
Randomizing Smartphone Malware Profiles
against Statistical Mining Techniques

Abhijith Shastry, Murat Kantarcioglu, Yan Zhou, and Bhavani Thuraisingham

Computer Science Department
University of Texas at Dallas

Richardson, TX 75080
abhijiths@utdallas.edu, muratk@utdallas.edu, yan.zhou2@utdallas.edu,

bxt043000@utdallas.edu

Abstract. The growing use of smartphones opens up new opportunities
for malware activities such as eavesdropping on phone calls, reading e-
mail and call-logs, and tracking callers’ locations. Statistical data mining
techniques have been shown to be applicable to detect smartphone mal-
ware. In this paper, we demonstrate that statistical mining techniques
are prone to attacks that lead to random smartphone malware behavior.
We show that with randomized profiles, statistical mining techniques can
be easily foiled. Six in-house proof-of-concept malware programs are de-
veloped on the Android platform for this study. The malware programs
are designed to perform privacy intrusion, information theft, and denial
of service attacks. By simulating and tuning the frequency and interval
of attacks, we aim to answer the following questions: 1) Can statistical
mining algorithms detect smartphone malware by monitoring the statis-
tics of smartphone usage? 2) Are data mining algorithms robust against
malware with random profiles? 3) Can simple consolidation of random
profiles over a fixed time frame prepare a higher quality data source for
existing algorithms?

1 Introduction

Compared to conventional mobile phones, smartphones are built to support more
advanced computing needs modern custom software demands. An unpleasant
byproduct of the ongoing smartphone revolution is its invitation to malicious
exploits. As smartphone software grows more complex, more malware programs
will be created to attempt to exploit specific weaknesses in smartphone soft-
ware [4, 6]. Smartphones of end users all together constitute a large portion of
the powerful mobile network. Having access to the enormous amount of personal
information on this network is a great incentive for the adversary to attack the
smartphone mobile world.

Malicious activities on mobile phones are often carried out through lightweight
applications, scrupulously avoiding detection while leaving little trace for mal-
ware analysis. Over the years many malware detection techniques have been
proposed. These techniques can be roughly divided into two groups: static anal-
ysis and dynamic analysis. Static analysis techniques discover implications of



unusual program activities directly from the source code. Although static anal-
ysis is a critical component in program analysis, its ability to cope with highly
dynamic malware is unsatisfactory. A number of obfuscation techniques have
been shown to easily foil techniques that rely solely on static analysis [14]. Dy-
namic analysis (also known as behavioral analysis) identifies security holes by
executing a program and closely monitoring its activities [24]. Information such
as system calls, network access, and files and memory modifications is collected
from the operating system at runtime [18]. Since the actual behavior of a pro-
gram is monitored, threats from dynamic tactics such as obfuscation are not
as severe in dynamic analysis. However, dynamic analysis can not guarantee a
malicious payload is always activated every time the host program is executed.

We follow a similar perspective of dynamic analysis by analyzing real-time
collections of statistics of smartphone usage. Metrics of real-time usage are
recorded for analysis. We choose the Android platform in our study. Android
is open source and apparently has a solid customer base given that many de-
vices are using this platform. For the convenience of security analysis on this
platform, we developed custom parameterized malware programs on the An-
droid platform. These malware programs can target the victim for the purpose
of denial of service attacks, information stealing, and privacy intrusion. Our
second contribution is the empirical analysis of the weaknesses of data mining
techniques against mobile malware. We demonstrate that a malware program
with unpredictable attacking strategies is more resilient to commonly used data
mining techniques.

The rest of the paper is organized as follows. Section 2 presents the related
work in the field of malware detection. Malware detection techniques developed
for general-purpose use and those designed specifically for mobile phones are
discussed in this section. Section 3 presents six malware programs and their
tuning parameters. Section 4 discusses the experimental setup and the data
collected for analysis. Experimental results are also presented. Conclusions are
presented in Section 5.

2 Related Work

We first give a broad overview of malware detection techniques in general since
those techniques share common roots with techniques specifically developed for
smartphone malware. In the second part of this section, we discuss work directly
related to mobile malware detection.

2.1 Malware Detection Technique

Techniques used for malware detection can be categorized broadly into two cate-
gories: anomaly-based detection and signature-based detection. Anomaly-based
detection techniques use the knowledge of what constitutes normal behavior to
decide the maliciousness of a program. For example, a rule-based system decides
whether a program is benign or malicious based on a pre-defined set of rules.



Signature-based detection, on the other hand, makes use of static characteri-
zation of known malicious software [24]. Detection techniques generally follow
three different approaches: static, dynamic, or hybrid analysis. A static approach
typically attempts to detect malware without executing the program under in-
spection, while a dynamic approach attempts to detect malicious behavior during
program execution or after program execution. Thus the dynamic approach is
often referred to as behavior based analysis. Hybrid techniques leverage the ad-
vantages of the previous two approaches by combining them as described in [17].

Lee and Stolfo [11] propose to use association rules and frequent episodes in
intrusion detection systems. The association rules and frequent episodes can be
collectively referred to as a rule set. Rule sets are created for various security-
critical aspects of the target host. These rule sets serve as the knowledge of what
activities are considered as normal on the host.

Hofmeyr et al. [8] propose a technique that monitors system call sequences
in order to detect maliciousness. Initially profiles representing the normal be-
havior of a system are developed. The behavior is characterized by sequences of
system calls. Hamming distance is used to determine how closely a system call
sequence resembles another. Thresholds are used to determine whether a process
is anomalous. Okazaki et al. [15] also propose a detection method based on the
frequency of system calls.

Static anomaly-based detection techniques use the characteristics of the file
structure of the program to identify malicious code. A major advantage of static
anomaly-based detection is that it is possible to detect malware without hav-
ing to execute the program containing the malware. Stolfo et al. [21] describe
fileprint (n-gram) analysis as a means for detecting malware. Many other existing
anomaly-based malware detection mechanisms use a hybrid approach [17].

2.2 Malware Detection in Mobile Phones

Malware detection techniques developed for use on the computer platform cannot
be directly used in a mobile environment due to limited resources and processing
capabilities of a mobile phone. Many anomaly-based and signature-based detec-
tion techniques, mostly using a dynamic approach, have been proposed to detect
malware on mobile phones.

Zhou et al. [23] present permission-based behavioral footprinting and heuristic-
based filtering techniques for identifying both known and unknown malware in
the Android family. They first filter out Android apps based on the permis-
sions required to grant wrongdoings on the phone, and then define suspicious
behaviors of malicious apps and use them to detect zero-day malware.

Yap and Ewe [22] propose a behavior checker solution that detects malicious
activities in a mobile system. A proof of concept scenario using a Nokia mobile
phone on the Symbian operating system is provided. Bose et al. [1] propose a
behavioral detection framework that employs a temporal logic approach to detect
malicious activities over time. An efficient representation of malware behaviors is
proposed based on a key observation that the logical ordering of an application’s



actions over time often reveals malicious intent even when each action alone may
appear harmless.

Kim et al. propose a detection mechanism based on power signatures [10]. The
technique can detect and analyze previously unknown energy depletion threads
based on a collection of power signatures. Moreau et al. [13] use artificial Neural
Networks (ANNs) to detect anomalous behavior indicating a fraudulent use of
the operator services. An example of such behavior is unusually high call rate.
Cheng et al. [3] propose SmartSiren, a virus detection and alert system for smart-
phones. SmartSiren was evaluated by detecting SMS viruses by monitoring the
amount of SMSs sent by a single device.

Schmidt et al. [19] extract features representing device state from a smart-
phone running the Symbian OS. These extracted features are used for anomaly
detection to distinguish between normal and abnormal behavior. The processing
of the extracted features was performed on a remote server. Dixon and Mishra [5]
propose a rootkit and malware detection mechanism for smartphones in which
processing is performed on a computer which is connected to the mobile device.
An implementation on the Android platform is also provided.

Shabtai et al. propose a behavioral malware detection framework for android
devices [20]. The framework includes a host-based malware detection system
that continuously monitors various features and events obtained from the mobile
devices, and then applies machine learning anomaly detectors to classify the
collected data as benign or malicious. They develop four malicious applications
on the Android platform and evaluate the proposed framework. They show that
such a behavioral malware detection scheme is able to detect unknown malware
programs.

3 MALWARE SETUP

We developed six different parameterized malware programs on the Android
platform. These malware programs perform privacy intrusion, information theft
attacks, and denial of service attacks. By varying the parameters of the malware
programs, different profiles of the same malware can be generated. Moreover, the
parameters themselves can be randomized (with an expected mean value) rather
than being a fixed value. By randomizing the parameters, interesting malware
profiles can be prepared for further analysis.

We assume that either through a direct installation or an indirect installa-
tion (through the payload of a benign application), the victim’s mobile phone is
infected with the developed malware. All malware programs were developed and
tested on a Samsung Captivate smartphone running on the Android platform.
One important thing to know about the Android framework is that applications
run in sand boxes (virtual machines), and therefore do not impact other ap-
plications in the system. Moreover, all permissions required by the application
running on the Android platform (such as Internet access, microphone access)
have to be declared, which is prompted to the user when the application is in-
stalled. Again the assumption we are leaning on allows us to get away from any



practical difficulties of installing the developed malware programs in a furtive
manner.

3.1 Call Recorder

The Call Recorder malware performs eavesdropping on incoming and outgoing
phone calls. Both incoming and outgoing calls are recorded. The recorded file
is kept locally on the phone. A configuration option is provided to upload the
recorded file to a server. This malware attempts to compromise the privacy of
the person using the infected mobile phone. Parameters of this malware include:

– MAX DURATION—maximum duration a phone call is recorded
– MAX FILESIZE—maximum size of the recorded file
– NUM SKIPPED CALLS—specifying that only every (n+ 1)th phone call is

recorded, where n is the value of NUM SKIPPED CALLS.
– INTERVAL RECORD—specifying the length of every recording (after each

sleep) during a phone call
– INTERVAL SLEEP—specifying the duration in which the malware sleeps

(stops recording)
– SHOULD UPLOAD—uploading the recorded content to a server
– DELETE LOCAL—deleting the local copy of the recording output

3.2 DoS Malware

Dos Malware performs a Denial of Service (DoS) attack. Upon loading this ap-
plication, it spawns many threads. Each thread performs a large number of mul-
tiplications between two randomly generated numbers. As the number of threads
increases, the phone starts becoming unresponsive. When the number of threads
spawned is above 200, the phone hangs and has to be rebooted. Thus, this mal-
ware paralyzes the device by driving the CPU beyond its limit. Parameters of
this malware are:

– MAX THREADS—number of threads spawned by the malware
– NUM MULTIPLICATIONS—number of multiplications performed by each

thread
– INTERVAL RESTART—duration after which all the spawned threads are

killed before new ones are spawned
– INTERVAL SLEEP—duration in which the malware sleeps before new threads

are spawned

3.3 Mass Uploader

As the name suggests, this malicious application uploads the contents of the
memory device of the mobile phone to a server. Thus, it is designed to steal infor-
mation from the device. Other than uploading, this malware can also download
content from a server. When this application is started, it begins the process of
uploading and downloading content to/from a server. Parameters of this malware
are:



– UPLOAD/DOWNLOAD BW—the upload/download bandwidth limits for
the malicious application

– UPLOAD/DOWNLOAD INTERVAL—the duration after which an upload/download
is performed by the malicious application

– UPLOAD/DOWNLOAD INTER LIM—specifying the limit of the amount
of data sent (burst) in one upload/download attempt

Note that memory private to an application is protected by linux permissions
on Android. Therefore normally other service cannot access it. We assume a root
exploit has enabled the application to elevate to root and steal sensitive data.

3.4 Smart Recorder

Smart Recorder performs eavesdropping on incoming and outgoing phone calls
from specific phone numbers. These specific phone numbers are read from a
server whenever a phone call is made. The specific phone numbers can be changed
at run time. After recording a phone call, the recorded file is uploaded to a server.
This malware gives the attacker more control over the recorded phone conver-
sations. Specific phone calls can be targeted as the attacker tries to compromise
the privacy of the person using the infected mobile phone. Parameters of this
malware are:

– MAX DURATION—maximum duration that the phone call is recorded.
– MAX FILESIZE—maximum size of the recorded file
– INTERVAL RECORD—length of every recording (after each sleep) during

a phone call
– INTERVAL SLEEP—duration in which the malware sleeps (stops recording)

3.5 Spy Camera

Spy Camera can spy on the unsuspecting user by taking snap shots from the
mobile phone camera every few seconds. These snapshots can be uploaded to
a server. Thus, this malware compromises the privacy of the user. When the
malware takes a snap from the mobile phone, the user is not notified in any way
(by sound or other notifications) that a picture has been taken from the mobile
phone camera. Parameters of this malware are:

– SNAP INTERVAL—duration after which a snap is taken from the camera
on board the mobile device and stored locally on the phone

– PIC DSAMPLE RATIO—specifying the down sample ratio that impacts the
quality of the pictures taken form the camera

– PIC COMP QUALITY—specifying the amount of compression the raw im-
age is subjected to before saving the image

– SHOULD UPLOAD—uploading the picture to a server
– DELETE LOCAL—deleting the local copy of the pictures taken



3.6 Spy Recorder

Spy Recorder can remotely turn on the microphone of the mobile phone and start
recording any voice input. The recording is initiated and terminated by a phone
call from a specific number that a spy has registered. The microphone is turned
on when a phone call from a specific number is made to the victim’s phone.
The call is automatically rejected afterwards. Similarly, making another phone
call from a specific number will turn off the microphone. The entire process
is completed without the user’s attention. This spyware can be used to record
conversations duration important meetings. The recorded file can be stored on
the mobile device for later retrieval or can be uploaded to a server. Parameters
of this malware are:

– MAX DURATION—maximum duration that the conversation is recorded
– MAX FILESIZE—maximum size of the recorded file
– INTERVAL RECORD—length of every recording (after each sleep) during

a phone call
– INTERVAL SLEEP—duration in which the malware sleeps (stops recording)
– SHOULD UPLOAD—uploading recorded conversation to a server
– DELETE LOCAL—deleting the local copy of the recorded conversation

4 EXPERIMENTAL ANALYSIS

We now discuss the experiments in which we investigate the weaknesses of com-
mon data mining detection techniques. We present metrics characterizing the
behavior of an application and the data sets used in the experiments data. We
also discuss the data mining tools used in our experiments and the evaluation
metrics.

4.1 Run-time Behavior Metrics

The run-time behavior of a program can be defined using the statistics of usage
of a smartphone. In our experiments, we record the run-time behavior of an
application as a set of pre-defined features while the application is running. The
collected feature sets are the data source for the data mining techniques later.

The features used in this study characterize the typical behavior of an appli-
cation. They include various metrics, such as CPU consumption, network traffic,
memory usage, and battery (power) consumption. Table 1 lists all the features
that need to be recorded in real-time. A light-weight utility program was de-
veloped for collecting these features every five seconds and storing them in a
database on the mobile phone. This application runs as a service in the back-
ground.

Whenever an application is running, the feature extraction utility collects
the features from the running application. Once the features are collected, the
next step involves training a classifier on the collected feature vectors. After the
classifier is trained, dynamic decisions can be made for a running application by



Table 1. List of features extracted.

Feature Category Feature

CPU
cpu totutil, cpu totproccount, cpu userproccount
cpu load avg1min, cpu load avg5min, cpu load avg15min

Memory

mem tot, mem free, mem buffer
mem cached, mem active, mem inactive
mem dirty, mem writeback, mem pageanon
mem mapped, mem anon, mem file

Battery
btr lvl rem, btr status, btr temp
btr volt, btr lvl change

Network

net cell upd tx pkts, net cell upd tx bytes
net cell upd rx pkts, net cell upd rx bytes
net wifi upd tx pkts, net wifi upd tx bytes
net wifi upd rx pkts, net wifi upd rx bytes

the classifier using the new collection of the features of the running application.
Proper actions can be performed after detection, such as notifying the user when
the classifier flags an application as malicious.

4.2 Data Sets

We developed a feature extractor application for collecting data. It runs as a
background service on the Android phone. Features of the benign and malicious
applications are collected from the Android OS while they are running. Using the
feature extractor application, we create data sets from 20 benign applications and
6 malware programs over a period of 10 minutes, resulting 120 feature vectors
per application. 10 of the benign applications were tools and the other 10 were
games. The applications used in our experiments are listed in Table 2.

Table 2. Applications used in the experiments

Malicious Benign (tools) Benign (games)

Call Recorder MusicPlayer AngryBirds
DoS Malware Phone AirControlLite

Mass Uploader Browser SmartTacToe
Smart Recorder Calculator Snake

Spy Camera Youtube Minesweeper
Spy Recorder Calendar 3DBowling

Clock Solitaire
Contacts RacingMoto
Market DragonFly
Memo DragRacing

Features from malware programs were collected when no limits (such as band-
width, CPU usage) were imposed on the malware programs. This malware profile



is referred to as the general profile. In addition, features of malware programs
with randomized profiles were also collected. For each malware program, five
different randomized profiles were created. Thus the entire data set consists of
feature vectors from 20 benign applications, 6 malware programs, and 30 ran-
domized profiles of malware programs, in the total of 56 applications. Each of
the randomized profile varies from the other with respect to the amount of ran-
domization, i.e., the amount of deviation from the mean value of a parameter.
For example, Randx refers to a profile in which the variance from the mean value
of the parameters is x.

4.3 Data Mining Tools

Five data mining algorithms in WEKA [7] are selected to build the classifiers
in our study. The algorithms are: decision tree (DT), logistic regression (LR),
näıve Bayes (NB), artificial neural network (ANN), and support vector machine
(SVM). Classifiers typically operate in two phases: training and testing. During
the training phase, a classifier is trained on input vectors with proper class
values. The classifier then builds a model that generalizes on data in the entire
domain. After the training phase, the classifier can be used to make predictions
for unseen instances, and it is known as the test phase.

Decision trees are tree-structured predictive models used in many application
domains of Machine Learning. Many different types of decision trees exist. In
our study we built a decision tree model using the C4.5 algorithm [16].

Logistic Regression is a type of predictive model that can be used when the
target variable is a categorical variable with two categories and thus is suitable
for our study. During the training phase, the logistic regression algorithm builds
a model that is similar to fitting a polynomial to a set of data values. This model
is then used to predict class labels during the test phase.

A näıve Bayes classifier is a probabilistic classifier based on the Bayes theo-
rem with strong (näıve) independence assumptions. During the training phase,
a model is built which is described by a set of probabilities. An important lim-
itation of this classifier is that input features must all be discretized. It cannot
directly handle continuous values. Continuous valued features can be handled
using a mixture of Gaussians [12].

A neural network classifier builds a graph model that consists of a set of
inter-connecting artificial neurons in its training phase. The neural network [12]
exploits patterns in data by modeling complex relationships between the input
and the target output. Typically, training neural network models takes more
time than that for other models.

A standard support vector machine (SVM) algorithm builds a predictive
model by constructing a high-dimensional hyper-plane that discriminates be-
tween two categories of data. Given a set of training examples, a hyper-plane
that maximizes the distance to the closest training examples on either side is
chosen as the optimal separating hyper-plane. The SVM methods have demon-
strated great success in many application domains since it was first introduced
to the machine learning research community [2].



4.4 Evaluation

The following standard metrics were used to measure the performance of the
selected data mining algorithms:

1. True Positive Rate (TPR): Proportion of positive instances (feature vectors
of malicious applications) classified correctly.

2. False Positive Rate (FPR): Proportion of negative instances (feature vectors
of benign applications) misclassified.

3. Total Accuracy: Proportion of absolutely correctly classified instances, either
positive or negative.

4. Receiver Operating Characteristic (ROC) - Area Under Curve (AUC): The
ROC curve is a graphical representation of the trade-off between the TPR
and FPR for every possible detection cut-off. AUC is the area under this
curve.

4.5 Experiments

We now describe in detail two separate experiments we have performed on the
datasets of the benign and malicious applications. We also discuss the experi-
mental results and their implications.

Experiment 1 The first experiment evaluates the performance of the five data
mining techniques when the adversary does not spread out the attacks in an
unpredictable manner. Table 3 shows the 10-fold cross validation results when
the data set consisted of the 20 benign applications and 6 malware programs.
Four out of the five algorithms work fairly well with a classification accuracy
of more than 95%. Näıve Bayes turned out to be a disappointing exception.
Violation of the independence assumption in the data may be the main reason
that hampers the performance of the näıve Bayes classifier. This experiment
implies that statistical analysis in these data mining algorithms is in general
applicable when an attack is not disseminated.

Table 3. 10-fold cross validation results on the 20 benign applications and 6 malware
programs.

Classifier Accuracy TPR FPR AUC

DT 99.615 0.988 0.001 0.992

LR 99.231 0.988 0.006 0.995

NB 82.692 0.303 0.016 0.788

ANN 99.808 0.996 0.001 0.999

SVM 95.416 0.832 0.009 0.911

Table 4 and Table 5 present the cross validation results when the data set
consists of 10 out of the 20 genuine applications and the 6 malware programs.



The genuine applications chosen in Table 4 and Table 5 are tools and games,
respectively. All classifiers except näıve Bayes perform well with respect to the
cross validation results. When games are used in the data sets instead of tools,
the classification accuracy is slightly better for four classifiers. This result is
consistent with the observation made in a similar experiment in [20].

Table 4. 10-fold cross validation results on 10 benign applications (tools) and 6 mal-
ware programs.

Classifier Accuracy TPR FPR AUC

DT 99.531 0.993 0.003 0.996

LR 99.167 0.989 0.007 0.996

NB 71.563 0.292 0.030 0.849

ANN 99.792 0.997 0.002 1.000

SVM 98.698 0.986 0.0125 0.987

Table 5. 10-fold cross validation results on 10 benign applications (games) and 6
malware programs.

Classifier Accuracy TPR FPR AUC

DT 99.948 0.999 0.000 0.999

LR 99.271 0.994 0.008 0.995

NB 74.688 0.339 0.008 0.829

ANN 99.948 1.000 0.000 1.000

SVM 93.490 0.840 0.008 0.916

Experiment 2 This experiment demonstrates the performance of the five data
mining algorithms on a non-randomized malware profile (marked as General
in the following plots) and five randomized malware profiles, namely Rand0,
Rand5, Rand25, Rand50, and Rand75. Each randomized profile is generated by
varying the parameters of each malware program as described earlier. Through
this experiment, we hope to answer the two questions we raised earlier:

– Are data mining algorithms robust against malware with random attacking
activities?

– Can simple consolidation of activities over a fixed time frame prepare a
higher quality data source for existing algorithms?

To answer the second question, we experimented on datasets in which instances
are consolidated by sequentially averaging over n consecutive samples we have
extracted in Experiment 1, where n =1, 5, 10, and 50, marked as 5sec, 25sec,
50sec, and 250sec interval respectively in the figures. Figures 1 illustrates the



average classification accuracy over all five classifiers on 6x6 training-test data
pairs. The training data consists of all the genuine applications and the malware
programs with each of the six profiles shown as a label on the x-axis. Each
cluster in a plot shows the average classification accuracy on six test sets—the
same datasets of six different profiles {General, Rand0, Rand5, Rand25, Rand50,
Rand75}, labeled with specific bar patterns as shown in the figures.

Fig. 1. Average Accuracy over all algorithms on 5sec data profiles.

Due to space limitations, we do not show the figures of the classification
accuracy of each individual algorithm. In general, none of the classifiers was
able to consistently outperform the others as the training and test data varies
according to different random profile configurations. The decision tree algorithm
performs best on datasets of all six profiles when the training data is extracted
from the Rand75 profile and instances are formed by averaging 50 consecutive
samples in each 250-second interval. Logistic regression performs best when the
training data comes from the Rand25 profile and all instances in each data
set is formed by averaging 10 consecutive samples in each 50-second interval.
Näıve Bayes performs best with the training data of the Rand50 profile and
instances are formed by averaging 50 consecutive samples. ANN performs best
with training data of the Rand75 profile and samples of every 5-second interval.
SVM performs best with training data of the Rand75 profile and instances are
formed by averaging 50 consecutive samples. As can be seen, behavioral analysis
may become very difficult when malware exhibits random behavior. Figure 2
shows the classification accuracy of each algorithm averaged over the 6x6 profile
pairs.

Other key observations are: 1.) When the training set consists of benign
applications and general malware programs while the test set consists of ran-
domized profiles of malware programs, the classification accuracy is very poor



Fig. 2. Mean Accuracy of each algorithm on all data profiles.

irrespective of the classifiers. In most cases the classification accuracy is below
70%. This has important implications that a behavioral analysis-based malware
detection scheme will fail when the training set consists of just general malware
programs; 2.) Another observation is that when training set includes a random-
ized malware profile say, Rand-x and tests are carried out on another randomized
malware profile, say Rand-y, classification accuracy is good when x is close to y,
in general. For instance, using the decision tree classifier, training on the Rand50
profile and testing on the Rand75 profile gives a classification accuracy of around
86%. Some anomalies exist to this trend such as training on a Rand75 profile
using a decision tree classifier.

Figures 3— 5 illustrate performance change as instances are formed by aver-
aging samples in longer durations. As can be observed in Figure 3, the majority
of performance change is positive when we average the samples every 25 sec-
onds. This implies the mean point of a few consecutive samples serves better
as an instance in the data set. Further consolidation using longer durations of
50 seconds and 250 seconds do not appear to improve the performance further
except for the Rand50 profile. For individual algorithms, we observe significant
performance improvement from the decision tree and näıve Bayes classifiers.
The Logistic Regression, Artificial Neural Network, and Support Vector Machine
classifiers all experienced an initial increase followed by slight decreases in clas-
sification accuracy as instances are formed over a longer duration. SVM is the
most consistent one among the five classifiers. In general, sample consolidation
does seem to improve classifier performance.

5 CONCLUSIONS

We developed six custom parameterized malware programs on the Android plat-
form. These malware programs can perform a variety of malicious activities on



Fig. 3. Average Accuracy% change over all algorithms on 25sec data profiles.

Fig. 4. Average Accuracy% over all algorithms on 50sec data profiles.

the victim’s smartphone. We demonstrate that, although a data mining algo-
rithm can be very successful when the training and the test data follow sim-
ilar distributions, its performance is unsatisfactory on randomized profiles of
the same malware programs. Therefore it is necessary to search for solutions
that can better handle random behavioral patterns of malware programs. We
also demonstrate that simple consolidation may effectively improve classifica-
tion performance. In the future, we plan to expand the datasets by developing
additional malware applications and including real-world malware, and more-
over, search for reliable ways to improve detection in a volatile environment
using adversarial classification techniques [9]. We also plan to compare data
mining techniques with existing practical techniques for malware detection such
as permission-based filtering and behavioral footprint matching methods [23].



Fig. 5. Average Accuracy% over all algorithms on 250sec data profiles.

6 Acknowledgments

This work was partially supported by Air Force Office of Scientific Research
MURI Grant FA9550-08-1-0265, National Institutes of Health Grant 1R01LM009989,
National Science Foundation (NSF) Grant Career-CNS-0845803, and NSF Grants
CNS-0964350, CNS-1016343.

References

1. Bose, A., Hu, X., Shin, K.G., Park, T.: Behavioral detection of malware on mobile
handsets. In: Proceeding of the 6th international conference on Mobile systems,
applications, and services. pp. 225–238. MobiSys ’08, ACM, New York, NY, USA
(2008)

2. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin
classifiers. In: Proceedings of the 5th Annual ACM Workshop on Computational
Learning Theory. pp. 144–152. ACM Press (1992)

3. Cheng, J., Wong, S.H., Yang, H., Lu, S.: Smartsiren: virus detection and alert
for smartphones. In: Proceedings of the 5th international conference on Mobile
systems, applications and services. pp. 258–271. MobiSys ’07, ACM, New York,
NY, USA (2007)

4. Christodorescu, M., Jhacomputer, S.: Testing malware detectors. In: In Proceed-
ings of the 2004 ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2004. pp. 34–44. ACM Press (2004)

5. Dixon, B., Mishra, S.: On rootkit and malware detection in smartphones. In: De-
pendable Systems and Networks Workshops (DSN-W), 2010 International Confer-
ence on. pp. 162 –163 (28 2010-july 1 2010)

6. Gary McGraw, G.M.: Attacking malicious code: a report to the infosec research
council. IEEE Software pp. 33–41 (2000), magazine article

7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.:
The weka data mining software: an update. SIGKDD Explor. Newsl. 11, 10–18
(November 2009)



8. Hofmeyr, S.A., Forrest, S., Somayaji, A.: Intrusion detection using sequences of
system calls. J. Comput. Secur. 6, 151–180 (August 1998)

9. Kantarcioglu, M., Xi, B., Clifton, C.: Classifier evaluation and attribute selection
against active adversaries. Data Min. Knowl. Discov. 22, 291–335 (January 2011)

10. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile
malware variants. In: Proceeding of the 6th international conference on Mobile
systems, applications, and services. pp. 239–252. MobiSys ’08, ACM, New York,
NY, USA (2008)

11. Lee, W., Stolfo, S.J.: Data mining approaches for intrusion detection. In: Proceed-
ings of the 7th conference on USENIX Security Symposium - Volume 7. pp. 6–6.
USENIX Association, Berkeley, CA, USA (1998)

12. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)
13. Moreau, Y., Shawe-taylor, P.B.J., Stoermann, C., Ag, S., Vodafone, C.C.: Novel

techniques for fraud detection in mobile telecommunication networks. In: ACTS
mobile summit (1997)

14. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Twenty-Third Annual Computer Security Applications Conference (ACSAC
2007. pp. 421–430 (2007)

15. Okazaki, Y., Sato, I., Goto, S.: A new intrusion detection method based on process
profiling. In: Applications and the Internet, 2002. (SAINT 2002). Proceedings. 2002
Symposium on. pp. 82 –90 (2002)

16. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA (1993)

17. Rabek, J.C., Khazan, R.I., Lewandowski, S.M., Cunningham, R.K.: Detection of
injected, dynamically generated, and obfuscated malicious code. In: Proceedings
of the 2003 ACM workshop on Rapid malcode. pp. 76–82. WORM ’03, ACM, New
York, NY, USA (2003)

18. Rieck, K., Holz, T., Willems, C., Dssel, P., Laskov, P.: Learning and classification
of malware behavior. In: Zamboni, D. (ed.) Detection of Intrusions and Malware,
and Vulnerability Assessment, Lecture Notes in Computer Science, vol. 5137, pp.
108–125. Springer Berlin / Heidelberg (2008)

19. Schmidt, A., Schmidt, H., Clausen, J., Camtepe, A., Albayrak, S.: Enhancing se-
curity of linux-based android devices. Image Rochester NY (2008)

20. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: ”andromaly”: a be-
havioral malware detection framework for android devices. Journal of Intelligent
Information Systems pp. 1–30 (2011)

21. Stolfo, S.J., Wang, K., jen Li, W.: Worms 2005 columbia ids lab fileprint analysis
for malware detection 1. In: 6th IEEE Information Assurance Workshop (2005)

22. Yap, T.S., Ewe, H.T.: A mobile phone malicious software detection model with
behavior checker. In: Human.Society@Internet. pp. 57–65. Lecture Notes in Com-
puter Science (2005)

23. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets. In: In Proceedings of the
19th Network and Distributed System Security Symposium (NDSS 2012) (2012)

24. Zolkipli, M.F., Jantan, A.: Malware behavior analysis: Learning and understanding
current malware threats. Network Applications, Protocols and Services, Interna-
tional Conference on 0, 218–221 (2010)


