ∧ bli = 1

Test(x): Again, the element x is hashed with all k hash functions fi and if all k
bits at the resulting indices li are set, then the test function returns true.

k−1∧
i=0

bfi(x)

Using Bloom filters false positive are possible, but false negatives are not. The
more elements are added to the set, the more likely false positives are. Given the
number n of elements to be added and a desired maximum false positive rate p,
one can compute the necessary size m of the Bloom filter as [3]

m = −n ln p

ln 2

3.2 Goldwasser Micali Encryption

Goldwasser-Micali (GM) encryption [17] is a public-key, semantically-secure (IND-
CPA), homomorphic encryption scheme. Its plaintext length is only 1 bit. GM
encryption uses quadratic residuosity modulo a composite of two large primes
p and q. A quadratic residue r is a number, such that there exists a number s:
s2 = r mod n. GM encodes a 1 as a quadratic non-residue and a 0 as a quadratic
residue. Particularly, the quadratic non-residues are pseudo quadratic residues,
i.e. their Jacobi symbols are all 1. Note that differentiating pseudo quadratic
residues and quadratic residues implies factoring.

Let n = pq be the composite of two large primes and v be pseudo quadratic
residue. The public key is n, v and the private key is p and q. To encrypt a 0
one chooses a random number r and computes r2 mod n (a quadratic residue).
To encrypt a 1 one also chooses a random number r and computes vr2 mod n
(a quadratic non-residue). To decrypt one computes whether it is a quadratic
residue.

We can summarize the operations as follows
KeyGen(κ): Let κ be a security parameter. Given κ generate the private key
sk = {p, q} and the public key pk = {n = pq, v}.
Encrypt(x, pk): Given plaintext x and public key pk produces ciphertext c.
Decrypt(c, sk): Given ciphertext c and private key sk produces plaintext x.

Let E(x) denote encryption of x under GM public key pk. Multiplying two
ciphertexts, e.g. E(x) ·E(y), results in an encryption of the exclusive-or (XOR)
denoted by ⊕.

E(x) · E(y) = E(x⊕ y)



GM encryption is semantically-secure (IND-CPA) [20], i.e. one cannot in-
fer from a ciphertext and the public key whether the ciphertext has a specific
plaintext, e.g. by encrypting the plaintext and then comparing it.

3.3 Sander Young Yung Technique

Sander, Young and Yung operate on GM encryptions and allow the computation
of one logical AND operation [29]. Recall that we can perform any number of
logical XOR operations on the ciphertexts. A ciphertext E(x) is expanded as
follows.
Expand(c, pk): Given ciphertext c = E(x) and public key pk compute σi. We
repeat this operation u times (0 ≤ i < u).

1. Flip a fresh random coin ri ∈ {0, 1} (i = 1, . . . , u).
2. Choose plaintext ei according to the random coin and set

σi ← E(ei) =

{
E(x) · E(1) = E(x⊕ 1) if ri = 0
E(0) if ri = 1

The result is a u-length vector σ = (σ1, . . . , σk) which we call expanded cipher-
text. If x = 1, then x⊕ 1 = 0 and ei = 0. Then also σi = E(0) for i = 1, . . . , u.
Otherwise, if x = 0, ei is randomly distributed in {0, 1} and σi is a GM ciphertext
of a random bit.

We can now compute a logical AND of two expanded ciphertexts σ (for
E(x)) and ρ (for E(y)). We denote σi = E(ei) and ρi = E(di). Logical AND is
performed by pair-wise multiplication of the elements of the expanded ciphertext
vectors: τi = σi · ρi. If x ∧ y = 1, then τi = E(ci) = E(ei) ·E(di) = E(ei ⊕ di) =
E(0 ⊕ 0) = E(0) for i = 1, . . . , u, but if x ∧ y = 0, then ci remains randomly
distributed in {0, 1}, since at least one of ei or di is randomly distributed in
{0, 1}. Therefore τ is the expanded ciphertext of x ∧ y. In order to decrypt an
expanded ciphertext σ one decrypts each element D(σi) = ei. If ei = 0 for
i = 1, . . . , u, then the final plaintext x = 1; otherwise x = 0. There is a 2−u

probability that it is falsely decrypted as 1, since for an expanded ciphertext σ
of x = 0 the plaintexts ei are randomly distributed in {0, 1}u.

3.4 Quadratic Residuosity Zero-Knowledge Proofs

A simple proof that a ciphertext has plaintext 0 is to present a root s (s2 = r).
It can be verified by squaring s and is zero-knowledge, since it does not reveal
the secret key p and q. Furthermore, if r is a quadratic non-residue, no such s
exists.
Proof-QR(r):

Common input: r, n = pq
Prover’s secret input: p, q

1. The prover outputs s.
2. The verifier accepts, if s2 = r.



Nevertheless, this proof cannot be used to prove that a ciphertext has plain-
text 1. If the prover claims that there is no root s, there is no way for the verifier
to check it. In [10] Fiat and Shamir present a zero-knowledge proof (ZKP) that r
is a quadratic residue. The proof is analogous to the general ZKP for graph iso-
morphism by Goldreich, Micali and Widgerson in [16]. Furthermore in [16] they
present a ZKP for graph non-isomorphism. We adapt this proof to quadratic
residues and present a ZKP that r is a quadratic non-residue. We present its
interactive form.

Proof-QNR(r):

Common input: r, n = pq

Prover’s secret input: p, q

1. The verifier uniformly chooses a random number s and a bit b ∈ {0, 1}. If
b = 0, then the verifier sends s2 to the prover. If b = 1, then the verifier
sends rs2 to the prover.

2. The prover outputs a guess b′ of b. The prover also sends a guess s′ of s.

3. The verifier accepts if b′ = b and s′ = s.

For a ZKP one has to prove three properties: (honest-verifier) zero-knowledge,
completeness and soundness. Zero-knowledge means that the verifier learns noth-
ing about the secret input of the prover. We can do so by showing a simulator
of the verifier’s view from its input (including random coin tosses) and output
(of a successful proof). In this case, the simulator is particularly simple, since it
simply mirrors the verifier’s random choices b and s.

Completeness means that if r is indeed a quadratic non-residue an honest
verifier will always accept. Clearly, if r is a quadratic non-residue then rs2 is a
quadratic non-residue, but s2 is always a quadratic residue. Therefore the prover
can distinguish the choice b by computing quadratic residuosity.

Soundness means that if r is not a quadratic non-residue, i.e. t2 = r an
honest verifier will reject with high probability. If b = 1 and t2 = r, then there
exist a s′ = st, such that s′2 = rs2. The message from the verifier is therefore
indistinguishable to the prover for both cases of b. The probability of a right
guess b′ is then at most 1

2 .

In order to increase the probability for rejecting the ZKP in case of a quadratic
residue we can repeat the above ZKP n times in parallel. The probability of a
false accept is then 2−n.

Furthermore, we can apply the technique by Blum, Feldman and Micali to
make the ZKP non-interactive [4]. Given access to a common random string
we can simulate the messages from the verifier. In our case it is critical to not
simulate the random choices b, but just the messages themselves, i.e. the verifier
sends a sequence of numbers u. We can non-interactively verify the correct guess
of b by b′ using s′. If the verifier sends a quadratic non-residue u (which he does
with probability 1

2 ) and r is a quadratic residue (t2 = r), then there exists no
s′, since ur−1 is quadratic non-residue.



3.5 Shuffle Zero-Knowledge Proof

In addition to the quadratic residuosity ZKPs we need a further ZKP. Let σ be
a u-length vector of GM ciphertexts E(ei). Let π be a random permutation for
1, . . . , u and ρ be a u-length vector of GM ciphertexts with plaintext 0. We can
compute a shuffle τ = π(σ) ·ρ, such that given σ and τ (but not the secret key)
nothing is revealed about π.

A shuffle ZKP proves that τ is indeed a permutation of σ, i.e. there exist π
and ρ.
Proof-Shuffle(σ, τ ):

Common input: σ, τ
Prover’s secret input: π, ρ = (E(0), . . .), such that τ = π(σ) · ρ.
Groth and Ishai present a shuffle ZKP that has sub-linear communication

complexity [18]. Sub-linear communication complexity means that less than u
elements are transmitted.

4 Public-Key Encrypted Bloom Filter

In this section we present our main result: privacy-preserving, publicly verifi-
able Bloom filter. Due to our use of public-key encryption we call them public-
key encrypted Bloom filter (PEBF). The basic idea of a PEBF is to encrypt
each bit bj of the Bloom filter using GM encryption. We present its opera-
tions PEBF −Create(m,κ), PEBF −Add(x), PEBF −Test(x) and PEBF −
Compare(E(b′)).
PEBF-Create(m, κ):

1. Create a public-, private-key pair in the GM encryption scheme usingKeyGen(κ).

pk, sk ← KeyGen(κ)

2. Create a Bloom filter
bj , fi ← Create(m)

3. Encrypt each bit of the Bloom filter

E(bj)← Encrypt(bj , pk)

Let E(b) denote the element-wise encryption of b = (. . . , bj , . . .) with the
public key pk. The public part of the PEBF is E(b), fi, pk and the private part
is sk.

We give our first theorem that the public part of the PEBF does not leak
any information about the content of the Bloom filter.

Theorem 1 Let the adversary A choose two Bloom filter contents b0 = (. . . , b0,j , . . .)
and b1 = (. . . , b1,j , . . .). Given a random choice β and the public part of a PEBF
E(bβ), fi, pk, the probability that any adversary A outputs β is at most

Pr [A (b0, b1, E (bβ) , fi, pk) = β] ≤ 1

2
+

1

poly(κ)



where poly(κ) is an arbitrary polynomial in κ.

Proof. The proof is simple. Such an adversary A would contradict the IND-CPA
security of GM encryption. We can simulate a successful adversary against GM
encryption by embedding the challenge into the challenge of the adversary A.

PEBF-Add(x):

1. Compute indices of Bloom filter for addition

li ← fi(x)

2. Recompute each bit of the Bloom filter by replacing it with a plaintext 1 if
it is set by the Add(x) operation and re-randomizing if it is not set

E(bj) =

{
E(1) if ∃i.j = li
E(bj) · E(0) = E(bj ⊕ 0) otherwise

We can rest assured that the public part of the PEBF before and after an
addition does not leak any information about the added item. In fact, this is a
corollary of Theorem 1.

Corollary 2 Given two public parts E(b), fi, pk for the same PEBF, but for
Bloom filter contents b0 = (. . . , b0,j , . . .) and b1 = (. . . , b1,j , . . .), such that there
exist an index h where b0,h 6= b1,h, the probability that any adversary A outputs
h is at most

Pr [A (E (b0) , E (b1) , fi, pk) = h] ≤ 1

m
+

1

poly(κ)

Proof. Construct an adversary A? for Theorem 1 by handing both ciphertexts
b0 and b1 to adversary A. If A guesses correctly, then A? guesses correctly.

PEBF-Test(x): Checking whether a PEBF contains an element x requires the
private key sk. We construct a ZKP PEBF−Testtrue that x is contained within
the public PEBF part E(b), fi, pk.

Common input: x, E(b), fi, pk
Prover’s secret input: sk

1. Compute the set Bloom filter indices for x

li ← fi(x)

2. Expand the ciphertext for each set Bloom filter bit

σli ← Expand(E(bli), pk)

3. Compute the logical AND of all set Bloom filter bits using the homomor-
phism

σ ← σl1 · . . . · σlk



Fig. 2. Public-Key Encrypted Bloom Filter and Ciphertext Expansion

4. Proof in zero-knowledge that σj (0 ≤ j < u) is a quadratic residue

Proof −QR(σj)

Figure 2 depicts the process of ciphertext expansion on a PEBF.

Theorem 3 The zero-knowledge proof PEBF−Testtrue is honest-verifier zero-
knowledge, complete and sound.

Proof. For honest-verifier zero-knowledge we need to show a simulator for the
view of the verifier. The simulator computes steps 1 to 3. It then invokes u times
the simulator for Proof-QR(s2).

We emphasize that the proof reveals that σi is a quadratic residue and
(w.h.p.) that E(bli) is a quadratic non-residue, but this is implied by the output
of the ZKP.

For completeness we need to show that if test(x) = true, then PEBF −
Testtrue is accepted by an honest verifier. If test(x) = true, then E(bli) is a
quadratic non-residue, σli,j is a quadratic residue and consequently all σj are
quadratic residues.

For soundness we need to show that if test(x) = false, then PEBF−Testtrue
will be reject by an honest verifier with high probability. If test(x) = false, then
there exist an index h (0 ≤ h < k), such that lh = fh(x) and blh = 0. Then σlh,j
is (uniformly) randomly distributed in {E(0), E(1)} and so is σj . Then at least
one ZKP for quadratic residuosity will fail with probability 1− 2−u.



In order to prove that an element x is not contained in a PEBF we need to
prove that at least one index of σ has a quadratic non-residue. Unfortunately,
knowing that σj is a quadratic non-residue may imply (w.h.p.) that (one specific)
bj = 0. Simply assume that the random choices in the Expand() operation, are
such that the ciphertext of only one E(bj) is used and the others are fixed to
E(0).

We therefore need to construct a more complicated ZKP PEBF −Testfalse.

1. Perform steps 1 to 3 as in PEBF − Testtrue.
2. Choose a random permutation π of (1, ldots, u) and a u-length vector of

ciphertexts ρ = (E(0), . . .). Compute

τ ← π(σ) · ρ

3. Proof in zero-knowledge that τ is a shuffle of σ.

Proof − Shuffle(σ, τ )

4. Reveal an index h, such that τh is a quadratic non-residue and prove it in
zero-knowledge

Proof −QNR(τh)

Theorem 4 The zero-knowledge proof PEBF−Testfalse is honest-verifier zero-
knowledge, complete and sound.

Proof. The proof for the properties of completeness and soundness are analogous
to the proof for PEBF − Testtrue.

For honest-verifier zero-knowledge we give the following simulator. Uniformly
choose a random h. For τ choose a random permutation of the ciphertexts
σ except for τh choose one with plaintext 1 (a quadratic non-residue). Note
that we might replace a quadratic residue at index h. Invoke the simulator for
Proof−Shuffle(σ, τ ). If the simulator fails, because we did replace a quadratic
residue, then rewind and choose a new h. The choice of h will fall on a quadratic
non-residue with probability 1

2 . Therefore we succeed with high probability. Then
invoke the simulator for Proof −QNR(τh).

PEBF-Compare(E(b′)): Let E(b′) be the encrypted Bloom filter content for the
same hash functions fi. Using the secret key sk we construct a ZKP PEBF −
Compare that b of the public part of a PEBF is equal.

Common input: E(b′), E(b), pk
Prover’s secret input: sk

1. Compute the negated, logical XOR of the two encrypted Bloom filter con-
tents using the homomorphism of the encryption scheme

E(b′′)← E(b) · E(b′) · E(1m) = E(b⊕ b′ ⊕ 1m)

2. Expand the ciphertext for each Bloom filter bit (0 ≤ i < m)

σi ← Expand(E(b′′i ), pk)



3. Compute the logical AND of Bloom filter bits using the homomorphism

σ ← σ0 · . . . · σm−1

4. Proof in zero-knowledge that σj (0 ≤ j < u) is a quadratic residue

Proof −QR(σj)

Theorem 5 The zero-knowledge proof PEBF − Compare is honest-verifier
zero-knowledge, complete and sound.

Proof. The proof for honest-verifier zero-knowledge is equal to the proof for
honest-verifier zero-knowledge for PEBF − Testtrue. We can use the same sim-
ulator.

For completeness we need to show that if b = b′, then PEBF −Compare is
accepted by an honest verifier. If b = b′, then b′′ = 1m and σ are all quadratic
residues.

For soundness we need to show that if b 6= b′, then PEBF−Compare will be
reject by an honest verifier with high probability. If b 6= b′, then b′′ contains a 0
and σ contains a quadratic non-residue with probability 1− 2−u. Consequently,
at least one ZKP Proof −QR(σj) will be rejected with high probability.

The construction of a ZKP that b 6= b′ follows the same ideas as ZKP
PEBF − Testfalse. We omit it for brevity.

5 Related Work

Our work is related to cryptographically secure Bloom filters [1, 15, 25], pri-
vate set intersection [6–8, 12, 19, 22] and anti-counterfeiting [2, 21, 23, 24, 26, 27,
31, 33].

Cryptographically protected Bloom filters have been proposed before [1, 15,
25]. Nevertheless, the type of protection differs significantly from our approach.

In [1, 15] Bloom filters are used for securely searching documents. It enables
checking whether a document contains certain keywords without disclosing all
of them. Their protection mechanism is to compute the hash function as a cryp-
tographic pseudo-random function. This prevents reversing the Bloom filter, but
it also prevents non-interactively adding an element which we enable.

In [25] an interactive protocol for securely checking set inclusion via Bloom
filters without disclosing the Bloom filter content or the checked element. They
also do not enable non-interactive (or even privacy-preserving) element addition.
They use blind signatures in order to protect the Bloom filter content.

A related problem is private set intersection. Given two parties, each input
a set of elements, privately compute the intersection of these two sets without
disclosing either set. The first protocol secure in the semi-honest model has been
presented in [22]. Efficiency improvements have been made in [12]. The malicious
model has been first considered in [19] and further efficiency improvements have



been made in [7, 8]. An authority to certify the sets has been proposed in [6].
Note that – as opposed to all work on private set intersection – our operations
work non-interactively. This also makes the distinction between semi-honest and
malicious adversaries less applicable. Our security definitions are closer to public-
key encryption.

The benefits of item tracking for anti-counterfeiting have been first recognized
in [31]. They already outline the two basic approaches beyond item identification
itself: on-tag and in-network.

In-network protection collects information about all items and correlates it.
It can prevent cloning attacks. A statistical method based on detection of low
probability events is presented in [23]. This method requires sharing of informa-
tion. A similar method that protects this information using secure multi-party
computation has been presented in [33]. A deterministic method for detecting
integrity violations has been presented in [26]. It also requires sharing of in-
formation. A secure variant using cryptographic hashing has been presented in
[21].

On-tag protection only stores information on the RFID tag. Methods us-
ing more powerful RFID tags that support cryptographic hashing have been
proposed first [24, 27]. Recently, a method using only storage on the RFID tag
has been described [2]. Our public-key encrypted Bloom filters (augmented with
standard signatures) implement not only their full functionality, but surpass it
in several aspects. First, we enable more checks than just path verification, such
as our compare operation. Second, we provide security against the verifier of
integrity considering an attacker that is part of the supply chain.

6 Conclusions

In this paper we have presented public-key encrypted Bloom filters. The content
of the Bloom filter is encrypted using public-key, homomorphic encryption. Only
the private-key holder can access the Bloom filter content. We enable the public-
key holder to non-interactively add elements by encrypting them. Furthermore,
we present zero-knowledge proofs for non-interactively verifying the inclusion or
exclusion of an element and the equality of two Bloom filter contents.

Given such protected Bloom filters one can perform several privacy-preserving
supply chain integrity checks. One can check the path of item through a supply
chain against black lists, white lists or for equality. The public-key encryption
protects the confidentiality of the Bloom filter content during all these opera-
tions.

There are a few possible improvements for future work. First, the set inclu-
sion or exclusion zero-knowledge proofs reveal the element checked. This could
be prevented by also encrypting it, but the homomorphism of existing (efficient)
public-key encryption schemes is insufficient. When fully homomorphic encryp-
tion [14] becomes practical, it may provide a further avenue.

Second, the set inclusion or exclusion zero-knowledge proofs also require the
knowledge of the ciphertext. Ideally the private-key holder could issue a security



token without knowing the ciphertext in question. This could be done using
searchable encryption, but the existing searchable encryption schemes do not
support homomorphisms. Given improved, searchable encryption schemes, a new
construction might become feasible.

Third, the bit-wise encryption of Goldwasser-Micali encryption is quite storage-
intensive. While RFID tags with sufficient storage capacity – up to 64 KByte –
exist [13], a reduction of the storage requirements would enable using cheaper
RFID tags. Of course, this is no restriction for the collection of all handled items
at one supplier.
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