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Abstract. As location-based services emerge, many people feel exposed
to high privacy threats. Privacy protection is a major challenge for such
applications. A broadly used approach is perturbation, which adds an ar-
tificial noise to positions and returns an obfuscated measurement to the
requester. Our main finding is that, unless the noise is chosen properly,
these methods do not withstand attacks based on probabilistic analysis.
In this paper, we define a strong adversary model that uses probability
calculus to de-obfuscate the location measurements. Such a model has
general applicability and can evaluate the resistance of a generic location-
obfuscation technique. We then propose UniLO, an obfuscation operator
which resists to such an adversary. We prove the resistance through for-
mal analysis. We finally compare the resistance of UniLO with respect
to other noise-based obfuscation operators.

Keywords: location-based services, privacy, obfuscation, perturbation,
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1 Introduction

Recent years have seen the widespread diffusion of very precise localization tech-
nologies and techniques. The most known is GPS, but there are many other ex-
amples, like Wi-Fi fingerprinting, GSM trilateration, etc. The emergence of such
technologies has brought to the development of location-based services (LBS ) [3,
6, 10], which rely on the knowledge of location of people or things. The retrieval
of people’s location raises several privacy concerns, as it is personal, often sensi-
tive, information. The indiscriminate disclosure of such data could have highly
negative effects, from undesired location-based advertising to personal safety
attempts.

A classic approach to the problem is to introduce strict access-control policies
in the system [9, 16]. Only some trusted (human or software) entities will be
authorized to access personal data. This access-control-based approach has a
main drawback: if the entity does not need complete (or exact) information, it
is a useless exposure of personal data. The “permit-or-deny” approach of access
control is often too rigid. Some services require more flexible techniques which
can be tailored to different user preferences.
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Samarati and Sweeney [18] introduced the simple concept of k-anonymity : a
system offers a k-anonymity to a subject if his identity is undistinguishable from
(at least) k − 1 other subjects. K-anonymity is usually reached by obfuscating
data with some form of generalization. The methods based on k-anonymity [4, 10,
12] offer generally a high level of privacy, because they protect both the personal
data and the subject’s identity. However, they have some limitations:

– They do not permit the authentication of the subject and the customization
of the service. Since they cannot identify the subject, some identity-based
services like social applications or pay-services could not work.

– They are usually more complex and inefficient than methods based only on
data obfuscation. This happens because their behavior must depend on a set
of (at least) k subjects and not on a single subject only.

– They need a centralized and trusted obfuscator. In distributed architectures,
such an entity may be either not present or not trusted by all the subjects.

– They are not applicable when the density of the subjects is too low. Ob-
viously, if there are only 5 subjects in a system, they will never reach a
10-anonymity.

A simpler approach is data-only obfuscation [1, 15], whose aim is not to guar-
antee a given level of anonymity, but simply to protect the personal data. This
is done by obfuscating data before disclosing it, in a way that it is still possible
for the service provider to offer his service. Data obfuscation adds some artifi-
cial imperfection to information. The nature of such imperfection can fall into
two categories [8]: inaccuracy, and imprecision. Inaccuracy concerns a lack of
correspondence with reality, whereas imprecision concerns a lack of specificity
in information. Deliberately introducing inaccuracy requires the obfuscation sys-
tem to “lie” about the observed values. This can reduce significantly the number
of assumptions the service can trust on. For this reason, the majority of obfus-
cation methods operates by adding imprecision, both by means of generalization
or perturbation [5]. Generalization replaces the information with a value range
which contains it, whereas perturbation adds random noise to it. We focus on
the perturbation method. This method is both simple and efficient, and is often
used to obfuscate data [14]. In spite of its simplicity, it requires to choose a suit-
able noise to effectively perturb data. In case of location data - and non-scalar
data in general - such a problem is not trivial and should not be underrated.
We found that if the noise is not chosen properly, perturbation will not resist to
attacks based on statistical analysis. In particular, an obfuscation operator must
offer a spacial uniformity of probability.

We present an analytical adversary model, which performs attacks based on
statistical analysis. We show how such attacks can be neutralized by the property
of uniformity. We present a metric for quantifying uniformity of an obfuscation
system, called uniformity index. We further propose UniLO, an obfuscation op-
erator for location data that introduces imprecision while maintaining accuracy.
UniLO is simple andO (1)-complex. It does not require a centralized and trusted
obfuscator and can be seamlessly added to a distributed architecture as a build-
ing block. We show how UniLO offers a better uniformity with respect to other
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noise-based obfuscation operators. To the best of our knowledge, UniLO is the
first obfuscation operator which offers guarantees on uniformity.

The rest of the paper is organized as follows. Section 2 introduces some basic
concepts concerning the system model and the terminology. Section 3 formally
describes the adversary model. Section 4 presents the UniLO operator in detail
and its properties. Section 5 evaluates UniLO resistance by means of experimen-
tal results, and compares it to other obfuscation operators. Section 6 presents
some examples of location-based services that can be built on UniLO operator.
Section 7 explains some related works and analyzes differences and similarities
with UniLO techniques. Finally, the paper is concluded in Section 8.

2 System Model

In our system, a subject is an entity whose location is measured by a sensor.
A service provider is an entity that receives the subject’s location in order to
provide him with a location-based service. The subject applies an obfuscation
operator to location information, prior to releasing it to the service provider.
The obfuscation operator purposefully reduces the precision to guarantee a cer-
tain privacy level. Such a precision is defined by the subject and reflects his
requirements in terms of privacy. The more privacy the subject requires, the less
precision the obfuscation operator returns.

The subject is usually a person who has agreed to reveal - with some level
of privacy - his location to one or more service providers. The service provider
can be a human or a piece of software, depending on the kind of location-based
service. For instance, a security service in an airport or in a train station often
requires a human service provider. In contrast, in a customer-oriented service,
for example, returning the nearest restaurant to the subject, the service provider
may be a piece of software. The obfuscation operator can be applied to the data
directly by the subject. Alternatively, a central obfuscator could be provided as
well, serving several subjects at once.

For the sake of simplicity, the arguments and results we present in this paper
refer to the two-dimensional case. However, they can be extended to the three-
dimensional case in a straightforward way.

In the most general case, a location measurement is affected by an intrinsic
error that limits its precision. Such error depends on several factors including
the localization technology, the quality of the sensor, the environment conditions.
Different technologies have different degrees of precision. For instance, the 68-th
percentile of the error on a Garmin professional GPS receiver is 1.1 meters, on the
iPhone’s GPS is 8.6 meters, and on the iPhone’s Wi-Fi localization system is 88
meters [21]. This implies that the location cannot be expressed as a geographical
point but rather as a neighborhood of the actual location. We assume that
locations are always represented as planar circular areas [1, 21], because it is a
good approximation for many location techniques [17]. A location measurement
(Fig. 1) can be defined as follows:
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Definition 1 (Location measurement). Let X be the actual position of the
subject. A location measurement is a circular area Am = 〈Xm, rm〉 ⊆ R2, where
Xm is the center of Am and rm is the radius, such that P {X ∈ Am} = 1 (Ac-
curacy Property).

Fig. 1. Location measurement

The Accuracy Property guarantees that the location measurement actually
contains the subject, or, equivalently, that the distance XXm does not exceed rm.
The radius rm specifies the precision of the localization technology, and we call
it precision radius. Different technologies have different values for the precision
radius. If a technology has a precision radius rm, then a subject cannot be located
with a precision better than rm. We assume that rm is constant over time. This
means either that the precision does not change over time, or that rm represents
the worst-case precision.

A subject can specify his privacy preference in terms of privacy radius (rp).
If the subject specifies rp, rp > rm, as his privacy radius, then he means that
he wishes to be located with a precision not better than rp. The task of an
obfuscation operator is just to produce an obfuscated position Xp, appearing to
the provider as a measurement with precision rp, worse than rm. More formally,
the obfuscation operator has to solve the following problem:

Problem 1 (Obfuscation). Let X be the actual position of a subject, Am =
〈Xm, rm〉, be the location measurement and, finally, rp, rp > rm, be his desired
privacy radius. Transform, Am into an obfuscated measurement (also called pri-
vacy area) Ap = 〈Xp, rp〉 such that the following properties hold:

1. (Accuracy) P {X ∈ Ap} = 1
2. (Uniformity) pdf (X) : R2 → R (probability density function) as uniform as

possible over Ap.

Property 1 guarantees that the obfuscated measurement actually contains the
subject. Property 2 guarantees that the subject can be located everywhere in
Ap with an almost-uniform probability. This property is particularly important
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because it prevents an adversary from determining areas that more likely contain
the subject, and thus jeopardize the user privacy requirements. We will show how
to quantify such a uniformity in Section 3.

With reference to Fig. 2, in order to produce an obfuscated measurement Ap,
the obfuscation operator applies both an enlargement and a translation to the
location measurement Am. Intuitively, the operator enlarges the location mea-
surement in order to decrease its precision and thus achieve the desired privacy
level rp. However, if Am and Ap were concentric, determining the former from
the latter would be trivial once the precision radius rm is known. Therefore, the
operator randomly selects a shift vector d and translates the enlarged measure-
ment by d, i.e., Xm+d = Xp. Of course, the system has to keep the shift vector
secret.

Fig. 2. Obfuscation and shift vector

The enlargement and translation operations must be such that, when com-
posed, the resulting obfuscation satisfies the Accuracy and Uniformity Prop-
erties. Whereas the enlargement operation is straightforward, the translation
operation is instead more subtle. As to the Accuracy Property, we state the
following:

Proposition 1. Given a location measurement Am and an obfuscation (rp,d),
the resulting obfuscated measurement Ap fulfills the Accuracy Property iff:

‖d‖ ≤ (rp − rm)

Proof. In order to guarantee the Accuracy Property, it is necessary and sufficient
that Am ⊂ Ap. Thus, with reference to Fig. 2, the distance between Xm and
Xp must not exceed the difference between the precision radius and the privacy
radius, i.e., ‖d‖ ≤ (rp − rm).
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3 Adversary Model and Uniformity Index

We assume the adversary knows the obfuscated measurement Xp, the privacy
radius rp, and the precision radius rm. She aims at discovering the actual sub-
ject’s position X. Since X cannot be known with infinite precision, the result of
the attack will have a probabilistic nature.

Three kinds of information could help the adversary: (i) the probability den-
sity of the measurement error, which depends on the sensor’s characteristics,
(ii) the probability density of the shift vector, which depends on the obfuscation
operator, and (iii) the probability density of the population, which depends on
the map’s characteristics. In the following, we will consider the population’s den-
sity as irrelevant or, equivalently, uniform. This is a broadly used hypothesis in
obfuscation systems [1]. In fact, landscape non-neutrality can be faced by means
of complementary techniques, such as enlarging the privacy radius [2].

Basing on the measurement error’s density and the shift vector’s density,
the adversary computes the pdf fX (x, y) of the subject’s position. After that,
she defines a confidence goal c ∈ (0, 1] and computes the smallest area which
contains the subject with a probability c:

Definition 2 (Smallest c-confidence area).

Âc = arg min
A∈Ac

{|A|}

where:

Ac =
{
A|A ⊆ R2, P {X ∈ A} = c

}
P {X ∈ A} =

∫∫
A

fX (x, y) dxdy

and |A| indicates the size of A.

The adversary can find the smallest c-confidence area either analytically, by
algebraic calculus, or statistically, by simulating many obfuscated measurements.
Âc will cover the zones where fX (x, y) is more concentrated. It is the result of the
attack, and the adversary’s most precise c-confidence estimation of the position.
The smaller Âc is, the more precise is the adversary in locating the subject. A
good obfuscation operator should keep Âc as larger as possible for every value of
c. This is done by fulfilling the Uniformity Property. The best case occurs when
the Perfect Uniformity Property is fulfilled, defined as follows:

Definition 3 (Perfect Uniformity Property). An obfuscation operator ful-
fills the Perfect Uniformity Property iff fX (x, y) is perfectly uniform over Ap.

An obfuscation operator which fulfills such a property is ideal. It serves only for
comparisons with real operators, and it is not realizable in the general case. This
is because we cannot force a particular pdf inside Ap if we cannot control the
pdf inside Am, which depends on the measurement error.

Another way to state the Perfect Uniformity is the following:
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Proposition 2. A privacy area Ap fulfills the Perfect Uniformity Property iff:

∀A ⊆ Ap, P {X ∈ A} =
|A|
|Ap|

(1)

That is, each sub-area of Ap contains the subject with a probability proportional
to its size. In such a case: ∣∣∣Âc∣∣∣ = c · |Ap| (2)

Otherwise: ∣∣∣Âc∣∣∣ < c · |Ap| (3)

The uniformity can be quantified by means of Eq. 3, by measuring how much,

for a given c,
∣∣∣Âc∣∣∣ gets close to c · |Ap|. We define the following uniformity index

by fixing c = 90%:

Definition 4 (Uniformity index).

unif (Ap) =

∣∣∣Â90%
∣∣∣

90% · |Ap|

The constant factor in the denominator is for normalization purposes. The uni-
formity index ranges from 0% (worst case), if the subject’s position is perfectly
predictable, to 100% (best case), if the subject’s position is perfectly uniform. A
uniformity index of 100% is necessary and sufficient for the Perfect Uniformity.

The uniformity index has a direct practical application. For example, if an
obfuscation operator produces a privacy area of 400 m2 with a uniformity index
of 80%, the subject will be sure that an adversary cannot find his position (with
90% confidence) with more precision than 80% · 90% · 400 = 288 m2. In other
words, the uniformity index is proportional to the lack of precision of the attack.

4 UniLO

UniLO operator adds to Xm a shift vector d = (µ cosφ, µ sinφ) with the fol-
lowing probability densities (Fig. 3):

f (φ) =

{
1
2π φ ∈ [0, 2π)

0 otherwise
(4)

f (µ) =

{
2µ/(rp − rm)2 µ ∈ [0, rp − rm]

0 otherwise
(5)

These equations aim at producing shift vectors with uniform spacial probability
density, and magnitude less than or equal to rp − rm. This will greatly improve
the uniformity of fX (x, y). However, remind that fX (x, y) depends even on the
measurement error’s density, over which we have no control. So it will not be
perfectly uniform in the general case. UniLO fulfills the following properties:
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Fig. 3. φ and µ pdf s of a UniLO vector

Accuracy Property. The privacy area always contains the subject. We give a
formal proof of this.

Uniformity Property. For rp/rm ≥ 10, the uniformity index is above 81%.
We will prove this by simulations, in Section 5.

Perfect Uniformity Property as rm → 0. With highly precise sensors, UniLO
tends to be an ideal obfuscation operator. We give a formal proof of this.

Theorem 1. UniLO fulfills Accuracy Property.

Proof. By construction, ‖d‖ ≤ rp − rm. Hence, from Prop. 1, Accuracy holds.

Theorem 2. As rm → 0, UniLO fulfills Perfect Uniformity Property.

Fig. 4. Generic annular sector
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Proof. If rm → 0, Am will narrow to a point, with X ≡ Xm, and the probability
density of the magnitude in Eq. 5 will become:

f (µ) =

{
2µ/r2p µ ∈ [0, rp]

0 otherwise
(6)

Initially we prove that the hypothesis of Prop. 2 is satisfied for a generic
annular sector α (Fig. 4). From Eqq. 4 and 6, and since X ≡ Xm:

P {X ∈ α} = P {Xm ∈ α}

=

∫ Φ

0

∫ µ2

µ1

2µ

r2p
dµ

1

2π
dφ

=
Φ

2

(
µ2
2 − µ2

1

)
πr2p

Since the sizes of α and Ap are equal to:

|α| = Φ

2

(
µ2
2 − µ2

1

)
|Ap| = πr2p

then:

P {X ∈ α} =
|α|
|Ap|

If the hypothesis of Prop. 2 holds for a generic annular sector, it holds even
for a composition of annular sectors, because the total size is the sum of the sizes,
and the total probability is the sum of the probabilities. Since a generic A ⊆ Ap
can be partitioned in a set of infinitesimal annular sectors, the hypothesis of
Prop. 2 holds for each A ⊆ Ap. Hence, Perfect Uniformity is satisfied.

It is worth remarking that UniLO operator protects a single obfuscated po-
sition. If the adversary can access many obfuscated positions at different times,
as it happens in tracking systems, additional protection mechanisms must be
deployed. In fact, if the subject does not move or moves slowly, the adversary
could overlap the different privacy areas, thus reducing the uncertainty. A com-
mon countermeasure is to reuse the same shift vector every time [5]. If the subject
does not move, the adversary will receive the same privacy area, and no overlap
strategy will be possible.

5 Attack Resistance Analysis

UniLO has been implemented and used to obfuscate simulated location mea-
surements. The error on the location measurements was assumed to follow a
Rayleigh distribution, as it is usually done in GPS [13]. We truncated the distri-
bution at rm = 3σ, so that no sample falls outside Am. Such truncated Rayleigh



10

(a) rp/rm = 2 (b) rp/rm = 4 (c) rp/rm = 10

Fig. 5. 2.000-sample simulations

distribution differs from the untruncated one for only 1.1% of samples. The tests
aim at evaluating the uniformity of UniLO with respect to the ratio rp/rm
(radius ratio).

Figure 5 shows the statistical distribution of X in Ap of 2.000 UniLO samples
for different values of the radius ratio. They give a first visual impression about
the uniformity of UniLO. We note that the distribution tends to be perfectly
uniform as rp/rm →∞. The inner areas are Â90%.

We compared UniLO with other common obfuscation noises:

– A Rayleigh noise (i.e. gaussian X - gaussian Y), used for modeling 2-dimensional
measurement errors. The Rayleigh distribution is truncated at rp − rm, in
order to fulfill Accuracy Property. The σ parameter is fixed at (rp − rm)/3.

– A gaussian-µ noise (i.e. uniform angle - gaussian magnitude), used by Krumm
to perturb GPS data [14]. The gaussian distribution is truncated at rp− rm,
in order to fulfill Accuracy Property. The σ parameter is fixed at (rp−rm)/3.

– A uniform-µ noise (i.e. uniform angle - uniform magnitude). This is the
simplest two-dimensional noise.

Figure 6 shows the uniformity indexes of the noises. Each uniformity index es-
timation was obtained by means of 50 million samples. As we told in Section 4,
UniLO offers a uniformity index above 81% for rp/rm ≥ 10. We can see how
UniLO performs better than all the other noises for all the radius ratii. In par-
ticular, gaussian-magnitude and Rayleigh-magnitude noises are particularly bad
for obfuscating. We believe this is the reason why Krumm needed a surprisingly
high quantity of noise (σ = 5 Km) to effectively withstand inference attacks [14].

6 Service Examples

UniLO operator has the advantage to be transparent to the service provider,
in the sense that a privacy area has the same properties as an ordinary mea-
surement area. A software service provider designed for receiving non-obfuscated
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inputs can be seamlessly adapted for receiving UniLO-obfuscated inputs. The
following subsections describe some examples of services which can be deployed
over UniLO operator.

6.1 Employee localizer

The aim is to retrieve the instantaneous locations of a set of employees to better
coordinate work operations. Before giving their consensus, employees specify
their privacy radii. A software service provider displays the locations on the
monitor of a human operator, in the form of circles on a map. Each circle is larger
or smaller depending on the privacy radius. The privacy radius may depend
on context-based rules. For example, an employee may require a high privacy
radius when standing in some zones of the map and a small one when standing
in others. Figure 7 shows a screenshot of such a service, taken from a practical
implementation.

6.2 Find the near friends

This is a social application, in which the users share their obfuscated positions
with their friends. Alice wants to find out which of her friends are in her prox-
imity. We define “being in the proximity of Alice” as “being at a distance of
400 meters or less from Alice”. In this case Alice is the service provider and
her friends are the subjects. While Alice knows its own position, the locations
of her friends are obfuscated. Suppose Bob is one of Alice’s friends. Since Alice
does not know his exact location, the question “is Bob in my proximity?” will
necessarily have a probabilistic answer, like “60% yes, 40% no”.

The problem can be modeled as depicted in Fig. 8. Alice builds a circle
centered on its position and with 400 meters of radius (proximity circle, A), and
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Fig. 7. Employee localizer screenshot

Fig. 8. Find the near friends

computes the intersection between that circle and the privacy circle of Bob (B).
If Bob is inside this intersection, he will be in Alice’s proximity. The probability
that such an event happens is:

P {Bob is in Alice’s proximity} =

∫∫
A∩B

f (x, y) dxdy (7)

Alice can numerically compute such an integral to find out the probability. If the
privacy area of Bob can be assumed as perfectly uniform, the Eq. 7 will become:

P {Bob is in Alice’s proximity} =
|A ∩B|
|B|
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Fig. 9. Find the nearest taxi

In the figure, such probability is 23%. The service provider performs this calculus
only for each friend whose Xp is nearer than rp + 400 m. The others have no
intersection, and thus 0% probability. Alice finds an answer like the following:

– Bob is in the proximity with 23% probability.
– Carol with 10% probability.
– Dave with 100% probability.
– All the others with 0% probability.

6.3 Find the nearest taxi

Alice calls a taxi and releases her obfuscated GPS position in order to speed-
up the procedure. The taxi company knows the positions of the available taxis.
Then, it finds the one which is probabilistically the nearest to Alice, and forwards
the request to it. In this way, only the taxi driver needs to know Alice’s exact
position.

The problem can be modeled as depicted in Fig. 9, by means of a Voronoi
diagram. Each region of the diagram corresponds to a taxi. Let us call the taxi
drivers Bob (region B), Carol (C), Dave (D) and Edith (E). If Alice is inside B,
Bob’s will be the nearest taxi, and so on. Fortune’s algorithm [11] can compute
the Voronoi diagram in O (n log n) time, where n is the number of taxis. The
taxi company obtains the probabilities by simply integrating f (x, y) over the
intersections between the privacy area and the Voronoi regions. If the privacy
area of Alice can be assumed as perfectly uniform, the integral becomes a simple
area ratio, like in Subsection 6.2. In the figure, the taxi company will obtain the
following probabilities:

– Bob’s taxi is the nearest with 51% probability.
– Carol’s taxi with 31% probability.
– Dave’s taxi with 18% probability.
– All the others with 0% probability.

The taxi company will then forward the request to Bob.
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7 Related Works

Conway and Strip published a seminal work about general-purpose database-
oriented obfuscation methods [5]. The authors introduced two obfuscation ap-
proaches that, with some generalization, have been used until today: value dis-
tortion, which perturbs value with a random noise; and value-class membership,
which partitions the whole value domain in classes, and discloses only the class
where the value is in.

Gruteser and Grunwald first approached k-anonymity problem in location-
based services. The proposed solution involves the subdivision of the map in
static quadrants with different granularities [12]. Mascetti et al. proposed an
obfuscation method that divides the map in quadrants like [12], but it does
not aim at k-anonymity [15]. It focuses only on data obfuscation and proximity
services.

Duckham and Kulik took a radically different approach, that models a map as
an adjacency graph, where the vertices represent zones of the map and the edges
the adjacency between two zones [7]. A graph modelization is more powerful
in some applications, because it can model obstacles, unreachable zones and
hardly viable passages through edge costs. The obfuscation method reveals a set
of nodes where the subject could be. Proximity services are realized by means
of Dijkstra-like algorithms. Shokri et al. took a similar approach, and involves
also the anonymization of the subjects [20]. A drawback is that a graph-based
description of the map must be available, and shared between the subjects and
the service providers. Calculating a graph model of a geographic map that is both
simple and accurate may be not trivial. Another drawback is that the proximity
services are not based on simple and efficient Voronoi diagrams (cfr. Section 6),
but they have to involve more complex Dijkstra-like algorithms.

Ardagna et al. proposed a set of obfuscation operators that perturb the lo-
cation: radius enlargement, radius restriction, center shift [1]. These operators
transform a measurement area into an obfuscated one. To the best of our knowl-
edge, this is the most similar work to our approach, but it contains relevant
differences with respect to UniLO in the initial requirements and the final re-
sults:

– The subject’s actual location could be outside the obfuscated area. This
happens in case of radius reduction or center shift operators. Thus, the ob-
fuscation introduces inaccuracy which does not allow the service provider to
offer some services, like those described in Section 6. In contrast, UniLO
always guarantees that the obfuscated area contains the subject.

– The quantity of privacy is measured by a parameter, called relevance, which
is quite unintuitive. Final users prefer parameters they can easily understand
such as the privacy radius used by UniLO. If a user specifies a privacy
radius of 100 m, then he means that he wishes to be located with a precision
not better than 100 m. Relevance has not a 1-to-1 relationship with the
privacy radius: the same relevance corresponds to a small privacy radius if
the location technology is precise, or to a larger one if is imprecise.
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– The resistance against attacks relies on the fact that the system chooses the
obfuscation operators at random. However, the adversary can make proba-
bilistic hypothesis on them. This possibility is not investigated. De facto, the
adversary is assumed to be unaware of the obfuscation method. This is an
optimistic assumption, which features a form of security by obscurity that
should be avoided [19].

8 Conclusions and Future Works

We have proposed UniLO, an obfuscation operator for location data, which
adds a special random noise which maximizes probability uniformity. UniLO is
simple and O (1)-complex. We have presented an adversary model which per-
forms statistical-based attacks. We have shown that the property of uniformity
neutralizes such attacks. We have proved the resistance of UniLO in terms of
uniformity, through both formal analysis and experimental results. To the best of
our knowledge, UniLO is the first obfuscation operator which offers guarantees
on uniformity.

The work leaves space for extensions to noncircular or nonplanar location
measurements, extensions for tracking systems, and extensions to offer multiple
contemporaneous levels of privacy.
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